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Abstract 

The advent of next-generation sequencing has allowed huge amounts of DNA 

sequence data to be produced, advancing the capabilities of microbial ecosystem studies. The 

current challenge is identifying from which microorganisms and genes the DNA originated. 

Several tools and databases are available for annotating DNA sequences. The tools, databases 

and parameters used can have a significant impact on the results: naïve choice of these factors 

can result in a false representation of community composition and function. We use a 

simulated metagenome to show how different parameters affect annotation accuracy by 

evaluating the sequence annotation performances of MEGAN, MG-RAST, One Codex and 

Megablast. This simulated metagenome allowed the recovery of known organism and 

function abundances to be quantitatively evaluated, which is not possible for environmental 

metagenomes. The performance of each program and database varied, e.g. One Codex 

correctly annotated many sequences at the genus level, whereas MG-RAST RefSeq produced 

many false positive annotations. This effect decreased as the taxonomic level investigated 

increased. Selecting more stringent parameters decreases the annotation sensitivity, but 

increases precision. Ultimately, there is a trade-off between taxonomic resolution and 

annotation accuracy. These results should be considered when annotating metagenomes and 

interpreting results from previous studies. 
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Introduction 

The advent of next-generation sequencing and metagenomics has resulted in 

increasing numbers of ever-larger datasets describing the community structure and function 

of a variety of different environments, from the human gut (Arumugam et al. 2011; David et 

al. 2014) to arctic peat soils (Lipson et al. 2013) and deep-sea vents (Xie et al. 2011; 

Anderson, Sogin and Baross 2015), to name a few. Next-generation sequencing technologies 

have greatly reduced sequencing costs and speed, and researchers can now affordably study 

whole microbial communities and functions. Prior to this, the focus was on community 

species composition, studied using 16S rRNA targeted amplicon sequencing. Amplicon 

sequencing does not require the DNA coverage that metagenomic studies require and can 

accurately identify which species are present in a sample (Woese and Fox 1977; Lane et al. 

1985; Hugenholtz 2002), but it does not provide the depth of information, such as gene 

function, that full metagenome sequencing and annotation provides. Cost is no longer the 

primary limiting factor for undertaking metagenomic studies; rather it is now bioinformatics 

and processing power required to process the data produced. Illumina’s HiSeq platform, for 

example, can affordably sequence the most complex of microbial communities, and the 

challenge now is to interpret the data produced. 

 Henry et al. (2014) provide an extensive directory of tools available for different tasks 

involved in a metagenomic project pipeline, related to a range of ‘omics’ studies. These may 

include bespoke bioinformatics pipelines, downloadable programs and web-based services. 

MEGAN (Huson et al. 2007) is a popular Graphical User Interface program for analysing and 

visualising BLAST results to study the taxonomy of microbial communities. While MEGAN 

typically analyses BLAST results in a few minutes, running BLAST searches against 

reference sequences in a database is computationally intensive and slow for metagenomes 
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(Thomas, Gilbert and Meyer 2012; Desai et al. 2012; Hunter et al. 2012). Web-based servers 

are increasingly popular for processing large amounts of data. With an intuitive web interface 

and a variety of analytical tools to choose from, MG-RAST (Meyer et al. 2008) is 

increasingly cited. MG-RAST allows users to upload raw sequence files that are processed 

through quality filters and annotated using a selection of user-defined parameters, such as 

reference databases, minimum identity cut-off values, maximum E-values, or expect-values, 

and minimum alignment lengths. Details of the processing procedure can be found in the 

MG-RAST Technical Report (Wilke et al. 2013). 

 In response to the growing size of data sequenced, faster alignment methods are being 

produced. RAPSearch2 (Zhao, Tang and Ye 2012) translates nucleotide sequences and aligns 

them with annotated protein sequences, reporting to be c. 100 fold faster than BLASTX with 

only a 1.3-3.2 % reduction in sensitivity (the proportion of sequences annotated). With 

“accelerate” mode, the speed increase is up to 1,000 fold. PAUDA (Huson and Xie 2014) 

uses a similar approach and claims to be 10,000 fold faster than BLASTX, although with a 

significant reduction in sensitivity. DIAMOND (Buchfink, Xie and Huson 2015) purports to 

be both fast and accurate, with a 20,000 fold increase in processing speed compared to 

BLASTX. In sensitive mode, 99 % of sequences are aligned, with a speed increase of 2,000 

fold compared to BLASTX. Like BLAST with Megablast, RAPSearch2 and DIAMOND 

offer fast and sensitive modes, each coming at the cost of the other. The outputs from both 

programs can be viewed and analysed using MEGAN. 

