50 research outputs found

    Accurate Profiling of Microbial Communities from Massively Parallel Sequencing using Convex Optimization

    Full text link
    We describe the Microbial Community Reconstruction ({\bf MCR}) Problem, which is fundamental for microbiome analysis. In this problem, the goal is to reconstruct the identity and frequency of species comprising a microbial community, using short sequence reads from Massively Parallel Sequencing (MPS) data obtained for specified genomic regions. We formulate the problem mathematically as a convex optimization problem and provide sufficient conditions for identifiability, namely the ability to reconstruct species identity and frequency correctly when the data size (number of reads) grows to infinity. We discuss different metrics for assessing the quality of the reconstructed solution, including a novel phylogenetically-aware metric based on the Mahalanobis distance, and give upper-bounds on the reconstruction error for a finite number of reads under different metrics. We propose a scalable divide-and-conquer algorithm for the problem using convex optimization, which enables us to handle large problems (with 106\sim10^6 species). We show using numerical simulations that for realistic scenarios, where the microbial communities are sparse, our algorithm gives solutions with high accuracy, both in terms of obtaining accurate frequency, and in terms of species phylogenetic resolution.Comment: To appear in SPIRE 1

    A robust calibration of the clumped isotopes to temperature relationship for foraminifers

    Get PDF
    The clumped isotope (Δ47) proxy is a promising geochemical tool to reconstruct past ocean temperatures far back in time and in unknown settings, due to its unique thermodynamic basis that renders it independent from other environmental factors like seawater composition. Although previously hampered by large sample-size requirements, recent methodological advances have made the paleoceanographic application of Δ47 on small (<5 mg) foraminifer samples possible. Previous studies show a reasonable match between Δ47 calibrations based on synthetic carbonate and various species of planktonic foraminifers. However, studies performed before recent methodological advances were based on relatively few species and data treatment that is now outdated. To overcome these limitations and elucidate species-specific effects, we analyzed 14 species of planktonic foraminifers in sediment surface samples from 13 sites, covering a growth temperature range of ∼0–28 °C. We selected mixed layer-dwelling and deep-dwelling species from a wide range of ocean settings to evaluate the feasibility of temperature reconstructions for different water depths. Various techniques to estimate foraminifer calcification temperatures were tested in order to assess their effects on the calibration and to find the most suitable approach. Results from this study generally confirm previous findings that there are no species-specific effects on the Δ47-temperature relationship in planktonic foraminifers, with one possible exception. Various morphotypes of Globigerinoides ruber were found to often deviate from the general trend determined for planktonic foraminifers. Our data are in excellent agreement with a recent foraminifer calibration study that was performed with a different analytical setup, as well as with a calibration based exclusively on benthic foraminifers. A combined, methodologically homogenized dataset also reveals very good agreement with an inorganic calibration based on travertines. Our findings highlight the potential of the Δ47 paleothermometer to be applied to recent and extinct species alike to study surface ocean temperatures as well as thermocline variability for a multitude of settings and time scales

    Learning a peptide-protein binding affinity predictor with kernel ridge regression

    Get PDF
    We propose a specialized string kernel for small bio-molecules, peptides and pseudo-sequences of binding interfaces. The kernel incorporates physico-chemical properties of amino acids and elegantly generalize eight kernels, such as the Oligo, the Weighted Degree, the Blended Spectrum, and the Radial Basis Function. We provide a low complexity dynamic programming algorithm for the exact computation of the kernel and a linear time algorithm for it's approximation. Combined with kernel ridge regression and SupCK, a novel binding pocket kernel, the proposed kernel yields biologically relevant and good prediction accuracy on the PepX database. For the first time, a machine learning predictor is capable of accurately predicting the binding affinity of any peptide to any protein. The method was also applied to both single-target and pan-specific Major Histocompatibility Complex class II benchmark datasets and three Quantitative Structure Affinity Model benchmark datasets. On all benchmarks, our method significantly (p-value < 0.057) outperforms the current state-of-the-art methods at predicting peptide-protein binding affinities. The proposed approach is flexible and can be applied to predict any quantitative biological activity. The method should be of value to a large segment of the research community with the potential to accelerate peptide-based drug and vaccine development.Comment: 22 pages, 4 figures, 5 table

