72 research outputs found

    Estados ecosistémicos coexistentes en una laguna costera tropical bajo eutrofización creciente en la cayería norte de Cuba

    Get PDF
    Through a nested suite of methods here we contrast the coexistence of different ecosystem states in a tropical coastal lagoon, the Laguna Larga, with increasing eutrophication stress between 2007 and 2009. Water temperature averaged 27.4°C in the lagoon and showed a slight positive trend during the study period. Salinity averaged 35.0±6.2, exhibiting high spatial and temporal variability, and also a slight positive trend in time. In contrast, dissolved oxygen showed a substantial decreasing trend (–0.83 ml L–1 y–1; –13.3% y–1) over the period, while nutrients increased dramatically, particularly total phosphorus (2.6 µM y–1), in both cases sustaining the progression of eutrophication in the lagoon during the three years we sampled. The Karydis nutrient load-based trophic index showed that the lagoon has a spatial pattern of increasing eutrophication from the sea and the outer sector (oligotrophic-mesotrophic) to the central (mesotrophic) and the inner sector (mesotrophic-eutrophic). Two ecosystem states were found within the lagoon. In the outer oligotrophic sector, the dominant primary producers were macroalgae, seagrasses and benthic diatoms, while mollusc assemblages were highly diverse. In the inner and central sectors (where trophic status increased toward the inner lagoon) a phytoplankton-dominated ecosystem was found where mollusc assemblages are less diverse. In spite of the progression of eutrophication in the lagoon, these two different ecosystems coexisted and remained unchanged during the study period. Apparently, the effect of water residence time, which increases dramatically toward the inner lagoon, dominated over that of nutrient loadings, which is relatively more homogeneously distributed along the lagoon. Therefore, we consider that actions that reduce the water residence time are likely the most effective management options for this and other similarly choked lagoons.Mediante la conjunción de una diversidad de métodos y observaciones, se contrasta la coexistencia de diferentes estados ecosistémicos en Laguna Larga, una laguna costera tropical sometida a una eutrofización creciente entre 2007 y 2009. La temperatura media en la laguna fue de 27.4°C y mostró una ligera tendencia positiva en este periodo. La salinidad mostró alta variabilidad espacial y temporal alrededor de una media de 35.0±6.2 y también tuvo una tendencia temporal positiva. En contraste, el oxígeno disuelto mostró una sustancial tendencia negativa (–0.83 ml L–1 y–1; –13.3% y–1) en el mismo periodo, al tiempo que los nutrientes se incrementaron drásticamente, en particular el fósforo total, a una tasa de 2.6 µM y–1, respaldando ambas tendencias el incremento de la eutrofización a lo largo de los tres años observados. El índice trófico de Karydis, basado en las cargas de nutrientes, mostró un patrón espacial de incremento de la eutrofización desde el mar hacia el sector exterior (oligotrófico-mesotrófico), el sector central (mesotrófico) y el sector interior (mesotrófico-eutrófico). Se identificaron dos estados ecosistémicos dentro de la laguna. En el oligotrófico sector exterior, los productores primarios dominantes fueron macroalgas, pastos marinos y diatomeas bénticas, en tanto que las asociaciones de moluscos fueron altamente diversas. En los sectores central e interior (incrementándose el estatus trófico hacia este último), se encontró un estado ecosistémico dominado por el fitoplancton y en el que las asociaciones de moluscos son menos diversas. A pesar del incremento de la eutrofización, estos dos ecosistemas distintos coexistieron y permanecieron sin cambios durante el periodo estudiado. En Laguna Larga, el efecto del tiempo de residencia del agua, que se incrementa dramáticamente hacia el interior de la laguna, domina aparentemente sobre el de la carga externa de nutrientes, que está distribuida de manera relativamente más homogénea a lo largo de la laguna. Por ello, consideramos que las acciones dirigidas a disminuir el tiempo de residencia del agua son probablemente las más efectivas en esta laguna y otras similarmente aisladas

    Whole Genome Sequence Analysis of Burkholderia contaminans FFH2055 Strain Reveals the Presence of Putative β-Lactamases