One Codex is a web-based program that uses a different technique to BLAST and 

MG-RAST to classify sequences (https://onecodex.com/). The program designers report that 

it runs 900 times faster than BLAST while maintaining similar genus-level sensitivity and 

precision (the proportion of annotated sequences that are correctly identified), taking hours 

 b
y
 g

u
est o

n
 M

ay
 1

1
, 2

0
1
6

h
ttp

://fem
sec.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 



rather than days to classify most metagenomes. One Codex works by comparing k-mers 

(sequences of a set length) from a sequence to a reference database of k-mers; the greatest 

number of 100 % k-mer matches determines the classification. BLAST and MG-RAST 

classify sequences by matching them with the most similar sequences in a database.  Unlike 

MG-RAST, One Codex does not annotate genes for function. 

The choice of database, minimum identity cut-off value (i.e. sequence match 

stringency), minimum alignment length cut-off value and minimum E-value limit (the 

probability a match has occurred by chance) all influence sequence annotation accuracy, 

which, in turn, affect the reproducibility and interpretation of the data. An inherent issue with 

metagenomic studies is that establishing the accuracy of sequence annotation for 

environmental samples is practically impossible, given that the quantities of organisms and 

genes are unknown. Therefore, determining the most effective annotation method is 

fundamental to investigating environmental communities with confidence. 

Databases 

There are a variety of different reference nucleotide and amino acid databases available 

for annotating gene or protein sequences (Supplementary Table 1). The M5NR database 

(Wilke et al. 2012) incorporates information from a selection of different databases (see 

Supplementary Table 1), increasing the amount of reference data available for annotation. 

Using a single reference database may be the best option in some cases, for example where 

16S rRNA amplicons are used as a method to identify taxa, rather than other genes.  

Whereas taxonomic nomenclature is universal, governed by international conventions, 

there are multiple approaches for functional classification. Two popular methods include 

Clusters of Orthologous Groups (COG) (Tatusov, Koonin and Lipman 1997) and the Kyoto 
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Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto 2000). COGs comprise 

orthologous functions that allow for functional description of poorly characterised genomes 

based on protein orthologs. KEGG provides a reference database of sequences with 

functional pathway annotations. Both methods include a hierarchy of functional descriptions. 

At the highest level, COG descriptions are characterised under: Cellular processes, 

information storage and processing, metabolism, and poorly characterised. KEGG 

descriptions are characterised under: cellular processes, environmental information 

processing, genetic information processing, human diseases, and metabolism. Due to the 

differences in characterisation approaches, COG and KEGG annotations cannot be compared 

directly. COG is currently freely available. KEGG operates on a subscription basis, and MG-

RAST uses the latest freely available version (KEGG 2008). 

Parameters 

Selecting a minimum identity cut-off value for metagenome analysis is challenging 

because interspecific sequence identity varies among genes. Too high a value will accurately 

identify genes with highly conserved regions, such as 16S rRNA or highly conserved coding 

genes with little synonymous substitution, but may fail to identify genes or non-coding 

regions that are highly variable. Conversely, a value too low will allow for highly variable 

genes to be identified, but may also incorrectly identify an organism/function, thus providing 

false community/function profiles. 

The optimum identity cut-off point for species identification using the 16S rRNA gene 

is widely accepted as 97 % (Stackebrandt and Goebel 1994; Rosselló-Mora and Amann 2001; 

Chun et al. 2007; Richter and Rosselló-Móra 2009; Větrovský and Baldrian 2013; Mende et 

al. 2013), although this value has its limitations. Some species, such as certain Rickettsia 

spp., have a 16S rRNA gene similarity greater than 97 %, thus a cut-off value at this level 
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would not differentiate between the species (Fournier et al. 2003). Stackebrandt and Goebel 

(1994) suggest that a higher value may be more appropriate, but fewer sequences would be 

annotated due to sequencing errors and sequence mutations. Typically, lower cut-off values 

are suitable for metagenomic studies as the multitude of genes that contain varying degrees of 

conservation are sequenced. The default value used by MG-RAST, and used in many 

metagenomic studies (e.g. Tatusov, Koonin and Lipman 1997; Lipson et al. 2013), is 60 %, 

as this allows for identification using less conserved genes and non-coding regions. 

Minimum alignment lengths set the minimum length of sequence considered for 

annotation. A lower value allows shorter sequences to be annotated, although the chance of 

incorrectly annotating a shorter sequence is higher. A higher value will reduce this chance, 

but may also reduce the number of annotations overall. Combining a low minimum alignment 

length with a strict minimum identity cut-off value allows shorter sequences to be annotated 

but with a high match criteria. 

Setting maximum E-values and minimum alignment lengths allows stringency of 

annotations to be controlled. E-values denote the maximum probability that a sequence 

annotation has occurred by chance. Lower maximum E-values will reduce the number of 

possible incorrect annotations, although this also reduces number of annotations retained for 

analysis. The default maximum E-value used by MG-RAST is 1-e
-5

. 

Aims 

The aim of this study is to evaluate the accuracy of MEGAN, MG-RAST and One 

Codex annotation methods while investigating how using different databases and parameters 

impact the annotation of metagenomes. To do this, a novel simulated metagenome was 

generated using the NCBI whole bacterial genome database and annotated using each 
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pipeline and, for MG-RAST, with different reference databases, minimum identity cut-off 

values, minimum alignment lengths and maximum E-values. 

