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ABSTRACT
Families of related MATLAB/Simulink systems commonly emerge

ad hoc using clone-and-own practices. Extractively migrating sys-

tems towards a software product line (SPL) can be a remedy. A feature
model (FM) represents all potential configurations of an SPL, ideally,

in non-technical domain terms. However, yielding a sensible FM

from automated synthesis remains a major challenge due to domain

knowledge being a prerequisite for features to be adequate abstrac-

tions. In incremental reverse engineering, subsequent generation
of FMs may further overwrite changes and design decisions made

during previous manual FM refinement.

In this paper, we propose an approach to largely automate the

synthesis of a suitable FM from a set of cloned MATLAB/Simulink

models as part of reverse engineering an SPL.We fully automate the

extraction of an initial, i.e., a technical, FM that closely aligns with

realization artifacts and their variability, and further provide opera-

tions to manually refine it to incorporate domain knowledge. Most

importantly, we provide concepts to capture such operations and

to replay them on a structurally different technical FM stemming

from a subsequent reverse engineering increment that included

further systems of the portfolio. We further provide an implemen-

tation and demonstrate the feasibility of our approach using two

MATLAB/Simulink data sets from the automotive domain.
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• Software and its engineering→ Software product lines; Soft-
ware reverse engineering; Maintaining software.
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1 INTRODUCTION
In industrial domains, such as avionics, rail and automotive, MAT-

LAB/Simulink models are pivotal for the development of embedded

software systems [17, 60]. In these domains, variability is an emer-

gent property, which is oftentimes implemented by copying and

subsequently modifying existing systems [3, 18]. Denoted clone-
and-own [54], families of related models emerge ad-hoc with proper

documentation typically not cherished [21, 56, 57]. As a result, infor-

mation on common and varying parts of models, i.e., their variability
information, is lost and entailed problems often become evident

only in the long run, e.g., increased maintenance overhead [21].

A remedy can be the adoption of a software product line (SPL) [49],
which reuses commonalities in realization artifacts and models

configuration options for variable parts explicitly in a variability

model [4, 40, 61]. Feature models (FMs) [36] are the most popular

notation for variability models, specifying features as abstractions
of realization artifacts relevant to stakeholders, organized in a tree

to depict their relations and dependencies [4, 15, 40, 74]. However,

creating an FM for a set of related system variants is a tedious and

challenging endeavor [1, 47], especially for large product portfolios.

In domains with many software products stemming from clone-

and-own, extractively adopting an SPL, i.e., capitalizing on existing

products by extracting common and varying elements, is most

prevalent [38, 39]. Due to the sheer size of a product portfolio,

extracting all products at once is typically infeasible. Contrary,

the focus may initially be on extracting mission-critical or high-

payoff products, whereas remaining systems are incrementally in-

cluded in the SPL as needed [38]. For such an SPL, an FM can, in

principle, be synthesized from existing system variants [6, 25, 72]

but it commonly aligns closely with the technical realization of

products and does not provide a suitable level of abstraction. To

adequately incorporate domain knowledge, such FM must be re-

fined via manual edit operations to abstract from implementation

specifics, which is an inherently complex and time-consuming task.

Especially in incremental reverse engineering scenarios, man-

ual design decisions must be preserved for subsequent increments,

such that they are not overwritten and established mappings to re-

alization artifacts are not lost. Otherwise, the FM must be recreated

repeatedly, which would render the SPL adoption infeasible for fam-

ilies of large and complex systems, e.g., MATLAB/Simulink models.

Although work exists to identify variability in MATLAB/Simulink

models, the focus is mostly on realization artifacts [2, 35, 53, 60, 67].

To the best of our knowledge, no work exists that copes with

an extractive SPL migration of MATLAB/Simulink model variants

to facilitate an incremental enrichment of an FM while preserving

individual design decisions and maintaining a mapping between

realization artifacts and respective features abstracting from them.
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We aim to bridge this gap and make the following contributions:

• We propose a novel approach that records edit operations on FMs,

and reapplies them upon enlarging the SPL to preserve andmimic

prior design decisions. In each reverse engineering increment,

we create a technical feature model (TFM), i.e., a problem space

representation of realization artifacts and their identified vari-

ability. Such TFM is then edited to yield a more sensible FM

for the analyzed variants, which we denote the domain feature
model (DFM). In each reverse engineering increment, edits are

recorded and reapplied in the next increment to converge the

newly created TFM towards the constructed DFM. Subsequently,

remaining edits supplement existing ones for the next increment.

• We demonstrate the feasibility of our approach using two data

sets from the automotive domain. We show our approach to

converge created TFMs towards the DFM when incrementally

including further variants in the SPL.

The remainder of this paper is structured as follows. We provide

background information on MATLAB/Simulink, variability models

and prior work relevant to our contribution in Sec. 2. We introduce

our approach that records and reapplies edits to converge a TFM

towards a DFM in Sec. 3. We detail our feasibility study from the

automotive domain and state our research questions in Sec. 4. We

discuss produced results in Sec. 5 and state related work in Sec. 6.

We detail future work and conclude our paper in Sec. 7.

2 PRELIMINARIES
This section provides background on MATLAB/Simulink, prob-

lem and solution space variability models and relevant prior work.

2.1 MATLAB/Simulink Software Systems
MATLAB/Simulink is a block-based behavioral modeling language

using functional blocks and signals to specify software system

functionality. In various industrial domains (e.g., rail, avionic and

automotive), such models are pivotal to the development of embed-

ded systems, and are further used to generate source code, simu-

lations and test cases [43, 53, 77]. Each functional block of a MAT-
LAB/Simulink represents a specific function (e.g., Multiply) that
receives and relays data via incoming and outgoing signals. Every

block has a label, i.e., textual name and a non-volatile identifier,

the simulink identifier (SID), which allows for every block to be

uniquely identified in the respective model. Moreover, subsystem
(SM) blocks encapsulate logically connected blocks. SMs can be

nested, hence creating a model hierarchy [60], with each block re-

siding on a hierarchical layer. Industrial MATLAB/Simulink models

can grow to enormous size and complexity, comprising several thou-

sand blocks [17, 43, 53] with then hierarchical layers and more [33].

