423 research outputs found
Mechanics of snake biting: Experiments and modelling.
Among all the vertebrates, snakes possess the most sophisticated venom delivering system using their fangs. Fangs of many animals are well adapted to the mechanical loads experienced during the functions such as breaking the diet and puncturing the skin of the prey. Thus, investigation and modelling of puncturing mechanics of snakes is of importance to understand the form-function relationship of the fangs and tissue-fang interactions in detail. We have thus chosen fangs of two snake species, i.e., viper (Bitis arietans) and burrowing snake (Atractaspis aterrima), with different shape and size, and performed insertion experiments using tissue phantoms. Our results showed that the fangs of both species have similar mechanical properties but there was a difference in the insertion forces owing to the difference in shape of the fang. Also, we developed an analytical model of the fang-tissue interaction and obtained a good agreement with the experimental results. Thus, our study can help in the development of bioinspired needles that can potentially have reduced insertion forces and optimised tissue penetration
Multilayer stag beetle elytra perform better under external loading via non-symmetric bending properties
FEM images showing the von-Mises stress distribution (unit of measure GPa) in the wing and the beetle body under a concentrated load of 0.5 N .A) real structure with void, B) elytra with no void
Gas-phase solvolysis type reactions of SiCl3+ cations
Gas-phase SiCl3+ ions undergo sequential solvolysis type reactions with water, methanol, ammonia, methylamine and propylene. Studies carried out in a Fourier Transform mass spectrometer reveal that these reactions are facile at 10-8 Torr and give rise to substituted chlorosilyl cations. Ab initio and DFT calculations reveal that these reactions proceed by addition of the silyl cation to the oxygen or nitrogen lone pair followed by a 1,3-H migration in the transition state. These transition states are calculated to lie below the energy of the reactants. By comparison, hydrolysis of gaseous CCl3+ is calculated to involve a substantial positive energy barrier
Fluid-mediated, brittle–ductile deformation at seismogenic depth – Part 2: Stress history and fluid pressure variations in a shear zone in a nuclear waste repository (Olkiluoto Island, Finland)
Abstract. The microstructural record of fault rocks active at the brittle–ductile transition zone (BDTZ) may retain information on the rheological parameters driving the switch in deformation mode and on the role of stress and fluid pressure in controlling different fault slip behaviours. In this study we analysed the deformation microstructures of the strike-slip fault zone BFZ045 in Olkiluoto (SW Finland), located in the site of a deep geological repository for nuclear waste. We combined microstructural analysis, electron backscatter diffraction (EBSD), and mineral chemistry data to reconstruct the variations in pressure, temperature, fluid pressure, and differential stress that mediated deformation and strain localization along BFZ045 across the BDTZ. BFZ045 exhibits a mixed ductile–brittle deformation, with a narrow (<20 cm thick) brittle fault core with cataclasites and pseudotachylytes that overprint a wider (60–100 cm thick) quartz-rich mylonite. Mylonitic deformation took place at 400–500 ∘C and 3–4 kbar, typical of the greenschist facies metamorphism at the base of the seismogenic crust. We used the recrystallized grain size piezometry for quartz to document a progressive increase in differential stress, from ca. 50 to ca. 120 MPa, towards the shear zone centre during mylonitization and strain localization. Syn-kinematic quartz veins formed along the mylonitic foliation due to transiently high pore fluid pressure (up to lithostatic value). The overprint of the veins by dynamic recrystallization and mylonitic creep is further evidence of the occurrence of brittle events under overall ductile conditions. We propose a conceptual model in which the ductile–brittle deformation cycle was controlled by transient oscillations in fluid pressure and progressively higher differential stress, possibly occurring in a narrowing shear zone deforming towards the peak strength of the crust at the BDTZ. </jats:p
Crystallographic control and texture inheritance during mylonitization of coarse grained quartz veins
Quartz veins within Rieserferner pluton underwent deformation during post-magmatic cooling at temperature around 450 \ub0C. Different crystallographic orientations of cm-sized quartz vein crystals conditioned the evolution of microstructures and crystallographic preferred orientations (CPO) during vein-parallel simple shear up to high shear strains (\u3b3 48 10). For \u3b3 b 2, crystals stretched to ribbons of variable aspect ratios. The highest aspect ratios resulted from {m}baN glide in ribbons with c-axis sub-parallel to the shear zone vorticity Y-axis. Ribbons with c-axis orthogonal to Y (XZ-type ribbons) were stronger and hardened more quickly: they show lower aspect ratios and \ufb01ne (grain size ~10\u201320 \u3bcm) recrystallization along sets of microshear zones (\u3bcSZs) exploiting crystallographic planes. Distortion of XZ-type ribbons and recrystallization preferentially exploited the slip systems with misorientation axis close to Y. New grains of \u3bcSZs initiated by subgrain rotation recrystallization (SGR) and thereupon achieved high angle misorientations by a concurrent process of heterogeneous rigid grain rotation around Y associated with the con\ufb01ned shear within the \u3bcSZ. Dauphin\ue9 twinning occurred pervasively, but did not play a dominant role on \u3bcSZ nucleation. Recrystallization became widespread at \u3b3 N 2 and pervasive at \u3b3 48 10. Ultramylonitic quartz veins are \ufb01ne grained (~10 \u3bcm, similar to new grains of \u3bcSZ) and show a CPO banding resulting in a bulk c-axis CPO with a Y-maximum, as part of a single girdle about orthogonal to the foliation, and orientations at the pole \ufb01gure periphery at moderate to high angle to the foliation. This bulk CPO derives from steady-state SGR associated with preferential activity, in the different CPO bands, of slip systems generating subgrain boundaries with misorientation axes close to Y. The CPO of individual recrystallized bands is largely inherited from the original crystallographic orientation of the ribbons (and therefore vein crystals) from which they derived. High strain and pervasive recrystallization were not enough to reset the initial crystallographic heterogeneity and this CPO memory is explained by the dominance of SGR. This contrast with experimental observation of a rapid erasure of a pristine CPO by cannibalism from grains with the most favourably oriented slip system under dominant grain boundary migration recrystallization
Exploration into the hidden world of Mozambique’s sky island forests:new discoveries of reptiles and amphibians
We carried out a survey of reptiles and amphibians within Afromontane forest and woodland slopes of three inselbergs in northern Mozambique (Mount Mabu, Mount Namuli, and Mount Ribáuè). A total of 56 species (22 amphibians and 34 reptiles) were recorded during the current survey. Our findings substantially increase the number of herpetofaunal species recorded from these mountains (Mount Ribáuè 59%, Mount Mabu 37%, and Mount Namuli 11% of the total species), including one new country record and several putative new species. An updated checklist of the herpetofauna of these mountains is presented
A case of Plasmodium malariae recurrence: Recrudescence or reinfection?