Using a simulated metagenome comprising known genome abundances allows the 

accuracy of annotation to be quantified. The simulated metagenome was also annotated using 

Megablast, a faster variation of BLAST, to provide a control and so that MEGAN, MG-

RAST and One Codex could be compared to a standard in sequence annotation. Comparing 

the MEGAN, MG-RAST and One Codex annotations to the Megablast annotations will 

quantify the accuracy of these programs for annotating sequences from organisms whose 

genomes are stored in the NCBI databases. 

Methodology 

Metagenome simulation 

A simulated metagenome, hereafter Simmet, was created using NeSSM (Jia et al. 

2013), comprising the complete NCBI bacterial genome database 

(ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/all.fna.tar.gz, May 2013 collection, accessed on 

29/04/14). NeSSM creates synthetic metagenomes from input genomes based on user-defined 

parameters (e.g. sequence count, length and abundance distributions) that aim to simulate real 

sequencing data, including expected sequencing errors (i.e. substitutions, insertions, and 

deletions) based on the chosen sequencing technology simulated (see “Step II: error models 

and sequencing coverage bias estimation in Jia et al. (2013)). 2,400,000 sequences with a 

read length of 450 base pairs were designated for simulation, based on 454 pyrosequencing. 

One strain for each of the 1,505 species in the NCBI bacterial genome database was 

randomly selected to be included in the simulation because certain species, e.g. model 
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organisms and human pathogens such as Escherichia coli, Salmonella enterica, 

Mycobacterium tuberculosis, Bacillus cereus and Staphylococcus aureus, have been 

extensively studied and are over-represented in the databases. The resulting genus richness 

was 688. The species abundance distribution used for simulation was derived from the 

abundance distribution of a pasture soil metagenome (sequence count: 2,378,586, MG-RAST 

ID: 4554767.3) (See Equation 1).  

Equation 1. 

         ( )         

Where   is the randomly selected species rank. 

The sequences were processed with Sickle (Joshi and Fass 2011) to trim low quality 

ends, with the average threshold phred score set at 20 (a base call error rate of 1 %). 

Analysis 

The Simmet metagenome file was annotated with Megablast (available from: 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC _TYPE=Download) 

as a control, using a reference database of the genomes used to create Simmet. This quantifies 

the effect that the simulated sequencing errors have on the annotations. The NCBI nucleotide 

database (updated 17/11/2014) (ftp://ftp.ncbi.nlm.nih.gov/blast/db/) was also used to assess 

the annotation performance of Megablast. The maximum E-value selected was 1-e
-5

 and the 

minimum alignment length, 15 bases. Megablast annotations using the Simmet database will 

be referred to as “control” and those using the NCBI nucleotide database will be referred to 

as “Megablast”. The BLAST results were uploaded to MEGAN (version 5.2.3) and analysed 

using the same parameters used in the BLAST. 
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Simmet was uploaded to MG-RAST and One Codex. The databases investigated within 

MG-RAST were: GenBank, GreenGenes, RDP, RefSeq, SEED, SwissProt and TrEMBL. The 

M5NR and M5RNA databases were excluded from individual sequence analysis, as 

individual sequence annotations were not available for download from MG-RAST for these 

databases. RefSeq was used for One Codex. For both the Megablast and MG-RAST 

annotations, which use a minimum sequence alignment match to annotated sequences, the 

minimum identity cut-off values tested were: 40 %, 50 %, 60 %, 70 %, 80 %, 90 %, 95 % and 

97 %. The minimum alignment lengths tested were: 10, 15, 20, 25, 30, 25, 40, 45, 50, 55 and 

60 bp. The maximum E-values tested were: 1-e
-1

, 1-e
-5

, 1-e
-10

 and 1-e
-15

. Aside from testing, 

default parameters were used: 60 %, 15 bp and 1-e
-5

, respectively, for minimum identify cut-

off, minimum alignment length and maximum E-value. 

The sequence IDs and annotations were extracted from the Megablast results 

(https://github.com/sandyjmacdonald/blast_parser) and full taxonomic lineages were 

generated for each sequence using the NCBI taxonomy database (available from: 

ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/; NCBI database version generated 13/05/2013). 