We depict in Fig. 1a two simple MATLAB/Simulink modelsM1

and M2, each comprising one SM labeled Subsystem and further

show the nesting of blocks within SMs. Fig. 1a also schematically il-

lustrates variability inM1 andM2 by circling varying blocks in red.

2.2 Solution and Problem Space Variability
For software systems evolved from clone-and own, variability can

be represented on different levels of abstraction [16, 50]. Variabil-

ity within realization artifacts, such as source code or functional

blocks ofMATLAB/Simulinkmodels, facilitates the solution space [13].

Abstracting from the solution space, and hence, from realization ar-

tifacts, the problem space represents variability on a conceptual level,
e.g., to facilitate discussions among non-technical stakeholders [16].

For both such spaces, variability models are amajor constituent [16].

To represent common and variability-containing parts in the

solution space (here MATLAB/Simulink models), family models are
used, which are also commonly referred to as 150% models [35].
150% models are a valuable asset for developing and managing

SPLs [49], and are used in de-facto standards like pure::variants [51].
We show in Fig. 1b the 150% model for models M1 and M2 with

realization artifacts (here functional blocks) and their variability

information annotated. Moreover, Fig. 1b shows varying blocks in

M1 and M2 to be alternative, parts contained in both models to

be mandatory and those only present in one model to be optional.
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Fig. 1. (a) MATLAB/Simulink Models & (b) their 150% Model

To represent variability in the problem space, various notations ex-

ists [15, 52, 69], e.g., decisions modeling [14, 22], orthogonal variabil-
ity modeling [32] and the Common Variability Language [34]. How-
ever, feature models prevail as the most prominent notion for manag-

ing variability in SPLs [1, 4, 19, 40]. A feature is a domain abstraction

relevant to stakeholders that reflects characteristic or user-visible

behavior of a software system [5, 74]. An FM organizes features
hierarchically in a tree, and further defines their valid combinations,

denoted configurations [24, 36, 74]. Although 150% models and FMs

are both trees, the former reflect variability in the implementation,

while the latter represents domain concepts. For a unified variability

management in software product line engineering (SPLE), a mapping

between the problem and solution space is a prerequisite [8, 62].

The 150% model as shown in Fig. 1 establishes a 1-to-n mapping
with any one 150% model element referencing at least one (i.e.

n > 1) realization artifact (here functional blocks). Moreover, one
specific artifact is referenced by exactly one 150% model element.

For MATLAB/Simulink, we use the block’s unambiguous identifier,

i.e., its SID, to establish references. Thereby, problem space features

are linked to solution space elements (and variations respectively)

in the 150% model, which themselves, map to realization artifacts.

2.3 Prior Work on Solution Space Variability
Prior work on re-engineering variability in our group [55, 76, 78–81]

focuses on the solution space for MATLAB/Simulink models [64–

67]. Prior work encompasses a coarse-grain variability analysis of

an entire model portfolio [64], followed by a fine-grained analy-

sis of individual systems [66, 67] and, finally, the combination of

both analyses to produce a holistic 150% model that represents

solution-space variability for multiple MATLAB/Simulink mod-

els [65]. Compiled details on previous work can be found online [11].



Schlie et al. SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

The, process to re-engineer solution space variability, i.e., a 150%

model from cloned MATLAB/Simulink models is as follows.

First, a coarse-grained analysis aims to reduce the complexity

of large-scale models by abstracting from them salient system in-

formation to describe such models in a simpler form. Such form

can be compared efficiently and allows to capture similar SM struc-

tures within the models, while further detecting redundancies, and

overall, identifying SM parts that warrant a fine-grained analysis.

Secondly, for parts deemed similar, individual blocks are com-

pared in detail using a fine-grained comparison metric assessing

various block properties (e.g., their label and function) to deter-

mine the blocks specific relation. By that, variability information of

model parts and, hence, of functional blocks is captured at fine-grain.

Finally, similar SM structures within the models and identified

redundancies are combined with detailed variability information

of respective SM elements and aggregated together to create one

holistic 150% model. Such model then represents variability on the

solution space for an entire portfolio of MATLAB/Simulink models.

3 FEATURE MODEL SYNTHESIS
In this section, we detail our approach to create a DFM for MAT-

LAB/Simulink variants and to reduce design effort by converging

towards it in subsequent reverse engineering increments. By that,

we combine an extractive and reactive SPL adoption, by initially

extracting a subset of variants and including further variants reac-

tively. We depict the overall workflow of our approach in Fig. 2 and

refer to our supplementaries [10] for further material and details.

In a nutshell, our approach transforms, in each increment, a

150% model into a TFM (cf. 1 & 2 in Fig. 2), which represents all

elements of the 150% model and their variability in an FM. In other

words, the TFM can be perceived as an FM that displays solution

space variability. Such TFM can then be refined (i.e., edited) by
a domain-engineer to construct from it a DFM, which is an FM

that meets the domain engineer’s expectation, while all respective

edits are recorded (cf. 3 , 4 & 5 in Fig. 2). Upon the next reverse

engineering increment, previously recorded edits are reapplied on

the newly created TFM, resulting in an intermediate TFM that

converges towards the previously constructed DFM (cf. 6 & 7

in Fig. 2). Upon finalizing such intermediate TFM, applied edits are

further recorded to supplement existing ones (cf. 8 in Fig. 2). The

process then repeats when incrementally extracting further model

variants, hence enlarging the SPL (cf. 9 in Fig. 2).
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Fig. 2. Schematic Workflow to Record and Replay Edits to Converge to a Domain-Engineered Feature Model

3.1 Transforming the 150% Model into a TFM
We transform a 150% model (cf. Fig. 1) that reflects a certain set of

MATLAB/Simulink model variants and their variability informa-

tion into a solution space variability model, and precisely, a TFM.

