99 research outputs found

    Gene-Specific Translation Regulation Mediated by the Hormone-Signaling Molecule EIN2

    Get PDF
    SummaryThe central role of translation in modulating gene activity has long been recognized, yet the systematic exploration of quantitative changes in translation at a genome-wide scale in response to a specific stimulus has only recently become technically feasible. Using the well-characterized signaling pathway of the phytohormone ethylene and plant-optimized genome-wide ribosome footprinting, we have uncovered a molecular mechanism linking this hormone’s perception to the activation of a gene-specific translational control mechanism. Characterization of one of the targets of this translation regulatory machinery, the ethylene signaling component EBF2, indicates that the signaling molecule EIN2 and the nonsense-mediated decay proteins UPFs play a central role in this ethylene-induced translational response. Furthermore, the 3′UTR of EBF2 is sufficient to confer translational regulation and required for the proper activation of ethylene responses. These findings represent a mechanistic paradigm of gene-specific regulation of translation in response to a key growth regulator

    Reassessment of genotype 1 hepatitis c virus subtype misclassification by LiPA 2.0: implications for direct-acting antiviral treatment

    Get PDF
    The accuracy of LiPA 2.0 for hepatitis C virus 1 (HCV-1) subtype classification was analyzed. LiPA 2.0 genotype results from 101 HCV-1-infected patients were compared to genotype findings determined by direct core sequencing. Eleven (11%) samples were misclassified. Given the influence of the HCV-1-subtype in the anti-HCV therapy response, an alternative classification method is warranted.Fil: Guelfo, Javier R.. Hospital Universitario de Valme. Unidad de Enfermedades Infecciosas y Microbiología; EspañaFil: Macias, Juan. Hospital Universitario de Valme. Unidad de Enfermedades Infecciosas y Microbiología; EspañaFil: Neukam, Karin. Hospital Universitario de Valme. Unidad de Enfermedades Infecciosas y Microbiología; EspañaFil: Di Lello, Federico Alejandro. Hospital Universitario de Valme. Unidad de Enfermedades Infecciosas y Microbiología; España. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mira José Antonio. Hospital Universitario de Valme. Unidad de Enfermedades Infecciosas y Microbiología; EspañaFil: Merchante, Nicolás. Hospital Universitario de Valme. Unidad de Enfermedades Infecciosas y Microbiología; EspañaFil: Mancebo, María. Hospital Universitario de Valme. Unidad de Enfermedades Infecciosas y Microbiología; EspañaFil: Nuñez Torres, Rocío. Hospital Universitario de Valme. Unidad de Enfermedades Infecciosas y Microbiología; EspañaFil: Pineda, Juan A.. Hospital Universitario de Valme. Unidad de Enfermedades Infecciosas y Microbiología; EspañaFil: Real. Luis M.. Hospital Universitario de Valme. Unidad de Enfermedades Infecciosas y Microbiología; Españ

    Ethylene is involved in strawberry fruit ripening in an organ-specific manner

    Get PDF
    The fruit of the strawberry Fragaria×ananassa has traditionally been classified as non-climacteric because its ripening process is not governed by ethylene. However, previous studies have reported the timely endogenous production of minor amounts of ethylene by the fruit as well as the differential expression of genes of the ethylene synthesis, reception, and signalling pathways during fruit development. Mining of the Fragaria vesca genome allowed for the identification of the two main ethylene biosynthetic genes, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase. Their expression pattern during fruit ripening was found to be stage and organ (achene or receptacle) specific. Strawberry plants with altered sensitivity to ethylene could be employed to unravel the role of ethylene in the ripening process of the strawberry fruit. To this end, independent lines of transgenic strawberry plants were generated that overexpress the Arabidopsis etr1-1 mutant ethylene receptor, which is a dominant negative allele, causing diminished sensitivity to ethylene. Genes involved in ethylene perception as well as in its related downstream processes, such as flavonoid biosynthesis, pectin metabolism, and volatile biosynthesis, were differently expressed in two transgenic tissues, the achene and the receptacle. The different transcriptional responsiveness of the achene and the receptacle to ethylene was also revealed by the metabolic profiling of the primary metabolites in these two organs. The free amino acid content was higher in the transgenic lines compared with the control in the mature achene, while glucose and fructose, and citric and malic acids were at lower levels. In the receptacle, the most conspicuous change in the transgenic lines was the depletion of the tricarboxylic acid cycle intermediates at the white stage of development, most probably as a consequence of diminished respiration. The results are discussed in the context of the importance of ethylene during strawberry fruit ripening.Facultad de Ciencias ExactasInstituto de Fisiología Vegeta

