35 research outputs found

    Evaluating techniques for metagenome annotation using simulated sequence data

    Get PDF
    The advent of next-generation sequencing has allowed huge amounts of DNA sequence data to be produced, advancing the capabilities of microbial ecosystem studies. The current challenge is identifying from which microorganisms and genes the DNA originated. Several tools and databases are available for annotating DNA sequences. The tools, databases and parameters used can have a significant impact on the results: naïve choice of these factors can result in a false representation of community composition and function. We use a simulated metagenome to show how different parameters affect annotation accuracy by evaluating the sequence annotation performances of MEGAN, MG-RAST, One Codex and Megablast. This simulated metagenome allowed the recovery of known organism and function abundances to be quantitatively evaluated, which is not possible for environmental metagenomes. The performance of each program and database varied, e.g. One Codex correctly annotated many sequences at the genus level, whereas MG-RAST RefSeq produced many false positive annotations. This effect decreased as the taxonomic level investigated increased. Selecting more stringent parameters decreases the annotation sensitivity, but increases precision. Ultimately, there is a trade-off between taxonomic resolution and annotation accuracy. These results should be considered when annotating metagenomes and interpreting results from previous studies

    Effects of engineered silver nanoparticles on the growth and activity of ecologically important microbes

    Get PDF
    Summary: Currently, little is known about the impact of silver nanoparticles (AgNPs) on ecologically important microorganisms such as ammonia-oxidizing bacteria (AOB). We performed a multi-analytical approach to demonstrate the effects of uncapped nanosilver (uAgNP), capped nanosilver (cAgNP) and Ag2SO4 on the activities of the AOB: Nitrosomonas europaea, Nitrosospira multiformis and Nitrosococcus oceani, and the growth of Escherichia coli and Bacillus subtilis as model bacterial systems in relation to AgNP type and concentration. All Ag treatments caused significant inhibition to the nitrification potential rates (NPRs) of Nitrosomonas europaea (decreased from 34 to cAgNP>uAgNP. In conclusion, AgNPs (especially cAgNPs) and Ag2SO4 adversely affected AOB activities and thus have the potential to severely impact key microbially driven processes such as nitrification in the environment

    Interactions between microorganisms and marine microplastics: A call for research

    Get PDF
    Synthetic thermoplastics constitute the majority by percentage of anthropogenic debris entering the Earth’s oceans. Microplastics (≤5-mm fragments) are rapidly emerging pollutants in marine ecosystems that may transport potentially toxic chemicals into macrobial food webs. This commentary evaluates our knowledge concerning the interactions between marine organisms and microplastics and identifies the lack of microbial research into microplastic contamination as a significant knowledge gap. Microorganisms (bacteria, archaea, and picoeukaryotes) in coastal sediments represent a key category of life with reference to understanding and mitigating the potential adverse effects of microplastics due to their role as drivers of the global functioning of the marine biosphere and as putative mediators of the biodegradation of plastic-associated additives, contaminants, or even the plastics themselves. As such, research into the formation, structure, and activities of microplastic-associated microbial biofilms is essential in order to underpin management decisions aimed at safeguarding the ecological integrity of our seas and oceans

    Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging

    Get PDF
    Microplastics (<5 mm) have been documented in environmental samples on a global scale. While these pollutants may enter aquatic environments via wastewater treatment facilities, the abundance of microplastics in these matrices has not been investigated. Although efficient methods for the analysis of microplastics in sediment samples and marine organisms have been published, no methods have been developed for detecting these pollutants within organic-rich wastewater samples. In addition, there is no standardized method for analyzing microplastics isolated from environmental samples. In many cases, part of the identification protocol relies on visual selection before analysis, which is open to bias. In order to address this, a new method for the analysis of microplastics in wastewater was developed. A pretreatment step using 30% hydrogen peroxide (H2O2) was employed to remove biogenic material, and focal plane array (FPA)-based reflectance micro-Fourier-transform (FT-IR) imaging was shown to successfully image and identify different microplastic types (polyethylene, polypropylene, nylon-6, polyvinyl chloride, polystyrene). Microplastic-spiked wastewater samples were used to validate the methodology, resulting in a robust protocol which was nonselective and reproducible (the overall success identification rate was 98.33%). The use of FPA-based micro-FT-IR spectroscopy also provides a considerable reduction in analysis time compared with previous methods, since samples that could take several days to be mapped using a single-element detector can now be imaged in less than 9 h (circular filter with a diameter of 47 mm). This method for identifying and quantifying microplastics in wastewater is likely to provide an essential tool for further research into the pathways by which microplastics enter the environment.This work is funded by a NERC (Natural Environment Research Council) CASE studentship (NE/K007521/1) with contribution from industrial partner Fera Science Ltd., United Kingdom. The authors would like to thank Peter Vale, from Severn Trent Water Ltd, for providing access to and additionally Ashley Howkins (Brunel University London) for providing travel and assistance with the sampling of the Severn Trent wastewater treatment plant in Derbyshire, UK. We are grateful to Emma Bradley and Chris Sinclair for providing helpful suggestions for our research

    Estuarine sediment hydrocarbon-degrading microbial communities demonstrate resilience to nanosilver

    Get PDF
    Little is currently known about the potential impact of silver nanoparticles (AgNPs) on estuarine microbial communities. The Colne estuary, UK, is susceptible to oil pollution through boat traffic, and there is the potential for AgNP exposure via effluent discharged from a sewage treatment works located in close proximity. This study examined the effects of uncapped AgNPs (uAgNPs), capped AgNPs (cAgNPs) and dissolved Ag2SO4, on hydrocarbon-degrading microbial communities in estuarine sediments. The uAgNPs, cAgNPs and Ag2SO4 (up to 50 mg L−1) had no significant impact on hydrocarbon biodegradation (80–92% hydrocarbons were biodegraded by day 7 in all samples). Although total and active cell counts in oil-amended sediments were unaffected by silver exposure; total cell counts in non-oiled sediments decreased from 1.66 to 0.84 × 107 g−1 dry weight sediment (dws) with 50 mg L−1 cAgNPs and from 1.66 to 0.66 × 107 g−1 dws with 0.5 mg L−1 Ag2SO4 by day 14. All silver-exposed sediments also underwent significant shifts in bacterial community structure, and one DGGE band corresponding to a member of Bacteroidetes was more prominent in non-oiled microcosms exposed to 50 mg L−1 Ag2SO4 compared to non-silver controls. In conclusion, AgNPs do not appear to affect microbial hydrocarbon-degradation but do impact on bacterial community diversity, which may have potential implications for other important microbial-mediated processes in estuaries

    Variants in GNAI1 cause a syndrome associated with variable features including developmental delay, seizures, and hypotonia

    Get PDF
    Purpose: Neurodevelopmental disorders (NDDs) encompass a spectrum of genetically heterogeneous disorders with features that commonly include developmental delay, intellectual disability, and autism spectrum disorders. We sought to delineate the molecular and phenotypic spectrum of a novel neurodevelopmental disorder caused by variants in the GNAI1 gene. Methods: Through large cohort trio-based exome sequencing and international data-sharing, we identified 24 unrelated individuals with NDD phenotypes and a variant in GNAI1, which encodes the inhibitory Gαi1 subunit of heterotrimeric G-proteins. We collected detailed genotype and phenotype information for each affected individual. Results: We identified 16 unique variants in GNAI1 in 24 affected individuals; 23 occurred de novo and 1 was inherited from a mosaic parent. Most affected individuals have a severe neurodevelopmental disorder. Core features include global developmental delay, intellectual disability, hypotonia, and epilepsy. Conclusion: This collaboration establishes GNAI1 variants as a cause of NDDs. GNAI1-related NDD is most often characterized by severe to profound delays, hypotonia, epilepsy that ranges from self-limiting to intractable, behavior problems, and variable mild dysmorphic features

    Metabarcoding of Bacteria Associated with the Acute Oak Decline Syndrome in England

