9 research outputs found

    Novel nanostructured lipid carriers dedicated to nucleic acid delivery for RNAi purposes

    Get PDF
    International audienceThe specific down-regulation triggered through interference RNA (RNAi) provides a means to determine the gene functions and their contributions in an altered phenotype. In this way, high throughput screening (HTS) has emerged as a potent automated tool to study a large number of genes for identification of new biomarkers and therapeutic targets. However, the siRNA-mediated gene knock down requires that siRNA can reach cytoplasm compartment where RNAi occurs. Unfortunately, the siRNA is relatively vulnerable in the extracellular environment due to the presence of degradation enzymes and its high molecular weight associated to its anionic charge limit considerably its cell incorporation across the plasma membrane. Thereby, HTS requires generic carriers with highly efficient siRNA transfection. To overcome these obstacles, multifunctional nanoparticles comprising an imaging contrast agent are emerging as an original and promising approach in the improved, controlled and monitored delivery of siRNA

    Mass Spectrometry-based Absolute Quantification of 20S Proteasome Status for Controlled Ex-vivo Expansion of Human Adipose-derived Mesenchymal Stromal/Stem Cells

    Get PDF
    International audienceIn Brief 20S proteasomes are very heterogeneous protein complexes involved in many cellular processes. In the present study, we combined an MRM-based assay with the production and purification of entire SILAC labelled pro-teasome to monitor absolute quantities of the different 20S proteasome subtypes in various human cells and tissues. This method applied to adipocyte-derived stem cells (ADSCs) amplified under various conditions highlights an increased expression of immunoproteasome when this type of cell is primed with IFN␥ or amplified in a 20% O 2 environment. Graphical Abstract Highlights • Design of an MRM assay to determine the absolute quantity and stoichiometry of ubiquitous and tissue-specific human 20S proteasome subtypes. • Use of purified isotopically labelled 20S proteasome as internal standard for accurate quantification. • Variation in the expression of immunoproteasome in adipocyte-derived stem cells (ADSCs) grown under different O 2 levels might be causal for change in cells differentiation capacity. • The status of 20S proteasome during ADSCs expansion might constitute an additional relevant quality control parameter to contribute to predict, among other quality markers, their therapeutic capacity

    Dynamics of cell and tissue growth acquired by means of 25 mm² to 10 cm² lensfree imaging

    No full text
    International audienceIn this paper, we discuss a new methodology based on lens-free imaging to perform wound healing assay with unprecedented statistics. Our video lens-free microscopy setup is a simple optical system featuring only a CMOS sensor and a semi coherent illumination system. Yet it is a powerful means for the real-time monitoring of cultivated cells. It presents several key advantages, e.g., integration into standard incubator, compatibility with standard cell culture protocol, simplicity and ease of use. It can perform the follow-up in a large field of view (25 mm2) of several crucial parameters during the culture of cells i.e. their motility, their proliferation rate or their death. Consequently the setup can gather large statistics both in space and time. But in the case of tissue growth experiments, the field of view of 25 mm2 remains not sufficient and results can be biased depending on the position of the device with respect to the recipient of the cell culture. Hence, to conduct exhaustive wound healing assay, here we propose to enlarge the field of view up to 10 cm2 through two different approaches. The first method consists in performing a scan of the cell culture by moving the source/sensor couple and then stitch the stack of images. The second is to make an acquisition by scanning with a line scan camera. The two approaches are compared in term of resolution, complexity and acquisition time. Next we have performed acquisitions of wound healing assay (keratinocytes HaCaT) both in real-time (25 mm2) and in final point (10 cm2) to assess the combination of these two complementary modalities. In the future, we aim at combining directly super wide field of view acquisitions (>10 cm2) with real time ability inside the incubator

    Antimicrobial cellulose nanofibril porous materials obtained by supercritical impregnation of thymol

    No full text
    International audienceThis study presents the impregnation in supercritical carbon dioxide (scCO 2) of nanocellulose-based structures with thymol as a natural antimicrobial molecule to prepare bioactive biosourced materials. First, cellulose nanofibrils (CNFs) were used to produce four types of materials (nanopapers, cryogels from water or tert-butyl alcohol suspensions and aerogels) of increasing specific surface area up to 160 m 2 .g-1 thanks to the use of different processes, namely vacuum filtration, freeze-drying and supercritical drying. Secondly, these CNF-based structures were impregnated with thymol in scCO 2 medium using relatively low temperature and pressure of 40°C and 100 bars during 1 hour. The amount of impregnated thymol in the different CNF-materials was investigated by fluorescence spectroscopy, 13 C NMR analysis and ga