Thereby, in any reverse engineering increment, the TFM is upon cre-

ation, a mere reflection of variability identified in the solution space.

In Tab. 1, we provide properties required to transform a 150%

model into a TFM and detail the respective procedure in Alg. 1. We

note that line references given in this section are directed to Alg. 1.

Analyses from prior work (cf. Sec. 2.3) create for a set of modelsK ,
a 150% model, denoted RK . We denote TFMRK to be the the TFM

created by Alg. 1 for RK . Moreover, we denote χ to be a set of model

variants not yet considered during a reverse engineering increment.

Tab. 1. Properties to Transform a 150% Model into a TFM

K Set of MATLAB/Simulink model variants to be mi-

grated in a reverse engineering increment.

χ Set of MATLAB/Simulink model variants that have

not yet been considered in any such increment.

RK The 150% model model derived from prior variability

analysis, presenting the set of models variants K .
TFMRK Technical feature model reflecting the 150%model RK .

Both an FM and a 150% model as visualized in Fig. 1 are trees. Conse-
quently, we transform a 150%model into a TFM by processing every

element of the 150% model separately, beginning with the root, and
creating for every element a feature in the TFM. Precisely, we de-

note an element of the 150% model r to be an ordered tuple as stated
in Eq. 1, comprising a label l , a variabilityv (cf. Sec. 2.3), a parent el-

ement rp , child elements rC (when nesting blocks), references to re-

alization artifacts Refs (i.e., functional blocks), alternative properties
Altp (e.g., varying labels) and alternative elements Altr , if present.

r : ⟨l ,v,Altp,Altr , Refs, rp , rC ⟩ r ∈ R (1)

Similarly, we denote a feature f to be an ordered tuple as stated

in Eq. 2, which comprises the same information of r , such as a

parent feature fp and child features fC , but in addition, exhibits a

classification c (whether f is abstract or concrete) and a descriptiond .
f : ⟨l ,v, c,d,Altf , Refs, fp , fC ⟩ f ∈ FM (2)

To retrieve any element from a tuple (which can be a set), we utilize

the notation given in Eq. 3, which shows the retrieval of the set of

referenced realization artifacts Refs from a 150% model element r .

x ← r (Refs) x is new set (3)
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As depicted in line 3 of Alg. 1, we begin with the respective root

element rroot of the 150% model R and create a feature froot for
it. The root froot is assigned the label (i.e. froot (l)) of the 150%

model, which is a concatenation of names from all model vari-

ants comprised in the 150% model. Overall, Alg. 1 processes the

150% model R in a recursive and top down fashion (cf. lines 6 & 25).

Beginning with the root element of the 150% model, its child el-

ements rroot (rC ) are retrieved in line 6. For each element r , we
create a new feature fnew in line 8 and, for instance, assign it the

label of r , its variability v and transfer references to realization

artifacts r (Refs) held by r . Thereby, upon creation, a feature in

the TFM holds references to realization artifacts (here functional

blocks). When encountering alternatives elements in the 150%,

hence elements r constituting a variation point (cf. Fig. 1), we re-
trieve the associated identifier λ of such variation point in line 10.

If for such variation point, a feature fVP has already been cre-

ated (cf. lines 15 to 17), we assign to it fnew , created for the current

alternative element r , as a child feature fC in line 12. Hence, al-
ternative elements r are grouped as child features fC under their

corresponding variation point feature fVP . For each created feature,

we set its parent-child relations in line 21 according to the parent

child-relation of the respective element r . Therefore, the parent-
child relations are the same between elements r of the 150% model

R and features f in the derived TFM. Finally, if the current element

r nests further blocks (cf. line 24), the process repeats recursively.
We show in Fig. 3 the TFM derived by Alg. 1 for the 150% model

shown in Fig. 1b. The TFM in Fig. 3 comprises all elements of the

150% model from Fig. 1b and, hence, references to all realization ar-

tifacts of the respective MATLAB/Simulink models shown in Fig. 1a.

Corresponding to the 150% model R, no two features in the TFM can

exist that reference the same element r ∈ R, i.e., realization artifact.

FM_M1_M2

Data Value Subsystem

DataIn ValueIn Variation Point

Add Multiply

Output

Result Scope

Abstract root Legend

Mandatory

Optional

Or

Alternative

Abstract

Concrete

Fig. 3. TFM for the 150% Model from Fig. 1

Moreover, the TFM in Fig. 3 retains all parent-child relations and

shows variations according to Fig. 1. In Fig. 3, features labeled Add
andMultiply each reference exactly one functional block from their

corresponding model, whereas the feature labeled Subsystem, ref-

erences two realization artifacts. Precisely, the Subsystem feature,

being present in both models (cf. Fig. 1b) holds two distinct refer-

ences to each individual Subsystem block from bothmodels in Fig. 1a.

Moreover, Fig. 3 depicts optional features (here labeled Scope) for
the respective optional element in the 150% model from Fig. 1b.

3.2 Edit Operations to Refine the TFM
To successively transform the TFM into a suitable DFM, the re-

spective TFM needs to be edited to adequately contain domain

knowledge. We provide eleven edit operations, i.e., refinements and

Input: RK - 150% model reflecting the set of models variants K
Output: TFMRK - TFM representing the 150% model RK

1 (V , E) ← ∅
2 TFMRK ← (V , E)
3 rroot ← getRootNode(RT )
4 froot ← ⟨rroot (l ), mandatory, abstract, ∅, ∅, K, ∅, ∅⟩
5 V ← V ∪ froot
6 Process child elements(β ← rroot (Cr )) :
7 foreach r ∈ β do
8 fparent ← ∅
9 fnew ← ⟨r (l ), r (v), concrete, ∅, r (Altp), r (Refs), ∅, ∅⟩