    The NAC transcription factor FaRIF is a key regulator of fruit ripening in strawberry

    Get PDF
    In contrast to climacteric fruits such as tomato, the knowledge on key regulatory genes controlling the ripening of strawberry, a non-climacteric fruit, is still limited. NAC transcription factors are proteins that mediate different developmental processes in plants. In this work, we have identified and characterized FaRIF (Ripening Inducing Factor), a novel NAC transcription factor which is highly expressed and induced in strawberry receptacles during ripening. Functional analysis establishing stable transgenic lines with RNAi, driven by either the constitutive 35S or the ripe receptacle-specific EXP2 promoters, and overexpression constructs showed that FaRIF controls critical ripening-related processes such as fruit softening and pigment and sugars accumulation. Physiological, metabolomic and transcriptomic analyses of receptacles of FaRIFsilenced and overexpression lines point to FaRIF as a key regulator of strawberry fruit ripening from early developmental stages, controlling ABA biosynthesis and signaling, cell wall degradation and modification, the phenylpropanoid pathway, and the balance of the aerobic/anaerobic metabolism, being therefore a target to be modified/edited to control the quality of strawberry fruits.ERC Starting Grant ERC-2014-StG 63813

    Identification and characterization of the NAC transcription factor FaRIF, a key regulator of strawberry fruit ripening

    Get PDF
    Strawberry is becoming a model for studying the molecular mechanism of ripening in non-climacteric fruits. However, a limited number of transcriptional regulators of this process have been identified so far. In this study, we have identified and characterized a gene encoding for a NAC transcription factor (TF), named as FaRIF (Ripening Inducing Factor). FaRIF expression presents a fruit-specific pattern, which is upregulated during ripening. In order to functionally characterize this TF, we have generated silencing and overexpressing stable transgenic lines. While the RNAi lines showed an apparent delay of fruit ripening, the overexpressing lines displayed an acceleration of this process. Transcriptomic analysis of the silenced lines showed a significantly altered expression of genes involved in development, hormone metabolism, flavonoid pathway, and cell-wall disassembly, being many of these confirmed by phenotypical and metabolomics analysis. Our results support a main role of FaRIF in the control of relevant ripening-associated processes in strawberry fruit

    Fish Ecology of the Alto Madre de Dios River Basin (Peru): Notes on Electrofishing Surveys, Elevation, Palm Swamp and Headwater Fishes

    Get PDF
    Our study analyzes the distribution of fish communities related to the environmental variables of the Alto Madre de Dios River, an Andean-Amazon watershed of southern Peru, between 300 and 2811 m a.s.l. within the Manu Biosphere Reserve. We provide new ecological and diversity data on fishes for these poorly studied rivers and new data for palm swamp habitats. With electric fishing techniques, we collected a total of 1934 fish specimens belonging to 78 species, 42 genera and 15 families. To assess main patterns of diversity we combined SIMPER and ANOSIM with canonical correspondence analysis to obtain an overview of the community structure of fish and their distribution related to aquatic habitats. Our results show an important shift on fish diversity at 700 m a.s.l. separating headwater and middle-lowland communities. Electrofishing was a hindrance due to the depth, flow and low conductivity of the rivers, but also allowed us to capture fish not observed with other techniques. We also compared the use of elevation with slope as an alternative variable for statistical analysis. Our results show that slope offers a solid and equivalent explanation for fish distribution variability, avoids redundance, and instead of giving geographical data offers ecologically solid information

    Characterizing the involvement of FaMADS9 in the regulation of strawberry fruit receptacle development