    Critical Assessment of Metagenome Interpretation:A benchmark of metagenomics software

    Get PDF
    International audienceIn metagenome analysis, computational methods for assembly, taxonomic profilingand binning are key components facilitating downstream biological datainterpretation. However, a lack of consensus about benchmarking datasets andevaluation metrics complicates proper performance assessment. The CriticalAssessment of Metagenome Interpretation (CAMI) challenge has engaged the globaldeveloper community to benchmark their programs on datasets of unprecedentedcomplexity and realism. Benchmark metagenomes were generated from newlysequenced ~700 microorganisms and ~600 novel viruses and plasmids, includinggenomes with varying degrees of relatedness to each other and to publicly availableones and representing common experimental setups. Across all datasets, assemblyand genome binning programs performed well for species represented by individualgenomes, while performance was substantially affected by the presence of relatedstrains. Taxonomic profiling and binning programs were proficient at high taxonomicranks, with a notable performance decrease below the family level. Parametersettings substantially impacted performances, underscoring the importance ofprogram reproducibility. While highlighting current challenges in computationalmetagenomics, the CAMI results provide a roadmap for software selection to answerspecific research questions

    Factors That Affect Large Subunit Ribosomal DNA Amplicon Sequencing Studies of Fungal Communities: Classification Method, Primer Choice, and Error

    Get PDF
    Nuclear large subunit ribosomal DNA is widely used in fungal phylogenetics and to an increasing extent also amplicon-based environmental sequencing. The relatively short reads produced by next-generation sequencing, however, makes primer choice and sequence error important variables for obtaining accurate taxonomic classifications. In this simulation study we tested the performance of three classification methods: 1) a similarity-based method (BLAST + Metagenomic Analyzer, MEGAN); 2) a composition-based method (Ribosomal Database Project naïve Bayesian classifier, NBC); and, 3) a phylogeny-based method (Statistical Assignment Package, SAP). We also tested the effects of sequence length, primer choice, and sequence error on classification accuracy and perceived community composition. Using a leave-one-out cross validation approach, results for classifications to the genus rank were as follows: BLAST + MEGAN had the lowest error rate and was particularly robust to sequence error; SAP accuracy was highest when long LSU query sequences were classified; and, NBC runs significantly faster than the other tested methods. All methods performed poorly with the shortest 50–100 bp sequences. Increasing simulated sequence error reduced classification accuracy. Community shifts were detected due to sequence error and primer selection even though there was no change in the underlying community composition. Short read datasets from individual primers, as well as pooled datasets, appear to only approximate the true community composition. We hope this work informs investigators of some of the factors that affect the quality and interpretation of their environmental gene surveys

    InterCarb: a community effort to improve interlaboratory standardization of the carbonate clumped isotope thermometer using carbonate standards

    Get PDF
    Increased use and improved methodology of carbonate clumped isotope thermometry has greatly enhanced our ability to interrogate a suite of Earth-system processes. However, interlaboratory discrepancies in quantifying carbonate clumped isotope (Δ47) measurements persist, and their specific sources remain unclear. To address interlaboratory differences, we first provide consensus values from the clumped isotope community for four carbonate standards relative to heated and equilibrated gases with 1,819 individual analyses from 10 laboratories. Then we analyzed the four carbonate standards along with three additional standards, spanning a broad range of δ47 and Δ47 values, for a total of 5,329 analyses on 25 individual mass spectrometers from 22 different laboratories. Treating three of the materials as known standards and the other four as unknowns, we find that the use of carbonate reference materials is a robust method for standardization that yields interlaboratory discrepancies entirely consistent with intralaboratory analytical uncertainties. Carbonate reference materials, along with measurement and data processing practices described herein, provide the carbonate clumped isotope community with a robust approach to achieve interlaboratory agreement as we continue to use and improve this powerful geochemical tool. We propose that carbonate clumped isotope data normalized to the carbonate reference materials described in this publication should be reported as Δ47 (I-CDES) values for Intercarb-Carbon Dioxide Equilibrium Scale
    corecore