10 if r (v) = alternative then
11 λ ← r (Altid )
12 if ∃f ∈ TFMRK (V ) : f (l ) = λ then
13 fparent ← f
14 end
15 else
16 fVP ← ⟨λ, alternative, abstract, ∅, ∅, ∅, ∅, ∅⟩
17 fVP (v) ← mandatory
18 fparent ← fVP
19 end
20 end
21 else
22 fparent ← getFeatureFor(r(rp))
23 end
24 fparent (fC ) ← fparent (fC ) ∪ fnew
25 if |r (Cr ) | > 0 then
26 Process child elements(β ← r(Cr )) :
27 end
28 end
29 return TFMRK

Algorithm 1: Transforming a Family Model into a TFM

one auxiliary operation, that is the selection / deselection of fea-

tures, which all can be applied to an FM to alter its structure (e.g., by

relocating features) or to modify single features (e.g., by renaming
them). Overall, our edit operations coincide with those provided

by sophisticated feature modeling tools such as FeatureIDE [41],

whereas customized operations are out of scope. We list properties

required for edit operations in Tab. 2, denoting them edits hereafter.
Every such edit q is associated with an individual validity func-

tionV , which evaluates to true if q can be applied given the current

state of the FM. Therefore, one can perceiveV as a set of rules that

must be fulfilled. For instance, one could not rename any feature f
to an empty string, as this would violateV defined for such edit.

For the FM editing, we aim to be non-restrictive, also when combing

edits. Although out of scope, we acknowledge orthogonal work

on anomaly and consistency checking, e.g., with FeatureIDE [41].

Tab. 2. Entities Required for Edit Operations

q An atomic edit operation to modify an FM.

Q The set of atomic edit operations q.
ftar A feature, on which the user performs an atomic edit q.
froot The current root feature of the FM.

Fsel The features f , which are currently selected by the user.

V A validity function that asserts whether q can be applied.
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Overall, edits q can be applied to an FM in an arbitrary order and,

they can further be undone, for instance to revise design decisions at
a later point in time. Edits q must not be configuration-preserving,

as we do not focus the refactoring of an FM, but rather its evolution,

which is inherently driven by the users’ individual design decisions.

The individual edit operations q we provide are as follows.

Add feature: Adds a new feature fnew to the FM either (a) above
or (b) below a selected feature ftar . Upon creation, fnew holds no

references to realization artifacts, is assigned an automatically gen-

erated label l and has no description d . By default, the variability

fnew(v) is set to optional, unless fnew is the new root, in which case

it ismandatory). The respective validity functionV is given in Eq. 4.

V =
{
true ftar ∈ FM
false otherwise

}
(4)

Remove feature: Removes a feature ftar from the FM. Upon

deletion of ftar , held references to realization artifacts are removed

as well, if ftar holds such references. However, we note that remov-

ing references in the FM neither removes elements from the 150%

model nor realization artifacts themselves. All features except the

root can be removed and the validity functionV is given in Eq. 5.

V =
{
true ftar ∈ FM ∧ ftar , froot
false otherwise

}
(5)

Remove feature trunk: Recursively applies the remove feature
edit on the entire subtree of ftar , while not removing ftar itself.
Consequently, the validity function V stated in Eq. 5 is applied.

Fuse features: For selected features Fsel , their references to
realization artifacts are transferred, i.e., fused, into the target feature
ftar . Subsequently, features Fsel are removed from the FM. To cope

with complex MATLAB/Simulink models, in which functionality

is typically implemented on multiple hierarchical layers, we allow

for features to be fused, also if they are no direct children of ftar .
We show in Fig. 4a features DataIn, ValueIn and Output selected,
and in Fig. 4b, for them to be fused into the feature Subsystem.

M1:DataIn
M2:DataIn

M1:ValueIn
M2:ValueIn

M1:Output
M2:Output

a)

M1:DataIn
M2:DataIn

M1:ValueIn
M2:ValueIn
M1:Output
M2:Output

index

0

1

2

3

b)

fuse

Fig. 4. Fusing Features and Transferring Artifact References

Shown in Fig. 4, referenced realization artifacts are ordered in a

stack, with references existing within ftar being located at the top of
such stack, and also to remain there after fusing. Consequently, the
first (i.e., top) element in such a stack always references the realiza-

tion artifacts used upon creation of ftar . Moreover, all further refer-

enced realization artifacts can be unequivocally stated to be the re-

sult of fusing. The validity function to fuse features is given in Eq. 6.

V =


true ftar ∈ FM ∧ |Fsel | > 1 ∧ ∀fx ∈ Fsel : fx ∈ FM
∧ftar < Fsel

false otherwise

 (6)

Split feature: For every referenced realization artifact of the fea-

ture ftar , a new feature fnew is created, which is added as a child

feature under the parent of ftar . A feature ftar can only be split if it

holds at least two artifact references, i.e., it has been fused before

and, hence, the validity function applies as given in Eq. 7 applies.

V =
{
true ftar ∈ FM ∧ | ftar (Refs)| ≥ 2

false otherwise

}
(7)

Holding four artifact references, Fig. 5a shows the feature Subsystem,

which in Fig. 5b, has been split, here yielding three separate features.

b)
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M2:Output

M1:ValueIn
M2:ValueIn

M1:DataIn
M2:DataIn

M1:DataIn
M2:DataIn

M1:ValueIn
M2:ValueIn
M1:Output
M2:Output

index

0

1

2

3

a)

Fig. 5. Splitting Features and Artifact References

Edit variability: The variability of ftar can be set to mandatory
or alternative and the validity functionV applies as stated in Eq. 5.

Edit variability group: The variability group of the feature ftar
is set be either an or, and or alternative group. The validity function
V applies as stated in Eq. 4.

Edit classification: Any feature ftar , except the root feature

froot , can be set to be either abstract or concrete. Therefore, the
validity functionV applies as given in Eq. 5.

Edit visibility: For a feature ftar , its direct children fC are hid-

den, or made visible respectively. Once hidden, a feature can not

be modified directly, e.g., by renaming it, but indirectly, e.g., when

it is part of a branch that is removed entirely from the FM. Overall,

the validity functionV applies as given in Eq. 8.