Species level was excluded from analysis due to the high variation in annotated species 

nomenclature and the accepted caveats associated with microbial species classification 

(Gevers et al. 2005; Achtman and Wagner 2008), e.g. horizontal gene transfer (Gogarten and 

Townsend 2005; Bapteste and Boucher 2009). Discrepancies identified between databases for 

organism names were corrected for, such as NCBI using the old name Chloroflexia (as of 

17/11/14) and MG-RAST using the new name Chloroflexi for the same class. Those that 

were not annotated were named “Unidentified” and those that were annotated but were either 

ambiguously annotated or not annotated at all taxonomic levels had the corresponding levels 

in the lineage replaced with “Unclassified”. For MEGAN and One Codex, NCBI taxa IDs 

were used to generate the lineages. 
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The taxonomic lineage for each annotated sequence was compared to the lineage for 

the corresponding source sequence in Simmet to determine the annotation sensitivity  and 

precision at each taxonomic level. The effect that minimum identity cut-off values, minimum 

alignment lengths and maximum E-values had on annotation sensitivity and precision were 

established using Megablast and MG-RAST. The correlations between the relative 

abundances for each taxon in Simmet and in the annotations were calculated using Pearson’s 

product moment correlation coefficient. Domain was excluded due to the small number of 

taxa. The natural logarithms of the relative abundance values were calculated for plotting, as 

the original distributions would not visually convey the variations in low abundance taxa. The 

taxa richness values for each taxonomic level were calculated. 

Unlike investigating taxa, correct functional annotations cannot be ascertained with 100 

% confidence. To investigate functional annotation performance, protein sequences 

associated with the sequences in Simmet were extracted from GenBank records and 

annotated using the KEGG Automatic Annotation Server (KAAS) (Moriya et al. 2007) and 

WebMGA (Wu et al. 2011). Both are web-based functional annotation tools independent of 

those investigated in this study. They did not contain sequencing errors and thus provided the 

best possible indication of the functional annotation accuracy, although the caveats associated 

with sequence annotation (e.g. possibly incorrectly assigning a function) are present. 

KEGG Orthology (KO) and COG IDs were extracted from the KASS and WebMGA 

results, respectively, for each sequence annotated and compared with the IDs assigned by 

MG-RAST. The parameters set for the taxonomic investigation were used, and the minimum 

identity cut-off values investigated were: 40 %, 50 %, 60 %, 70 %, 80 %, 90 % and 95 %. 

The minimum alignment lengths tested were: 10, 15, 20, 25, 30, 25, 40, 45, 50, 55 and 60 

base pairs. The maximum E-values tested were: 1-e
-1

, 1-e
-5

, 1-e
-10

 and 1-e
-15
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Results 

Simulation and annotation 

NeSSM produced 2,399,077 sequences (length range: 195 to 459 bp, median length 

377 bp). The average phred quality scores remained above 20 until beyond 400 bases 

(Supplementary Figure 1) and 98.7 % of sequences are between 300 and 400 base pairs long 

(Supplementary Figure 2). Of the 2,399,077 sequences, KASS annotated 1,341,362 (55.9 %) 

sequences and WebMGA annotated 1,945,674 sequences (81.1 %). 

Parameters (Blast and MG-RAST) 

More stringent parameter values resulted in fewer sequence annotations but had a 

greater precision; lower values resulted in more annotations being made, but these comprised 

increases in both correct and incorrect annotations. For example, with cut-off values of 95 % 

and 40 %, MG-RAST RefSeq annotated 40.2 % and 90.3 % sequences, respectively with 

incorrect annotation rates of 2.9 % and 34.5 % at the genus level. This was observed for all 

parameters tested, for both taxonomic (Figure 1, 3 and 5) and functional (Figure 2, 4 and 6) 

annotations. As the taxonomic level moved up the taxonomic hierarchy, more sequences were 

correctly annotated (e.g. 0.5 % and 10.2 % for MG-RAST RefSeq with cut-off values of 95 

% and 40 %, respectively, at the class level). Note that sensitivity is unaffected by the 

taxonomic level investigated. 

The correlation coefficients between the taxa relative abundances in Simmet and in the 

annotations decreased as parameter stringency increased (Figure 7, associated scatter plots in 

Supplementary Figures 3-5). Most databases achieved maximum correlations with a 

minimum identity cut-off value of 50 %, a minimum alignment length of 30 bp and a 
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maximum E-value of 1-e
-1

. Greater decreases in correlation coefficients occurred with a 

minimum identity cut-off value above 70 % and a minimum alignment length greater than 40 

bp. 

Annotation sensitivity and precision 

The control taxonomically annotated 99.9 % of sequences and had a genus precision of 

99.5 %. This produced the greatest number of correct annotations (99.4 %) (Table 1, Figure 

8, Supplementary Table 2 for all taxonomic levels). Megablast annotated 99.8 % of 

sequences and had a genus precision of 97.5 %. One Codex annotated all of the sequences, 

but incorrectly annotated more sequences (5.8 %) than MEGAN (2.9 %), Megablast (2.5 %) 

and the control (0.5 %). Megablast, MEGAN and One Codex correctly annotated 97.3 %, 

95.7 % and 94.2 % sequences respectively, significantly more than the next most successful 

methods: MG-RAST RefSeq (55.9 %), MG-RAST TrEMBL (54.9 %) and MG-RAST 

GenBank (52.7 %). MG-RAST RDP and Mg-RAST Greengenes, both rRNA databases, 

annotated less than one per cent of the sequences. This is consistent with the expected 

frequency of rRNA genes within bacterial genomes (Větrovský and Baldrian 2013). As the 

taxonomic level increases, precision increases and becomes more similar across the different 

databases. 