    Tailoring nanostructured lipid carriers for the delivery of protein antigens Physicochemical properties versus immunogenicity studies

    No full text
    International audienceNew vaccine formulations are still highly anticipated in the near-future to face incoming health challenges, such as emergence or reemergence of severe infectious diseases, immunosenescence associated with elderly or the spread of pathogens resistant to antibiotics. In particular, new nanoparticle-based adjuvants are promising for sub-unit vaccines in order to elicit potent and long lasting immune responses with a better control on their safety. In this context, an innovative delivery system of protein antigens has been designed based on the chemical grafting of the antigen onto the shell of Nanostructured Lipid Carriers (NLC). By using the well-known ovalbumin (OVA) as model of protein antigen, we have compared the immunogenicity properties in mice of different formulations of NLC grafted with OVA, by studying the influence of two main parameters the size (80 nm versus 120 nm) and the surface charge (anionic versus cationic). We have shown that all mice immunized with OVA delivered through NLC produced much higher antibody titers for all tested formulations as compared to that immunized with OVA or OVA formulated in Complete Freund Adjuvant (CFA, positive control). More interestingly, the 80 nm anionic lipid particles were the most efficient antigen carrier for eliciting higher humoral immune response, as well as cellular immune response characterized by a strong secretion of gamma interferon (IFN-gamma). These results associated with the demonstrated non-immunogenicity of the NLC carrier by itself open new avenues for the design of smart sub-unit vaccines containing properly engineered lipid nanoparticles which could stimulate or orient the immune system in a specific way

    Antibacterial Cellulose Nanopapers via Aminosilane Grafting in Supercritical Carbon Dioxide

    No full text
    International audienceIn this work, we present an innovative strategy for the grafting of an antibacterial agent onto nanocellulose materials in supercritical carbon dioxide (scCO 2). Dense cellulose nanofibril (CNF) nanopapers were prepared and subsequently functionalized in supercritical carbon dioxide with an aminosilane, N-(6-aminohexyl)aminopropyltrimethoxysilane (AHA-P-TMS). Surface characterization (X-ray photoelectron spectroscopy, contact angle, zeta potential analysis) evidenced the presence of the aminosilane. Results show that the silane conformation depends on the curing process: a non-polycondensed conformation of grafted silane with the amino groups facing outwards was favored by curing in an oven while the curing step performe

    Consequences of Mixotrophy on Cell Energetic Metabolism in Microchloropsis gaditana Revealed by Genetic Engineering and Metabolic Approaches

    No full text
    International audienceAlgae belonging to the Microchloropsis genus are promising organisms for biotech purposes, being able to accumulate large amounts of lipid reserves. These organisms adapt to different trophic conditions, thriving in strict photoautotrophic conditions, as well as in the concomitant presence of light plus reduced external carbon as energy sources (mixotrophy). In this work, we investigated the mixotrophic responses of Microchloropsis gaditana (formerly Nannochloropsis gaditana ). Using the Biolog growth test, in which cells are loaded into multiwell plates coated with different organic compounds, we could not find a suitable substrate for Microchloropsis mixotrophy. By contrast, addition of the Lysogeny broth (LB) to the inorganic growth medium had a benefit on growth, enhancing respiratory activity at the expense of photosynthetic performances. To further dissect the role of respiration in Microchloropsis mixotrophy, we focused on the mitochondrial alternative oxidase (AOX), a protein involved in energy management in other algae prospering in mixotrophy. Knocking-out the AOX1 gene by transcription activator-like effector nuclease (TALE-N) led to the loss of capacity to implement growth upon addition of LB supporting the hypothesis that the effect of this medium was related to a provision of reduced carbon. We conclude that mixotrophic growth in Microchloropsis is dominated by respiratory rather than by photosynthetic energetic metabolism and discuss the possible reasons for this behavior in relationship with fatty acid breakdown via β-oxidation in this oleaginous alga
    corecore