V =
{
true ftar ∈ FM ∧ ftar is visible
false otherwise

}
(8)

Move feature: Selected features Fsel are relocated, and hence,

moved under the target feature ftar . We allow for any feature to

be moved except froot , however, we do not allow to move a parent

feature, such that it would become a child of itself. Overall, the

validity functionV to move features is given in Eq. 9.

V =


true ftar ∈ FM ∧ ftar < Fsel ∧ ftar , froot
∧∀fsel ∈ Fsel : fsel < ftar (fC )

false otherwise

 (9)

Uponmoving any fsel , its children, i.e., fsel(fC ) are also moved, such

that any feature subtree is not separated by our move operation.
Edit label/description: Resets the label or description of the fea-

ture ftar to a string specified by the user. For convenience, labels

must not be unique when editing the FM, while features can be

distinguished by references to realization artifacts. Upon exporting

the FM for usage in other tools, it is post-processed to assure unique

labels. Overall, the validity function V applies as stated in Eq. 4.

3.3 Record Edits While Building the DFM
During individual refinement of the FM, i.e., editing the TFM to

construct a DFM for a certain set of model variants, we record

all edits applied by the user within an ordered sequence. By that,

we preserve domain knowledge induced to create the DFM and,

hence, the user’s individual design decisions. Moreover, by record-

ing respective edit operations, we further provide means for indi-

vidual edits within sequences to be reverted, revised, replaced or,
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in general, to be reevaluated. We refer to a sequence of recorded

edits as an edit operation sequence (EOS). We provide properties

required to construct EOSs while deriving a DFM from a TFM

in Tab. 3, complementing properties given in Tab. 2 and Tab. 1.

Tab. 3. Properties for Editing the TFM to Build the DFM

TFMt=i
RK

TFM, initially generated from the 150% model RK ,
after a total of i edit operations have been applied.

δ :

⟨v1,v2⟩
A tuple containing for a certain property of a fea-

ture (i.e., it’s label) the value prior to editing such

property v1 and it’s new value v2.
∆ :

⟨f ,q,δ ,
A recorded edit of an FM, being a tuple comprising

a feature f in a specific FM , on which at time t , an
t , FM⟩ edit q is applied with an optional value tuple δ .
Ω The EOS and, hence, an ordered set of tuples ∆

recorded during the modification of the TFMRK .

ΦRK Ordered set of EOSs Ω that have been applied in

the process of transforming TFMt=0
RK

to DFMRK .

DFMRK Refined TFMRK , reflecting the domain engineer’s

expectation of a final FM for the set of systems K .
ϕ An ordered set of all EOSs Ω created.

We further present the respective procedure in Alg. 2, to which

all given line references within this section are directed. Upon

editing any FM in general (here domain-engineering a DFM from

a TFM), the user needs tomanually initiate and terminate the record-

ing, while EOSs are automatically generated in the background.

For large data sets, constructing the DFM in one session might be

infeasible. Thus, EOSs can be chained, which allows to reason about

intermediate results and to discuss them, prior to further editing.

Shown in Alg. 2, we first set the time t in line 3, so that when

working in sessions, and hence, EOSs already exist (cf. line 2), the

time stamp for each edit operation is set correctly. Subsequently,

we create a set Ω in line 5 to hold all future edit operations. Upon

user-individual editing and, hence, domain-engineering of the TFM

in line 6 (in principle any FM), every applied edit q is recorded and

a corresponding tuple ∆ is created in line 7 to further store the

time t the respective feature f changed properties δ , if present, and
the current state of the TFM. Simultaneously, the edit ∆ is stored

within the set of edits Ω in line 8 and the feature model changes

respectively in line 9. When finished editing, all previously induced

edits, and thereby design decisions, constitute for the TFM to be-

come the DFM in line 13. Finally, the set ϕ of all EOSs Ω applied to

transform the initial TFM (at time t = 0) into the DFM is created

and subsequently stored in the set of all EOSs Φ in lines 14 and 15.

We show in Fig. 6 the DFM, which is domain-engineered by editing

the TFM from Fig. 3 and further depict in Fig. 6 the respective EOS

and, hence, individual edits used to refine the TFM from Fig. 3.

3.4 Replay Edits to Converge Towards the DFM
Upon enlarging, the SPL and, hence, including further variants in a

subsequent reverse engineering increment, we automatically create

a new TFM (cf. Alg. 1) for the enlarged model set K ∪ χ (cf. Tab. 1).

To replay previously recorded EOSs on such new TFM, features

in respective change operations ∆ must be identified within the

new TFM stemming from the subsequent increment. Thereby, any

Input: TFMRK
1
- See legend in algorithm below for description

Output: DFMRK - Domain-engineered FM for the 150% model RK

1 t ← 0

2 foreach ϕ ∈ Φ do
3 t ← t + |ϕ |
4 end
5 Ω ← ∅
6 while applying edit operations q ∈ Q do
7 ∆← ⟨f , q, δ, t, T FMt

Rj
⟩

8 Ω ← Ω ∪ ∆

9 TFMt+1
RK
← ϵ (∆, TFMt

RK
)

10 t ← t + 1
11 end
12 DFMRK ← TFMt

RK
13 ϕ ← (TFMRK , DFMRK , Ω)
14 Φ← Φ ∪ ϕ
15 return DFMRK

TFM presenenting the 150% model RK ,

which was generated for the set of

input models K (cf. Alg. 1)

1

Algorithm 2: Creating a DFM by Editing the TFM

∆ and its comprised edit q can be replayed if and only if a mapping

can be established between the feature foriginal referenced in ∆
and any one feature f present in the new TFM. For this, features

labels do not suffice, as they may change, and so can any feature’s

location, parent-child relation and variability. Hence, we identify

features by exploiting the references to realization artifacts Refs
held by each feature. We consider this viable as no two features

can exist in an FM, which reference the same realization artifact

(i.e., functional block). We show the corresponding procedure to

replay EOSs in Alg. 3, which aims to converge towards the DFM.