MG-RAST KEGG annotated 63.3 % of the sequences and had a precision of 71.7 %, 

with 45.4 % of sequences correctly assigned a function and 17.9 % incorrectly assigned a 

function. MG-RAST COG annotated 50.5 % of the sequences and had a precision of 91.1 %, 

resulting in 46.0 % of sequence being correctly assigned a function and 4.5 % being 

incorrectly assigned a function (Supplementary Tables 3-5). The portions of sequences 

correctly annotated by both methods were 81.5 % for MG-RAST KEGG and 55.4 % for MG-

RAST COG. 
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Taxa abundance correlations 

The control showed the greatest genus-level correlation (r
2
 = 0.98). Megablast had the 

greatest genus-level correlation with Simmet after the control (r
2
 = 0.95), while MG-RAST 

SEED had the weakest (r
2
 = 0.49). MEGAN and One Codex had genus-level correlations of 

r
2
 = 0.90 and r

2
 = 0.93, respectively. The greatest correlation achieved, aside from the control, 

was by Megablast at the phylum level (r
2
  > 0.99) (Figure 9, Supplementary Figure 6). 

MG-RAST M5NR and MG-RAST RefSeq generated 87 and 56 false positive class 

identifications respectively (Table 2). MEGAN had only two false positive class 

identifications (“Unidentified” and Insecta) and one false negative identification 

(Solibacteres). One Codex also had a low abundance of false positive class identifications 

(eight) and no false negative class identifications. Classes with many false positive 

identifications include eukaryotes, particularly fungi, and bacteria such as Spartobacteria. The 

greatest fold differences for classes can be found in Supplementary Table 6. 

Taxa richness 

Six of the annotation methods underestimated the genus richness and six overestimated 

it (Table 3, Figure 10). The control perfectly estimated the genus richness. The next closest 

estimate was achieved by MEGAN (97.7 %), followed by MG-RAST SwissProt (95.5 %), 

MG-RAST M5RNA (95.2 %), Megablast (110.2 %) and MG-RAST RefSeq (118.2 %). MG-

RAST M5NR produced the most incorrect richness value at 1,244 genera (180.8 %). One 

Codex overstated the genus richness by 26.7 %. The methods were inconsistent in response to 

taxonomic level. With increasing taxonomic level some estimates increased in accuracy while 

others decreased (Figure 10, Supplementary Table 7). Excluding the control and the domain 

level, where the number of taxa is low, MEGAN achieved the most accurate richness value 
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(101.2 %) at the family level. MG-RAST M5NR achieved the most inaccurate richness value 

(253.3 %) at the order level. Megablast and One Codex achieved accurate results relative to 

other methods, but they still overstated taxa richness at every taxonomic level. 

Discussion 

In the study we evaluated the performances of MEGAN, MG-RAST, One Codex and 

Megablast by determining their sequence annotation accuracies. All common taxonomic 

levels above species are studied, building on the work by Lindgreen, Adair and Gardner 

(2016) who study several tools at the genus and phylum levels. By studying a range of 

taxonomic levels, we provide a guideline for researchers to establish the annotation accuracy 

costs of investigating lower taxonomic levels, allowing them to optimise their investigations 

depending on their requirements for taxonomic resolution. MG-RAST and Megablast use a 

selection of parameters to determine the stringency of matching a sequence with a reference 

sequence in a database. Less stringent parameters (i.e. lower minimum identity cut-off values, 

lower minimum alignment lengths and higher maximum E-values) annotate more sequences, 

but more incorrect annotations are made, thus producing an incorrect community profile. 

More stringent parameters reduce the number of incorrect annotations, but many fewer 

annotations are made, resulting in much of the data being rejected. Shakya et al. (2013) drew 

similar conclusions for varying minimum identity cut-off values. Decreases in sensitivity 

generally occur from minimum identify cut-off values above 60 %, a minimum alignment 

lengths greater than 30 bp or a maximum E-value below 1-e
-5

; therefore the default values 

used by MG-RAST maximise sensitivity. According to Carr and Borenstein (2014), the 

impact of parameters such as E-value will vary depending on read-length, something that 

should be considered in future evaluations as newer sequencing technologies produce longer 

reads (e.g. nanopore sequencing (Branton et al. 2008)). The sensitivities and the number of 
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sequences correctly annotated are relatively low for MG-RAST at the genus and family 

levels. At the order level the values are higher, suggesting that this would be the optimum 

taxonomic level to study, which maximises the amount of data used without producing too 

many incorrect annotations. Ultimately, there is a trade-off between taxonomic resolution and 

annotation accuracy, and this must be considered when determining methods for 

metagenomic studies. 

