16 research outputs found

    Distribution of microelements in human articular cartilage : initial report

    Get PDF
    The aim of this study was evaluation of distribution microelements in human articular cartilage and to determine factors influencing it. The following elements were taken under consideration: Mg, Ca, Zn, Fe, Pb. Their concentration was assessed in the articular cartilage harvested from the loaded an unloaded area of human femoral heads. Initial results indicate that mechanical loadings are one of the important factors influencing distribution of microelements in human articular cartilage

    AMBRA1 regulates cyclin D to guard S-phase entry and genomic integrity

    No full text
    Mammalian development, adult tissue homeostasis and the avoidance of severe diseases including cancer require a properly orchestrated cell cycle, as well as error-free genome maintenance. The key cell-fate decision to replicate the genome is controlled by two major signalling pathways that act in parallel—the MYC pathway and the cyclin D–cyclin-dependent kinase (CDK)–retinoblastoma protein (RB) pathway1,2. Both MYC and the cyclin D–CDK–RB axis are commonly deregulated in cancer, and this is associated with increased genomic instability. The autophagic tumour-suppressor protein AMBRA1 has been linked to the control of cell proliferation, but the underlying molecular mechanisms remain poorly understood. Here we show that AMBRA1 is an upstream master regulator of the transition from G1 to S phase and thereby prevents replication stress. Using a combination of cell and molecular approaches and in vivo models, we reveal that AMBRA1 regulates the abundance of D-type cyclins by mediating their degradation. Furthermore, by controlling the transition from G1 to S phase, AMBRA1 helps to maintain genomic integrity during DNA replication, which counteracts developmental abnormalities and tumour growth. Finally, we identify the CHK1 kinase as a potential therapeutic target in AMBRA1-deficient tumours. These results advance our understanding of the control of replication-phase entry and genomic integrity, and identify the AMBRA1–cyclin D pathway as a crucial cell-cycle-regulatory mechanism that is deeply interconnected with genomic stability in embryonic development and tumorigenesis
    corecore