We refer to our online material [10] for a detailed depiction of a

second reverse engineering increment for our example in Figs. 3 & 6.

As depicted inAlg. 3, we process all EOSsϕ inΦ and, for each EOS

ϕ, try to replay contained change operations ∆. To locate the ap-

propriate feature to replay ∆ on within TFMRK∪χ , we retrieve

the original feature foriginal from ∆ and the set of referenced real-

ization artifacts Refsoriginal it holds. We evaluate whether, within

TFMRK∪χ a feature f exists, for which its set of referenced real-

ization artifacts f (Refs) is equal to Refsoriginal and, hence, a feature
that references the same functional blocks. If such feature f exists,

we use the validity function V to check whether the respective

edit q can be applied on f . IfV evaluates to true, we use the replay

function ϵ to mimic user input to change the TFMRK∪χ and its

feature f according to the edit q. If the validity functionV fails, we

prompt the user to inspect the conflict and to resolve it manually.

To address such conflicts during replaying, users can replace,

insert or revise individual conflicting change operations, along

System

MathFunctions

Operators

Logging

t feature f q δ

1 FM_M1_M2 Rename
v1: FM_M1_M2

v2: System

2 Variation Point Rename
v1: Variation Point

v2: Operators
3 Operators Hide fC

4,5,6
DataIn, ValueIn,

Output
Select

7 Subsystem Fuse fsel

.
.
.

Remaining edits and a 2
nd

increment are online [10]

Fig. 6. DFM based on the TFM in Fig. 3 and Excerpt from EOS
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with the possibility to disregard and proceed. If no feature f can

be found in the TFMRK∪χ that comprises the same set of refer-

enced artifacts, but rather a subset only, e.g., after features are

split (cf. Sec. 3.2), we apply validity function V accordingly and

prompt the user to decide whether to replay ∆. If the user decides
no, EOSs can be refined, e.g., by removing or replacing single edits.

After replaying all EOSs, an intermediate TFM is derived that, with

every replayed change operation, converged towards the DFM. Such

intermediate TFM is then subject to Alg. 2 and further editing by

the user to finalize a DFM for the enlarged model set K ∪ χ .

Input: TFMRK∪χ
1
, Φ2

- See legend in algorithm below for description

Output: DFMRK∪χ - DFM for enlarged set of input models {K ∪ χ }

1 foreach ϕ ∈ Φ do
2 foreach ∆ ∈ Ω do
3 ⟨f , q, δ, t, T FMt

RK
⟩ ← ∆

4 foriginal←∆(f )
5 Refsoriginal ← foriginal(Refs)
6 if ∃f ∈ TFM∆(t )

RK∪χ
: Refsoriginal ≡ f (Refs) then

7 if V(f , ∆(q)) then
8 TFM∆(t )+1

RK∪χ
← ϵ (∆, TFM∆(t )

RK∪χ
)

9 end
10 else
11 Goto line 23

12 end
13 end
14 else if ∃f ∈ TFM∆(t )

RK∪χ
: Refsoriginal ⊂ f (Refs) then

15 if V(f , ∆(q)) then
16 Give notice for user to decide

17 if user approves then
18 TFM∆(t )+1

RK∪χ
← ϵ (∆, TFM∆(t )

RK∪χ
)

19 end
20 end
21 else
22 manually resolve

23 end
24 end
25 end
26 end
27 return DFMRK∪χ

TFM for the family model R ,
which represents an enlarged set

of input models with {K ∪ χ }
Edit operations from the previous

iteration for smaller set of input

models K , resulting in DFMRK

1

2

Derive by using the intermediate TFM∆(t )+1
RK∪χ

as

input for Alg. 2, that is for final editing

Algorithm 3: Replaying Edit Operations on a TFM

4 EVALUATION
In this section, we state our objectives and provide information on

the analyzed models and used data analysis guidelines [59].

4.1 Research Questions
With our approach, we record edit operations applied on the TFM

during its transformation towards a DFM and replay such edit

operations upon repeating the process for an enlarged set of model

variants. With our evaluation, we do not assess performance as

user-specific editing would account for the majority of runtime.

Moreover, we do not evaluate the reduction of modeling effort as,

for this, a comprehensive user-study with domain-engineers is a

prerequisite. Overall, we focus on the following research questions.

RQ1: To what extent can recorded edit operation sequences (EOSs) be
replayed on a TFM created for an enlarged set of model variants?
The ability to replay change operations ∆ is pivotal for our ap-

proach to be feasible. We refer to the extent as the number of ∆s
that can be replayed in relation to all ∆s recorded in EOSs.

RQ2: To what extent do replayed EOSs converge the TFM created for an
enlarged set of model variants towards the existing DFM?
Replayed EOSs must converge the new TFM towards the DFM,

rather than diverge from it.We denote the extent to be the number

of features in the DFM, which can be mapped to features in the

intermediate TFM and, hence, after replaying.

RQ3: What is the impact on the existing configuration space upon final-
izing the DFM for the enlarged set of model variants?
For our approach to be feasible, existing configurations must not

be rendered void by replaying EOSs. With this question, we seek

to evaluate whether existing configurations can be preserved.

4.2 Setup
To evaluate the feasibility of our approach and its ability to con-

verge towards a DFM, we conducted a case study with two data

sets of MATLAB/Simulink models from the automotive domain. We

use an exemplary driver assistance system (DAS) from the publicly

available SPES_XT [46] project and an auto platooning system (APS)
from the CrESt [45] project. For both data sets, we artificially gener-

ated model variants by identifying self-contained parts within the

models and extracting them. We list the parts used for variant com-

position in Tab. 4 and state the number of blocks #blocks and sub-

systems #SMs comprised, the hierarchical layer HD the respective

part resides on and the number of hierarchical layers it nests #nHD .

Using the project documentation of both data sets, we identified

dependencies between parts as stated in Tab. 4, e.g., between parts

DIS and FTS. Respecting such dependencies, we created a total of

19 variants for the DAS model and nine variants for the APS model.

