5 research outputs found

    Trueness and precision of the real-time RT-PCR method for quantifying the chronic bee paralysis virus genome in bee homogenates evaluated by a comparative inter-laboratory study

    Get PDF
    The Chronic bee paralysis virus (CBPV) is the aetiological agent of chronic bee paralysis, a contagious disease associated with nervous disorders in adult honeybees leading to massive mortalities in front of the hives. Some of the clinical signs frequently reported, such as trembling, may be confused with intoxication syndromes. Therefore, laboratory diagnosis using real-time PCR to quantify CBPV loads is used to confirm disease. Clinical signs of chronic paralysis are usually associated with viral loads higher than 108 copies of CBPV genome copies per bee (8 log(10) CBPV/bee). This threshold is used by the European Union Reference Laboratory for Bee Health to diagnose the disease. In 2015, the accuracy of measurements of three CBPV loads (5, 8 and 9 log(10) CBPV/bee) was assessed through an inter-laboratory study. Twenty-one participants, including 16 European National Reference Laboratories, received 13 homogenates of CBPV-infected bees adjusted to the three loads. Participants were requested to use the method usually employed for routine diagnosis. The quantitative results (n = 270) were analysed according to international standards NF ISO 13528 (2015) and NF ISO 5725-2 (1994). The standard deviations of measurement reproducibility (S-R) were 0.83, 1.06 and 1.16 at viral loads 5, 8 and 9 log(10) CBPV/bee, respectively. The inter-laboratory confidence of viral quantification (+/- 1.96 S-R) at the diagnostic threshold (8 log(10) CBPV/bee) was +/- 2.08 log(10) CBPV/bee. These results highlight the need to take into account the confidence of measurements in epidemiological studies using results from different laboratories. Considering this confidence, viral loads over 6 log(10) CBPV/bee may be considered to indicate probable cases of chronic paralysis

    A Roadmap for Using the UN Decade of Ocean Science for Sustainable Development in Support of Science, Policy, and Action

    Get PDF
    The health of the ocean, central to human well-being, has now reached a critical point. Most fish stocks are overexploited, climate change and increased dissolved carbon dioxide are changing ocean chemistry and disrupting species throughout food webs, and the fundamental capacity of the ocean to regulate the climate has been altered. However, key technical, organizational, and conceptual scientific barriers have prevented the identification of policy levers for sustainability and transformative action. Here, we recommend key strategies to address these challenges, including (1) stronger integration of sciences and (2) ocean-observing systems, (3) improved science-policy interfaces, (4) new partnerships supported by (5) a new ocean-climate finance system, and (6) improved ocean literacy and education to modify social norms and behaviors. Adopting these strategies could help establish ocean science as a key foundation of broader sustainability transformations

    Role of Calcium Signaling in GA101-Induced Cell Death in Malignant Human B Cells

    Get PDF
    GA101/obinutuzumab is a novel type II anti-CD20 monoclonal antibody (mAb), which is more effective than rituximab (RTX) in preclinical and clinical studies when used in combination with chemotherapy. Ca2+ signaling was shown to play a role in RTX-induced cell death. This report concerns the effect of GA101 on Ca2+ signaling and its involvement in the direct cell death induced by GA101. We reveal that GA101 triggered an intracellular Ca2+ increase by mobilizing intracellular Ca2+ stores and activating Orai1-dependent Ca2+ influx in non-Hodgkin lymphoma cell lines and primary B-Cell Chronic Lymphocytic Leukemia (B-CLL) cells. According to the cell type, Ca2+ was mobilized from two distinct intracellular compartments. In Raji, BL2, and B-CLL cells, GA101 induced a Ca2+ release from lysosomes, leading to the subsequent lysosomal membrane permeabilization and cell death. Inhibition of this calcium signaling reduced GA101-induced cell death in these cells. In SU-DHL-4 cells, GA101 mobilized Ca2+ from the endoplasmic reticulum (ER). Inhibition of ER replenishment, by blocking Orai1-dependent Ca2+ influx, led to an ER stress and unfolded protein response (UPR) which sensitized these cells to GA101-induced cell death. These results revealed the central role of Ca2+ signaling in GA101’s action mechanism, which may contribute to designing new rational drug combinations improving its clinical efficacy
    corecore