A marginal number of sequences were not annotated by the control and an even 

smaller number were incorrectly annotated. These discrepancies are due to the sequencing 

errors inserted into the simulation. We can therefore conclude that 0.5 % of inter-sample 

difference at the genus level may be attributed to sequencing error, an important 

consideration when interpreting data obtained from environmental samples using these 

methods. This is supported by Hoff (2009) and Carr and Borenstein (2014), who found that 

increasing error rates decrease gene prediction accuracy. As the error rates of Next 

Generation Sequencing technologies improve, this effect will reduce. 

One Codex had the greatest annotation sensitivity and the fourth highest annotation 

precision. This is likely to be due to a combination of the kmer-based annotation method that 

it uses and that the simulated metagenome was created using the NCBI genome database, the 

primary reference source for One Codex. Other than the control, Megablast correctly 

annotated the most sequences at the genus level (97.3 %), although the sensitivity of this 

method was 0.2 % less than One Codex. MEGAN had the second highest precision, 

annotating 98.6 % of sequences, with 95.7 % correct annotations. This suggests that 

Megablast is the most reliable method for annotating sequences, and indicates that it is more 

conservative than One Codex when assigning a sequence hit but also less likely to 

misidentify a sequence. MEGAN’s performance was similar to Megablast, which is expected 
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as MEGAN processed the Megablast output. Discrepancies between the two are therefore 

derived from MEGAN’s processing.   

MG-RAST RefSeq had the fifth greatest annotation sensitivity and the greatest of the 

MG-RAST annotations (excluding MG-RAST M5NR, for which sequence-specific 

annotation data were unavailable), although it also achieved the greatest number of 

misidentifications. At the genus level, 33.7 % of sequences were misidentified and 55.9 % 

were correctly identified, leaving the remainder unassigned despite the fact that all taxa in 

Simmet are fully sequenced. This would suggest that investigating metagenomes at the genus 

level would be unreliable, generating many false positives and implying an incorrect 

community structure and composition. This supports Garcia-Etxebarria, Garcia-Garcerà and 

Calafell (2014), who found that more annotations are made at higher taxonomic levels and 

that discrepancies between known frequencies and annotations increase at lower taxonomic 

levels, and Lindgreen, Adair and Gardner (2016), who report decreases in community 

annotation accuracy at the genus level compared to phylum. At the class level, the proportion 

of incorrect annotations is reduced to fewer than 10 % for MG-RAST RefSeq, with 80 % 

being annotated correctly. While taxonomic resolution is reduced, it ensures that the 

confidence in the annotations remains high. 

MG-RAST KEGG correctly annotated a similar number of sequences to MG-RAST 

COG, but incorrectly annotated many more. KEGG offers a more descriptive annotation as it 

comprises specific gene and pathway annotations, whereas COG provides descriptions based 

on orthologous sequences. However, the specificity of KEGG classifications may be the 

cause of the incorrect annotations as there are more annotations to be selected from and there 

may be more closely related functions, increasing the chance of misidentification. Because 

KEGG is now subscription based, and MG-RAST uses the last free version (2008), it will not 
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contain information added after that date. Our results are in line with those produced by 

Lindgreen, Adair and Gardner (2016), who also conclude that MG-RAST’s functional 

annotation was accurate. 

The control, One Codex, Megablast and MEGAN achieved the greatest correlation 

coefficients between Simmet and annotation abundances at the genus level, all above 0.9. For 

all MG-RAST annotations the correlation coefficients were less than 0.8. For MG-RAST, the 

greatest correlation of all abundances was achieved at the order level by the M5NR database, 

closely followed by TrEMBL and RefSeq. These correlations inform us about community-

wide analyses, but they are not as sequence sensitivity and precision as correlating 

abundances values may occur from coincidental incorrect annotations. 

MG-RAST over-annotated many more classes than MEGAN and One Codex, for 

which the most abundant feature was the unidentified group. This supports the sensitivity and 

precision data in suggesting that One Codex is more likely to categorise unknown sequences 

as unidentified, rather than incorrectly identifying them. 

The genus richness estimated by MG-RAST M5NR was 81.0 % greater that Simmet’s 

actual richness, the highest overstatement, while MEGAN achieved the most accurate genus 

richness value (2.3 % lower) after the control (100.2 %). This overstatement could be due to 

the greater number of sequences present in MG-RAST M5NR. MG-RAST M5RNA produced 

a relatively accurate estimate of genus richness (95.2 %); as M5RNA is a 16S rRNA 

database, it is unlikely to annotate non-16S rRNA sequences, reducing the number of 

incorrect identifications. However, the taxa abundance correlations show that MG-RAST 

M5RNA achieved the second lowest correlation with Simmet at the genus level, and the 

lowest at all other taxonomic levels. MG-RAST RefSeq generated the fifth most accurate 

richness value, greater than One Codex, although not as accurate as Megablast and MEGAN. 
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Combined with its high abundance correlation with Simmet, this suggests that MG-RAST 

RefSeq provides a relatively accurate representation of both the richness of a community and 

the abundance of organisms present. MEGAN and One Codex achieve more accurate taxa 

richness values and taxa abundance correlations than MG-RAST RefSeq at the family level 

and above, suggesting they would be a viable alternative to MG-RAST RefSeq. 