Tab. 4. DAS&APSModel Parts used for Variant Composition

Model name & Abbreviation #blocks #SMs HD #nHD

BrakeAssist ‘BA’ 9 1 1 2

DistanceWarner ‘DW’ 15 1 1 2

Distronic ‘DIS’ (req. TM, FTS) 70 4 1 2

EmergencyBrake ‘EB’ 32 1 1 2

FollowToStop ‘FTS’ 19 2 1 3

Limiter ‘LIM’ 114 15 1 5

Tempomat ‘TM’ (req. FTS) 293 32 1 6

VelocityControl ‘VC’ 29 0 1 1

↑ DAS ↑ 625 blocks, max. HD : 7 ↓ APS ↓ 254 blocks, max. HD : 4

FuelConsumption ‘FC’ 17 0 3 0

MaxAcceleration ‘MA’ 12 0 3 0

DrivingResistance ‘DR’ 20 0 3 0

DesiredAcceleration ‘DA’ 16 0 3 0

Adap.CruiseControl ‘ACC’ (req. CACC) 28 0 2 & 3 0

ExtendedCuiseControl ‘CACC’ 17 1 2 1

SMs – subsystem blocks HD – hierarchical layer #nHD – # of nested HD s req. - requires

For instance, the largest variants created for both data sets comprise

all respective parts listed in Tab. 4, whereas other variants contain

only one part, e.g., FTS , or two parts, e.g., FC & MA. We note

that the largest APS model variant comprises 254 blocks while the

largest DAS model variant contains a total of 625 blocks. Further

specifics on the size of model variants can be found online [10]. We

evaluated our approach using a Dual-Core
™
i7 processor with 12

GB of RAM and Windows
™
7 on 64bit.
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4.3 Data Analysis Guidelines
For each data set separately, we initially synthesize a TFM for

two model variants and refine, i.e., edit, it towards a DFM and

record every edit operation within an EOS. For the APS data set,

we subsequently enlarge the set of model variants by one, hence,

considering a model variant that was not included in prior incre-

ments and synthesize a TFM respectively. For the DAS data set,

we proceed analogously but include two model variants in each

increment. For this, an exponential number of combinations is pos-

sible, for which a manual assessment is infeasible. For the DAS

model, we started with the two largest variants and, for each in-

crement, randomly selected two remaining variants. Contrary, for

the APS model, we began with the smallest variants. Our approach

allows for arbitrary increment strategies, and we do not dictate

any order. Hence, we focus in our evaluation on the two possible

extremes, that is beginning with either the smallest model vari-

ants or with the largest respectively. Consequently, this yields 10

increments for the APS data set and eight for the DAS data set.

In each increment step, we re-apply all previously recorded EOSs

on the generated TFM. By that, we can assess, for each increment,

the extent to which edit operations can be replayed (RQ1) and fur-

ther compare the resulting intermediate TFM with the DFM (RQ2).

Upon finalizing the intermediate TFM, i.e., constructing the en-

larged DFM, we export it to FeatureIDE [41] to calculate configura-

tions, which, for each increment, can be compared with prior ones

(RQ3). Results were assessed and evaluated by an expert well fa-

miliar with the DAS and APS models. We embedded our approach

in our toolkit [63], which is based on Java [73], Eclipse [29], its

modeling framework [30] and rich client platform [31].

5 RESULTS AND DISCUSSION
In this section, we state and discuss produced results. We show ag-

gregated data and provide information and screencasts online [10].

RQ1: Quantity of Replaying Edit Operations. Our approach
facilitates on the recording of edit operations applied during a prior

analysis increment and to replay such edits subsequently when

further model variants are included. In Tab. 5, we show the analysis

increments I for both the DAS and APS data sets and state the size

of generated TFMs for respective increments. Moreover, Tab. 5 lists

the number of edit operations applied in each increment, denoted

local edits, which combined with all previously recorded local edits,
facilitate the total number of edits. Therefore, in each increment

I, the corresponding local edits reflect one specific EOS created to

refine respective TFM (cf. Fig. 6). For instance, Tab. 5 shows that

for the first two analyzed DAS model variants v0 and v1 (I = 1),

the generated TFM comprised 432 features. To refine such TFM,

a total of 531 edit operations were applied, yielding the DFM for

the analyzed model variants. Here, no prior edits exist and, hence,

none can be replayed. We note that it is plausible for the number of

edit operations to exceed that of features, as edits are captured at

fine-grain level, such as selecting and deselecting features. Tab. 5

shows that, for the DAS data set, EOSs were created only for the

first two increments, comprising four model variants v0 −v3. Fur-
thermore, Tab. 5 depicts that, for the second increment I=2, all 531
edit operations from the previous increment could be replayed. To

finalize the resulting intermediate TFM (cf. Fig. 2), an additional 87

edits were required, yielding two EOSs with a total of 618 edit op-

erations. In subsequent increments, no further edits were required,

but the two EOSs were sufficient to converge any TFM created for

an enlarged variant set towards the previously constructed DFM.

Hence, no further EOSs were created. For the APS data set, the

first analysis increment I comprised the two smallest variants,

for which the generated TFM contained 256 features. Contrary to

the DAS data set, each increment I and, thus, every enlargement of

the model variant set, required further edits. For instance, the final

increment for the APS data set I = 8 comprising all APS model

variants and required an additional three edit operations to con-

verge towards the DFM. In such increment, one edit operation from

the seven previously recorded EOSs, totaling 338 edits, could not be

replayed on the TFM for variants v0 −v8. Precisely, the generated
150% model render one realization artifact void and, consequently,

in the generated TFM, on which previously recorded edits for the

respective feature reflecting such artifact could not be replayed.

Tab. 5. Size of TFMs and EOSs for Data Sets

I TFMs
variants v # features

# edits
local total

# replayable
edits

1 v0 - v1 432 531 531 -

2 v0 - v3 503 87 618 531 (100%)

3 v0 - v5 503 - 618 618 (100%)

.
.
.