    No full text
    Outbreaks of acute oak decline (AOD) have been documented in England from 2006. Both species of native oaks (Quercus robur and Quercus petraea) are affected. To complement isolation efforts for identification of putative causative biotic agents and increase our understanding of bacteria associated with oak tissue, five sites in England were chosen for this study. Samples of outer bark, inner bark, sapwood and heartwood were taken from healthy oak and trees with symptoms at varying stages of the syndrome. Furthermore, larval galleries attributed to infestation with Agrilus biguttatus were included. After DNA extraction and amplification of the V3–V5 fragment of the bacterial 16S rRNA genes by pyrosequencing, the dataset was analyzed to identify patterns in bacterial communities in oak tissue samples with and without AOD symptoms at each site. The composition of bacterial communities differed greatly according to the site from which the samples were obtained. Within each site, the composition of the bacteria associated with symptomatic tissue varied between advanced stages of the syndrome and healthy tissue. Key players in healthy and symptomatic tissue were identified and included members of the Gammaproteobacteria related to Pseudomonas sp. or Brenneria goodwinii and members of the Firmicutes

    Cytochrome c oxidase subunit II (cox2) sequences of oomycota for uparse

    No full text
    Reference sequence database of oomycete cox2 sequences and decoi sequences of fungi and Viridiplantae for analysis of metabarcoding data using upars

    Impacts of Cultivation of Marine Diatoms on the Associated Bacterial Communityâ–¿

    No full text
    The composition of bacterial communities associated with four diatom species was monitored during isolation and cultivation of algal cells. Strong shifts in the associated communities, linked with an increase in the numbers of phylotypes belonging to members of the Gammaproteobacteria, were observed during cultivation

    Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms

    Get PDF
    Background: Synthetic microplastics (≤5-mm fragments) are emerging environmental contaminants that have been found to accumulate within coastal marine sediments worldwide. The ecological impacts and fate of microplastic debris are only beginning to be revealed, with previous research into these topics having primarily focused on higher organisms and/or pelagic environments. Despite recent research into plastic-associated microorganisms in seawater, the microbial colonization of microplastics in benthic habitats has not been studied. Therefore, we employed a 14-day microcosm experiment to investigate bacterial colonization of low-density polyethylene (LDPE) microplastics within three types of coastal marine sediment from Spurn Point, Humber Estuary, U.K. Results: Bacterial attachment onto LDPE within sediments was demonstrated by scanning electron microscopy and catalyzed reporter deposition fluorescence in situ hybridisation (CARD-FISH). Log-fold increases in the abundance of 16S rRNA genes from LDPE-associated bacteria occurred within 7 days with 16S rRNA gene numbers on LDPE surfaces differing significantly across sediment types, as shown by quantitative PCR. Terminal-restriction fragment length polymorphism (T-RFLP) analysis demonstrated rapid selection of LDPE-associated bacterial assemblages whose structure and composition differed significantly from those in surrounding sediments. Additionally, T-RFLP analysis revealed successional convergence of the LDPE-associated communities from the different sediments over the 14-day experiment. Sequencing of cloned 16S rRNA genes demonstrated that these communities were dominated after 14 days by the genera Arcobacter and Colwellia (totalling 84-93% of sequences). Attachment by Colwellia spp. onto LDPE within sediments was confirmed by CARD-FISH. Conclusion: These results demonstrate that bacteria within coastal marine sediments can rapidly colonize LDPE microplastics, with evidence for the successional formation of plastisphere-specific bacterial assemblages. Although the taxonomic compositions of these assemblages are likely to differ between marine sediments and the water column, both Arcobacter and Colwellia spp. have previously been affiliated with the degradation of hydrocarbon contaminants within low-temperature marine environments. Since hydrocarbon-degrading bacteria have also been discovered on plastic fragments in seawater, our data suggest that recruitment of hydrocarbonoclastic bacteria on microplastics is likely to represent a shared feature between both benthic and pelagic marine habitats
    corecore