    Get PDF
    Burkholderia contaminans is a member of the Burkholderia cepacia complex (Bcc), a pathogen with increasing prevalence among cystic fibrosis (CF) patients and the cause of numerous outbreaks due to the use of contaminated commercial products. The antibiotic resistance determinants, particularly β-lactamases, have been poorly studied in this species. In this work, we explored the whole genome sequence (WGS) of a B. contaminans isolate (FFH 2055) and detected four putative β-lactamase-encoding genes. In general, these genes have more than 93% identity with β-lactamase genes found in other Bcc species. Two β-lactamases, a class A (Pen-like, suggested name PenO) and a class D (OXA-like), were further analyzed and characterized. Amino acid sequence comparison showed that Pen-like has 82% and 67% identity with B. multivorans PenA and B. pseudomallei PenI, respectively, while OXA-like displayed strong homology with class D enzymes within the Bcc, but only 22–44% identity with available structures from the OXA family. PCR reactions designed to study the presence of these two genes revealed a heterogeneous distribution among clinical and industrial B. contaminans isolates. Lastly, bla PenO gene was cloned and expressed into E. coli to investigate the antibiotic resistance profile and confers an extended-spectrum β-lactamase (ESBL) phenotype. These results provide insight into the presence of β-lactamases in B. contaminans, suggesting they play a role in antibiotic resistance of these bacteria.Fil: Degrossi, José J.. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Merino, Cindy. University Fullerton; Estados UnidosFil: Isasmendi, Adela M.. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; ArgentinaFil: Ibarra, Lorena M.. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Collins, Chelsea. University Fullerton; Estados UnidosFil: Bo, Nicolás E.. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Papalia, Mariana Andrea. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Microbiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Fernandez, Jennifer S.. University Fullerton; Estados UnidosFil: Hernandez, Claudia M.. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; ArgentinaFil: Papp Wallace, Krisztina M.. Case Western Reserve University; Estados UnidosFil: Bonomo, Robert A.. Case Western Reserve University; Estados UnidosFil: Vazquez, Miryam S.. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Power, Pablo. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología y Biotecnología. Cátedra de Microbiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Ramirez, María S.. University Fullerton; Estados Unido

    Metabolism in a deep hypertrophic aquatic ecosystem with high water-level fluctuations: a decade of records confirms sustained net heterotrophy

    Get PDF
    Long-term and seasonal changes in production and respiration were surveyed in the Valle de Bravo reservoir, Mexico, in a period during which high water-level fluctuations occurred (2006–2015). We assessed the community metabolism through oxygen dynamics in this monomictic water-body affected by strong diurnal winds. The multiple-year data series allowed relationships with some environmental drivers to be identified, revealing that water level-fluctuations strongly influenced gross primary production and respiratory rates. Production and respiration changed mainly vertically, clearly in relation to light availability. Gross primary production ranged from 0.15 to 1.26 gO2 m−2 h−1, respiration rate from −0.13 to −0.83 gO2  m−2 h−1 and net primary production from −0.36 to 0.66 gO2  m−2 h −1 within the production layer, which had a mean depth of 5.9 m during the stratification periods and of 6.8 m during the circulations. The greater depth of the mixing layer allowed the consumption of oxygen below the production layer even during the stratifications, when it averaged 10.1 m. Respiration below the production layer ranged from −0.23 to −1.38 gO2 m−2 h−1. Vertically integrated metabolic rates (per unit area) showed their greatest variations at the intra-annual scale (stratification-circulation). Gross primary production and Secchi depth decreased as the mean water level decreased between stratification periods. VB is a highly productive ecosystem; its gross primary production averaged 3.60 gC m−2 d−1 during the 10 years sampled, a rate similar to that of hypertrophic systems. About 45% of this production, an annual average net carbon production of 599 g C m−2 year−1, was exported to the hypolimnion, but on the average 58% of this net production was recycled through respiration below the production layer. Overall, only 19% of the carbon fixed in VB is buried in the sediments. Total ecosystem respiration rates averaged −6.89 gC  m−2 d−1 during 2006–2015, doubling the gross production rates. The reservoir as a whole exhibited a net heterotrophic balance continuously during the decade sampled, which means it has likely been a net carbon source, potentially releasing an average of 3.29 gC m−2 d−1 to the atmosphere. These results are in accordance with recent findings that tropical eutrophic aquatic ecosystems can be stronger carbon sources than would be extrapolated from temperate systems, and can help guide future reassessments on the contribution of tropical lakes and reservoirs to carbon cycles at the global scale. Respiration was positively correlated with temperature both for the stratification periods and among the circulations, suggesting that the contribution of C to the atmosphere may increase as the reservoirs and lakes warm up owing to climate change and as their water level is reduced through intensification of their use as water sources

    Nitrogen and Phosphorous Retention in Tropical Eutrophic Reservoirs with Water Level Fluctuations: A Case Study Using Mass Balances on a Long-Term Series