Background: Plasmodium malariae is the most neglected of the six human malaria species and it is still unknown which is the mechanism underlying the long latency of this Plasmodium. Case presentation: A case of PCR-confirmed P. malariae recurrence in a 52-year old Italian man was observed 5 months after a primary attack. In the interval between the two observed episodes of malaria the patient denied any further stay in endemic areas except for a visit to Libya, a country considered malaria-free. Genomic DNA of the P. malariae strain using five microsatellites (PM2, PM9, PM11, PM25, PM34) and the antigen marker of circumsporozoite (csp) was amplified and sequenced. Analysis of polymorphisms of the P. malariae csp central repeat region showed differences between the strains responsible of the first and second episode of malaria. A difference in the allele size was also observed for the sequence analysis of PM2 microsatellites. Conclusions: Plasmodium malariae is a challenging human malaria parasite and even with the use of molecular techniques the pathogenesis of recurrent episodes cannot be precisely explained
A new vertebrate for Europe: the discovery of a range-restricted relict viper in the western Italian Alps
We describe Vipera walser, a new viper species from the north-western Italian Alps. Despite an overall morphological resemblance with Vipera berus, the new species is remarkably distinct genetically from both V. berus and other vipers occurring in western Europe and shows closer affinities to species occurring only in the Caucasus. Morphologically, the new species appear to be more similar to V. berus than to its closest relatives occurring in the Caucasus, but can be readily distinguished in most cases by a combination of meristic features as confirmed by discriminant analysis. The extant population shows a very low genetic variability measured with mitochondrial markers, suggesting that the taxon has suffered a serious population reduction/bottleneck in the past. The species is extremely range-restricted (less than 500 km2) and occurs only in two disjunct sites within the high rainfall valleys of the Alps north of Biella. This new species should be classified as globally ‘endangered’ due to its small and fragmented range, and an inferred population decline. The main near-future threats to the species are habitat changes associated with reduced grazing, along with persecution and collecting
Protecting the malaria drug arsenal: halting the rise and spread of amodiaquine resistance by monitoring the PfCRT SVMNT type
The loss of chloroquine due to selection and spread of drug resistant Plasmodium falciparum parasites has greatly impacted malaria control, especially in highly endemic areas of Africa. Since chloroquine removal a decade ago, the guidelines to treat falciparum malaria suggest combination therapies, preferentially with an artemisinin derivative. One of the recommended partner drugs is amodiaquine, a pro-drug that relies on its active metabolite monodesethylamodiaquine, and is still effective in areas of Africa, but not in regions of South America. Genetic studies on P. falciparum parasites have shown that different pfcrt mutant haplotypes are linked to distinct levels of chloroquine and amodiaquine responses. The pfcrt haplotype SVMNT (termed after the amino acids from codon positions 72-76) is stably present in several areas where amodiaquine was introduced and widely used. Parasites with this haplotype are highly resistant to monodesethylamodiaquine and also resistant to chloroquine. The presence of this haplotype in Africa was found for the first time in 2004 in Tanzania and a role for amodiaquine in the selection of this haplotype was suggested. This commentary discusses the finding of a second site in Africa with high incidence of this haplotype. The >50% SVMNT haplotype prevalence in Angola represents a threat to the rise and spread of amodiaquine resistance. It is paramount to monitor pfcrt haplotypes in every country currently using amodiaquine and to re-evaluate current combination therapies in areas where SVMNT type parasites are prevalent
Identification of Isoform 2 Acid-Sensing Ion Channel Inhibitors as Tool Compounds for Target Validation Studies in CNS
Acid-sensing ion channels (ASICs) are a family of ion channels permeable to cations and largely responsible for the onset of acid-evoked ion currents both in neurons and in different types of cancer cells, thus representing a potential target for drug discovery. Owing to the limited attention ASIC2 has received so far, an exploratory program was initiated to identify ASIC2 inhibitors using diminazene, a known pan-ASIC inhibitor, as a chemical starting point for structural elaboration. The performed exploration enabled the identification of a novel series of ASIC2 inhibitors. In particular, compound 2u is a brain penetrant ASIC2 inhibitor endowed with an optimal pharmacokinetic profile. This compound may represent a useful tool to validate in animal models in vivo the role of ASIC2 in different neurodegenerative central nervous system pathologies
- …