One limitation with evaluating annotations using organism nomenclature, rather than 

taxon IDs (which were unavailable for MG-RAST sequence-specific annotation data), is the 

lack of taxonomic metadata curation in some databases. Some genomes in the NCBI database 

are stored with the abbreviated species name rather than complete name, thus A.mediterranei 

would not automatically be identified as an Amycolatopsis species. Furthermore, as names are 

updated, disparities can form between different databases. For example, the class 

Chloroflexia has been renamed to Chloroflexi, and is called this by MG-RAST. However, 

NCBI is using the old name Chloroflexia (as of 17/11/14), thus sequences identified as 

Chloroflexi would not be correctly matched in Simmet. These issues were corrected for 

during data processing; however there may be other cases of disparities in the plethora of 

organisms present in the analysis. A solution to this would be to use the taxon IDs instead, 

however these were not available for sequence-specific annotations downloaded from MG-

RAST. 

In conclusion, we found that One Codex, Megablast and MEGAN are suitable 

methods for annotating DNA sequences that are located in the reference databases that they 

use for annotation, with One Codex offering fast, web-based analyses and MEGAN providing 

a user-friendly Graphical User Interface to analyse BLAST results. Results appear to vary 

significantly depending on the program and parameters used, a conclusion also drawn by 

Lindgreen, Adair and Gardner (2016).  While MG-RAST appears to have a greater rate of 
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incorrect assignments, this is reduced when investigating higher taxonomic levels (e.g. with 

RefSeq: over 33 % at the genus level compared to less than 15 % and 10 % at the order and 

class levels). The correlations between the annotated taxa abundances are greatest for MG-

RAST at the order level, using M5NR, TrEMBL or RefSeq. In many of the tests, MG-RAST 

M5NR proved to be a reliable database, but the diversity indices suggest that it is less reliable 

than MG-RAST RefSeq; at the class, order and family levels MG-RAST M5NR estimates 

more the double the actual richness values. Therefore, we hypothesise that MG-RAST M5NR 

would generate more false positive sequence annotations than MG-RAST RefSeq. 

A simulated metagenome allows for the quantification of annotation errors. This study 

compliments the work by Mavromatis et al. (2007), who evaluated different metagenomic 

processing methods using simulated metagenome developed from 113 isolated genomes, and 

by Pignatelli and Moya (2011), who used simulated data to study the performances of de 

novo short-read assembly programs. It should be noted that the performances of the methods 

discussed in this study are likely to differ from the reported results when annotating 

environmental sequence data; a greater number of sequences are likely to be unidentified due 

to the multitude of uncultured microorganisms (Streit and Schmitz 2004) and non-sequenced 

microbial genomes (Tringe et al. 2005) that are currently absent from the NCBI whole 

bacterial genome database. While this research focussed on a selection of annotation 

methods, the overall conclusions drawn should be considered for any pipeline. 

In this study we highlight and quantify the annotation errors for a selection of 

parameters and databases. We show that analysis pipelines are not equivalent and certain 

parameters can significantly reduce the confidence in results. These findings should be used 

as a guideline when determining methods for annotating metagenomic sequences and 

considered when interpreting metagenomic results. Ultimately, the most appropriate balance 
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between taxonomic resolution, annotation sensitivity and annotation precision needs to be 

identified for each study conducted. 
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Figure 1 Effect of minimum identity cut-off values on taxonomic annotation. The effect of changing 
minimum identity cut-off value on the number of sequences correctly and incorrectly annotated across 
the taxonomic levels. 
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Figure 2 Effect of minimum identity cut-off values on functional annotation. The effect of changing 
minimum identity cut-off value on the number of sequences correctly and incorrectly annotated for 
functions. 
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Figure 3 Effect of minimum alignment length on taxonomic annotation. The effect of changing minimum 
alignment length on the number of sequences correctly and incorrectly annotated across the taxonomic 
levels. 
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Figure 4 Effect of minimum alignment length on functional annotation. The effect of changing minimum 
alignment length on the number of sequences correctly and incorrectly annotated for functions. 
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Figure 5 Effect of maximum E-value on taxonomic annotation. The effect of changing maximum E-value 
on the number of sequences correctly and incorrectly annotated across the taxonomic levels. 
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Figure 6 Effect of maximum E-value on functional annotation. The effect of changing maximum E-value 
value on the number of sequences correctly and incorrectly annotated for functions. 
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Figure 7 Abundance correlations for different parameter values. The Pearson’s product-moment 
correlation coefficients for the correlations between the Genus relative abundances from Simmet and 
those from various annotation methods using different A) minimum identity cut-off values, B) Minimum 
alignment lengths, and C) maximum E-values. 
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Figure 8 Annotation performance. The annotation sensitivity and number of sequences correctly 
annotated from a variety of methods and databases across the taxonomic levels investigated. 
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Figure 9 Abundance correlations for different taxonomic levels. The Pearson’s product-moment 
correlation coefficients for the correlations between the relative abundances from Simmet and those 
from the annotation methods. 
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Figure 10 Taxa richness. The differences between annotated richness values and the actual richness 
value (dashed line) for each taxonomic level. 
 