    Get PDF
    Nitrogen and phosphorous loading drives eutrophication of aquatic systems. Lakes and reservoirs are often effective N and P sinks, but the variability of their biogeochemical dynamics is still poorly documented, particularly in tropical systems. To contribute to the extending of information on tropical reservoirs and to increase the insight on the factors affecting N and P cycling in aquatic ecosystems, we here report on a long-term N and P mass balance (2003–2018) in Valle de Bravo, Mexico, which showed that this tropical eutrophic reservoir lake acts as a net sink of N (−41.7 g N m y) and P (−2.7 g P m y), mainly occurring through net sedimentation, equivalent to 181% and 68% of their respective loading (23.0 g N m y and 4.2 g P m y). The N mass balance also showed that the Valle de Bravo reservoir has a high net N atmospheric influx (31.6 g N m y), which was 1.3 times the external load and likely dominated by N fixation. P flux was driven mainly by external load, while in the case of N, net fixation also contributed. During a period of high water level fluctuations, the net N atmospheric flux decreased by 50% compared to high level years. Our results outlining water regulation can be used as a useful management tool of water bodies, by decreasing anoxic conditions and net atmospheric fluxes, either through decreasing nitrogen fixation and/or promoting denitrification and other microbial processes that alleviate the N load. These findings also sustain the usefulness of long-term mass balances to assess biogeochemical dynamics and its variability.This research was funded by UNAM, PAPIIT-IN207702 and CONACYT-SEMARNAT, C01-1125 projects to M.M-

    Uncovering the potentialities of protic ionic liquids based on alkanolammonium and carboxylate ions and their aqueous solutions as non-derivatizing solvents of Kraft lignin

    Get PDF
    The present study scrutinized in depth the ability of alkanolammonium-based Protic Ionic Liquids (PILs) with carboxylate anions to dissolve Kraft lignin at 323.15 K. A focus was put on understanding the role of both PIL ions and water on the dissolution process. The results demonstrated that the anion plays a more important role in lignin dissolution than the cation. Furthermore, lignin dissolution was favored by increasing the alkyl chain of the carboxylate anion, while a smaller cation with lower number of hydroxyalkyl groups performed better. Among the studied solvents, the 2-hydroxyethylammonium hexanoate (HEAH) displayed the highest lignin solubility (37 wt%). In general, the addition of water had a negative influence on lignin solubility with the tested PILs. A sharp decrease in lignin solubility curves of 2-hydroxyethylammonium formate (HEAF) and acetate (HEAA) was observed, while a more softly effect was observed for 2-hydroxyethylammonium propionate (HEAP) and HEAH with the addition of water. However, a distinct behavior was observed for 2-hydroxyethylammonium octanoate (HEAO) that acted as hydrotrope enhancing lignin solubility in aqueous solutions to a maximum value at 40 wt% water content. Furthermore, by increasing the temperature, the lignin solubility was favored due to endothermic behavior of lignin dissolution process. The dissolution of Kraft lignin was also performed at 393.15 K to unravel any lignin modification unleashed by PILs. GPC, FTIR-ATR and 2D NMR were employed for lignin characterization and the changes observed between native lignin and recovered lignin samples were negligible demonstrating the non-derivatizing char- acter of the PILs. Moreover, the recycle of 2-hydroxyethylammonium propionate (HEAP) was successfully de- monstrated for at least 3 cycles. In this way, PILs are herein revealed as promising solvents to apply in lignin valorization towards more efficient and eco-friendly processes.Suzano Papel & Celulosepublishe

    Sonographic assessment of abdominal fat distribution in infancy

    Get PDF
    There is growing evidence that not only the total amount of fat, but also the distribution of body fat determines risks for metabolic and cardiovascular disease. Developmental studies on factors influencing body fat distribution have been hampered by a lack of appropriate techniques for measuring intraabdominal fat in early life. Sonography, which is an established method for assessing abdominal fat distribution in adults, has not yet been evaluated in infants. To adapt the sonographic measurement of abdominal fat distribution to infants and study its reliability. The Generation R study, a population-based prospective cohort study. We included 212 one- and 227 two-year old Dutch infants in the present analysis. Sixty-two infants underwent replicate measurements to assess reproducibility. We developed a standardized protocol to measure the thickness of (1) subcutaneous and (2) preperitoneal fat in the upper abdomen of infants. To this end we defined infancy specific measurement areas to quantify fat thickness. Reproducibility of fat measurements was good to excellent with intraclass correlation coefficients of 0.93–0.97 for intra-observer agreement and of 0.89–0.95 for inter-observer agreement. We observed a pronounced increase in preperitoneal fat thickness in the second year of life while subcutaneous fat thickness increased only slightly, resulting in an altered body fat distribution. Gender did not significantly influence fat distribution in the first two years of life. Our age specific protocol for the sonographic measurement of central subcutaneous and preperitoneal fat is a reproducible method that can be instrumental for investigating fat distribution in early life

    Vertical Boundary Mixing Events during Stratification Govern Heat and Nutrient Dynamics in a Windy Tropical Reservoir Lake with Important Water-Level Fluctuations: A Long-Term (2001–2021) Study