    Get PDF
    FaMADS9 is the strawberry (Fragaria x ananassa) gene that exhibits the highest homology to the tomato (Solanum lycopersicum) RIN gene. Transgenic lines were obtained in which FaMADS9 was silenced. The fruits of these lines did not show differences in basic parameters, such as fruit firmness or colour, but exhibited lower Brix values in three of the four independent lines. The gene ontology MapMan category that was most enriched among the differentially expressed genes in the receptacles at the white stage corresponded to the regulation of transcription, including a high percentage of transcription factors and regulatory proteins associated with auxin action. In contrast, the most enriched categories at the red stage were transport, lipid metabolism and cell wall. Metabolomic analysis of the receptacles of the transformed fruits identified significant changes in the content of maltose, galactonic acid-1,4-lactone, proanthocyanidins and flavonols at the green/white stage, while isomaltose, anthocyanins and cuticular wax metabolism were the most affected at the red stage. Among the regulatory genes that were differentially expressed in the transgenic receptacles were several genes previously linked to flavonoid metabolism, such as MYB10, DIV, ZFN1, ZFN2, GT2, and GT5, or associated with the action of hormones, such as abscisic acid, SHP, ASR, GTE7 and SnRK2.7. The inference of a gene regulatory network, based on a dynamic Bayesian approach, among the genes differentially expressed in the transgenic receptacles at the white and red stages, identified the genes KAN1, DIV, ZFN2 and GTE7 as putative targets of FaMADS9. A MADS9-specific CArG box was identified in the promoters of these genes

    Atomic Force Microscopy Images Label-Free, Drug Encapsulated Nanoparticles In Vivo and Detects Difference in Tissue Mechanical Properties of Treated and Untreated: A Tip for Nanotoxicology

    Get PDF
    Overcoming the intractable challenge of imaging of label-free, drug encapsulated nanoparticles in tissues in vivo would directly address associated regulatory concerns over 'nanotoxicology'. Here we demonstrate the utility of Atomic Force Microscopy (AFM) for visualising label-free, drug encapsulated polyester particles of ~280 nm distributed within tissues following their intravenous or peroral administration to rodents. A surprising phenomenon, in which the tissues' mechanical stiffness was directly measured (also by AFM) and related to the number of embedded nanoparticles, was utilised to generate quantitative data sets for nanoparticles localisation. By coupling the normal determination of a drug's pharmacokinetics/pharmacodynamics with post-sacrifice measurement of nanoparticle localisation and number, we present for the first time an experimental design in which a single in vivo study relates the PK/PD of a nanomedicine to its toxicokinetics

    Ethylene is involved in strawberry fruit ripening in an organ-specific manner

    Get PDF
    The fruit of the strawberry Fragaria×ananassa has traditionally been classified as non-climacteric because its ripening process is not governed by ethylene. However, previous studies have reported the timely endogenous production of minor amounts of ethylene by the fruit as well as the differential expression of genes of the ethylene synthesis, reception, and signalling pathways during fruit development. Mining of the Fragaria vesca genome allowed for the identification of the two main ethylene biosynthetic genes, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase. Their expression pattern during fruit ripening was found to be stage and organ (achene or receptacle) specific. Strawberry plants with altered sensitivity to ethylene could be employed to unravel the role of ethylene in the ripening process of the strawberry fruit. To this end, independent lines of transgenic strawberry plants were generated that overexpress the Arabidopsis etr1-1 mutant ethylene receptor, which is a dominant negative allele, causing diminished sensitivity to ethylene. Genes involved in ethylene perception as well as in its related downstream processes, such as flavonoid biosynthesis, pectin metabolism, and volatile biosynthesis, were differently expressed in two transgenic tissues, the achene and the receptacle. The different transcriptional responsiveness of the achene and the receptacle to ethylene was also revealed by the metabolic profiling of the primary metabolites in these two organs. The free amino acid content was higher in the transgenic lines compared with the control in the mature achene, while glucose and fructose, and citric and malic acids were at lower levels. In the receptacle, the most conspicuous change in the transgenic lines was the depletion of the tricarboxylic acid cycle intermediates at the white stage of development, most probably as a consequence of diminished respiration. The results are discussed in the context of the importance of ethylene during strawberry fruit ripening.Facultad de Ciencias ExactasInstituto de Fisiología Vegeta
    corecore