 

 b
y
 g

u
est o

n
 M

ay
 1

1
, 2

0
1
6

h
ttp

://fem
sec.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 



 

 

 

 

Table 1. Taxonomic annotation statistics. The Simmet taxonomic annotation statistics for 

each method and database at the Genus level using default parameters. 

Method Database 
Sensitivity 

(%) 

Correctly 

annotated (%) 

Incorrectly 

annotated (%) 

Megablast Control 99.88 99.39 0.49 

Megablast NCBI 99.81 97.32 2.49 

MEGAN MEGAN 98.56 95.65 2.91 

MG-RAST GenBank 81.94 52.65 29.30 

MG-RAST Greengenes 0.11 0.08 0.03 

MG-RAST RDP 0.13 0.10 0.03 

MG-RAST RefSeq 89.58 55.90 33.68 

MG-RAST SEED 64.97 39.75 25.22 

MG-RAST SwissProt 11.49 6.08 5.42 

MG-RAST TrEMBL 86.37 54.93 31.44 

One Codex One Codex 100.00 94.18 5.82 
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Table 2. False positive and negative Class abundances. The false positive and negative 

Classes from the MG-RAST M5NR, RefSeq, One Codex and MEGAN annotations. The 

values displayed are the relative abundances. 

Class Simmet Annotation 

A.1 The top 10 false positive Classes for MG-RAST M5NR 

Erysipelotrichi 0.0 0.00109 

Dehalococcoidetes 0.0 0.00100 

Ktedonobacteria 0.0 0.00014 

Spartobacteria 0.0 0.00013 

Mammalia 0.0 0.00012 

Insecta 0.0 0.00011 

Eurotiomycetes 0.0 0.00009 

Sordariomycetes 0.0 0.00009 

Saccharomycetes 0.0 0.00008 

Liliopsida 0.0 0.00007 

A.2 The top 10 false positive Classes for MG-RAST RefSeq 

Spartobacteria 0.0 0.00011 

Ktedonobacteria 0.0 0.00010 

Insecta 0.0 0.00009 

Eurotiomycetes 0.0 0.00008 

Mammalia 0.0 0.00007 

Saccharomycetes 0.0 0.00007 
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Lentisphaeria 0.0 0.00007 

Anthozoa 0.0 0.00005 

Amphibia 0.0 0.00005 

Zetaproteobacteria 0.0 0.00005 

A.3 The false positive Classes for One Codex 

Sordariomycetes 0.0 0.00001 

Holophagae 0.0 <0.00000 

Ktedonobacteria 0.0 <0.00000 

Eurotiomycetes 0.0 <0.00000 

Leotiomycetes 0.0 <0.00000 

Dothideomycetes 0.0 <0.00000 

Nitrospinia 0.0 <0.00000 

Saccharomycetes 0.0 <0.00000 

A.4 The false positive Classes for MEGAN 

Insecta 0.0 0.00042 

B.1 The false negative Classes for MG-RAST M5NR 

Dehalococcoidia 0.00122 0.0 

Ignavibacteria 0.00059 0.0 

Erysipelotrichia 0.00057 0.0 

Chthonomonadetes 0.00055 0.0 

Phycisphaerae 0.00049 0.0 

Caldilineae 0.00045 0.0 

Caldisericia 0.00019 0.0 

B.2 The false negative Classes for MG-RAST RefSeq 
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Anaerolineae 0.00127 0.00000 

Ignavibacteria 0.00059 0.00000 

Chthonomonadetes 0.00055 0.00000 

Phycisphaerae 0.00049 0.00000 

Caldilineae 0.00045 0.00000 

Thermodesulfobacteria 0.00040 0.00000 

Caldisericia 0.00019 0.00000 

B.3 The false negative Classes for One Codex 

NA   

B.4 The false negative Classes for MEGAN 

Solibacteres 0.00111 0.0 
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Table 3. Genus richness. The genus richness estimates and the differences from Simmet for 

each annotation method. Due to the low numbers, Domain is excluded from comparisons. 

Richness values at all taxonomic levels can be found in S5 Table. 

Method Database Richness Difference (%) 

Simmet N/A 688 N/A 

Megablast Control 688 100.00 

Megablast Megablast 758 110.17 

MEGAN MEGAN 672 97.67 

MG-RAST GenBank 1,090 158.43 

MG-RAST Greengenes 404 58.72 

MG-RAST M5NR 1,245 180.96 

MG-RAST M5RNA 655 95.20 

MG-RAST RDP 469 68.17 

MG-RAST RefSeq 813 118.17 

MG-RAST SEED 445 64.68 

MG-RAST SwissProt 657 95.49 

MG-RAST TrEMBL 1,094 159.01 

One Codex One Codex 872 126.74 
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