    Get PDF
    hysical processes play important roles in controlling eutrophication and oligotrophication. In stratified lakes, internal waves can cause vertical transport of heat and nutrients without breaking the stratification, through boundary mixing events. Such is the case in tropical Valle de Bravo (VB) reservoir lake, where strong diurnal winds drive internal waves, boundary mixing, and hypolimnetic warming during stratification periods. We monitored VB during 21 years (2001–2021) when important water-level fluctuations occurred, affecting mixing and nutrient flux. Stability also varied as a function of water level. Hypolimnetic warming (0.009–0.028 °C day−1) occurred in all the stratifications monitored. We analyzed temperature distributions and modeled the hypolimnion heat budget to assess vertical mixing between layers (0.639–3.515 × 10−6 m3 day−1), vertical diffusivity coefficient KZ (2.5 × 10−6–13.6 × 10−6 m2 s−1), and vertical nutrient transport to the epilimnion. Nutrient flux from the metalimnion to the epilimnion ranged 0.42–5.99 mg P m−2day−1 for soluble reactive phosphorus (SRP) and 5.8–101.7 mg N m−2day−1 for dissolved inorganic nitrogen (DIN). Vertical mixing and the associated nutrient fluxes increase evidently as the water level decreases 8 m below capacity, and they can increase up to fivefold if the water level drops over 12 m. The observed changes related to water level affect nutrient recycling, ecosystemic metabolic balance, and planktonic composition of VB.This research was funded by UNAM (PAPIIT-IN207702 and PAPIIT-IN111321) and by CONACYT-SEMARNAT (C01-1125) projects to M.M.-I.Peer reviewe

    Selection of the appropriate method for the assessment of insulin resistance

    Get PDF
    Insulin resistance is one of the major aggravating factors for metabolic syndrome. There are many methods available for estimation of insulin resistance which range from complex techniques down to simple indices. For all methods of assessing insulin resistance it is essential that their validity and reliability is established before using them as investigations. The reference techniques of hyperinsulinaemic euglycaemic clamp and its alternative the frequently sampled intravenous glucose tolerance test are the most reliable methods available for estimating insulin resistance. However, many simple methods, from which indices can be derived, have been assessed and validated e.g. homeostasis model assessment (HOMA), quantitative insulin sensitivity check index (QUICKI). Given the increasing number of simple indices of IR it may be difficult for clinicians and researchers to select the most appropriate index for their studies. This review therefore provides guidelines and advices which must be considered before proceeding with a study

    Choice of the initial antiretroviral treatment for HIV-positive individuals in the era of integrase inhibitors

    Get PDF
    BACKGROUND: We aimed to describe the most frequently prescribed initial antiretroviral therapy (ART) regimens in recent years in HIV-positive persons in the Cohort of the Spanish HIV/AIDS Research Network (CoRIS) and to investigate factors associated with the choice of each regimen. METHODS: We analyzed initial ART regimens prescribed in adults participating in CoRIS from 2014 to 2017. Only regimens prescribed in >5% of patients were considered. We used multivariable multinomial regression to estimate Relative Risk Ratios (RRRs) for the association between sociodemographic and clinical characteristics and the choice of the initial regimen. RESULTS: Among 2874 participants, abacavir(ABC)/lamivudine(3TC)/dolutegavir(DTG) was the most frequently prescribed regimen (32.1%), followed by tenofovir disoproxil fumarate (TDF)/emtricitabine (FTC)/elvitegravir(EVG)/cobicistat(COBI) (14.9%), TDF/FTC/rilpivirine (RPV) (14.0%), tenofovir alafenamide (TAF)/FTC/EVG/COBI (13.7%), TDF/FTC+DTG (10.0%), TDF/FTC+darunavir/ritonavir or darunavir/cobicistat (bDRV) (9.8%) and TDF/FTC+raltegravir (RAL) (5.6%). Compared with ABC/3TC/DTG, starting TDF/FTC/RPV was less likely in patients with CD4100.000 copies/mL. TDF/FTC+DTG was more frequent in those with CD4100.000 copies/mL. TDF/FTC+RAL and TDF/FTC+bDRV were also more frequent among patients with CD4<200 cells//muL and with transmission categories other than men who have sex with men. Compared with ABC/3TC/DTG, the prescription of other initial ART regimens decreased from 2014-2015 to 2016-2017 with the exception of TDF/FTC+DTG. Differences in the choice of the initial ART regimen were observed by hospitals' location. CONCLUSIONS: The choice of initial ART regimens is consistent with Spanish guidelines' recommendations, but is also clearly influenced by physician's perception based on patient's clinical and sociodemographic variables and by the prescribing hospital location
    corecore