Results for subsequent TFMs and EOSs are identical to that of I = 3

9 as the inclusion of variants, i.e., v6 −v18, requires no further editing

↑ DAS ↑ ↓ APS ↓

1 v0 - v1 256 280 280 -

2 v0 - v2 270 18 298 280 (100%)

3 v0 - v3 272 7 305 298 (100%)

4 v0 - v4 226 14 319 305(100%)

5 v0 - v5 211 8 327 319 (100%)

6 v0 - v6 232 6 333 327 (100%)

7 v0 - v7 250 5 338 333 (100%)

8 v0 - v8 252 3 341 337 (99.7%)

Overall, the results in Tab. 5 show that the vast majority of the EOSs

(predominantly comprising the fusing, renaming, changing variabil-
ity,moving and the auxiliary selection of features) could be replayed
on newly created TFMs to converge them towards the DFM.

RQ2: Converging Towards the DFM by Replaying Edits. In
addition to the quantity of replayable edit operations, it is of great

importance that their replaying results in the intermediate TFM to

converge towards the previously created DFM. In Tab. 6, we pro-

vide respective information and detail the intermediate TFMs cre-

ated by replaying all EOSs recorded during previous increments I.
Upon finalizing such intermediate TFM in each increment, the

thereby constructed DFMs are further listed in Tab. 6. Moreover,

we denote C in Tab. 6 to reflect the extent to which an intermedi-

ate TFM converges towards the DFM created during the previous

increment. In other terms, C states to what extent the current DFM

(i.e., feature tree) from the increment I is comprised within the

intermediate TFM from the subsequent increment I + 1 (i.e., also a

feature tree), which considered further model variants. Moreover,

we denote S to state the overall similarity of the DFM from the

increment I and the intermediate TFM from increment I + 1, by
combing C with the overall difference in size of both model FMs.
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Precisely, S is calculated by dividing the number of features of

the DFM with the number of features of the intermediate TFM and

multiplying that with C. In addition, in Tab. 6, we list the number

of identified errors E in the intermediate TFM from the respective

increment. For instance, Tab. 6 shows that for the first increment

for both data sets, no intermediate TFM exists, as no EOS exists. For

the first increment I = 1 of the DAS data set, the DFM constructed

for model variants v0 and v1 comprises 15 features in total. For

the second increment, all 531 edits recorded during the first incre-

ment (cf. Tab. 5) were reapplied on the generated TFM for the four

model variants v0 to v3. Depicted in Tab. 6, such edits reduce the

size of the original TFM for increment I = 2 from 503 (cf. Tab. 5)

to 84 features in the resulting intermediate TFM.

Moreover, Tab. 6 shows that the DFM was contained within

the intermediate TFM, albeit one error E was identified upon in-

spection of the intermediate TFM. Correspondingly, Tab. 6 depicts

results for the APS data set and shows intermediate TFM to always

comprise the DFM (i.e., C = 100%) and to converge towards (i.e., S
increases). Tab. 6 only lists the number of errors we observed in the

intermediate TFMs and, upon closer inspection, we identified our

solution-space variability analysis to be the cause, rather than our

approach to record and replay edits. Respective errors were mostly

limited to different variability classifications of individual features

(i.e., optional or mandatory). Overall, we conservatively consider

the consecutive replaying of recorded EOSs to be acceptable as our

results show them to successfully converge TFMs towards a DFM.

Tab. 6. Intermediate TFMs and DFMs for Data Sets

I Intermediate TFMs
variants v # features

DFM
variants v # features

C S E

1 - - v0 - v1 15 - - -

2 v0 - v1 84 v0 - v3 15 100% 18% 1

3 v0 - v3 15 v0 - v5 15 100% 100% 0

.
.
.

Results for subsequent intermediate TFMs are identical to that of I = 3

9 as two EOSs suffice to fully converge towards the DFM (cf. Tab. 5)

↑ DAS ↑ ↓ APS ↓

1 - - v0 - v1 9 - - -

2 v0 - v1 23 v0 - v2 10 100% 39% 0

3 v0 - v2 14 v0 - v3 13 100% 71% 1

4 v0 - v3 13 v0 - v4 10 100% 77% 2

5 v0 - v4 11 v0 - v5 10 100% 91% 1

6 v0 - v5 12 v0 - v6 11 100% 83% 2

7 v0 - v6 12 v0 - v7 11 100% 92% 2

8 v0 - v7 11 v0 - v8 11 100% 100% 2

RQ3: Configuration Preserving. For our approach to be feasi-

ble, replaying previously recorded edit operations should not render

existing configurations void. In Tab. 7, we provide the number of

configurations for DFMs and intermediate TFM for both the DAS

and APS data sets. For instance, Tab. 7 shows the first DFM created

for models v0 and v1 of the DAS data to exhibit 32 configurations.

Moreover, the intermediate TFM for v0 −v3 derived by reapplying

the EOS recorded during previous DFM construction exhibits only

eight configurations. The decrease in configurations corresponds to

the error E observed within the intermediate TFM (cf. Tab. 6) and,

precisely, it results from an optional feature to be falsely classified

as mandatory. However, Tab. 6 shows that for the DAS data set, the
second intermediate TFM created for variants v0 −v3 exhibits no

errors (cf. Tab. 6) and fully converges towards the DFM, thereby pre-

serving all configurations. For the APS data set shown in Tab. 7, the

number of configurations for the DFM increased upon enlarging the

analyzed model set. Precisely, the first DFM for APS model variants

v0 and v1 exhibits four features while, upon finalizing it when in-

cludingv2 (I = 2), it exhibits eight configurations (cf. Tab. 6 to note

increasing number of features respectively). Moreover, Tab. 7 shows

that configurations for intermediate TFMs of the DAS data set vary,

which corresponds to the errors E observed therein (cf. Tab. 6).

Similar to our observations for the DAS data set, a false variabil-

ity classification of a single feature within the intermediate TFM

v0 − v8 for the APS data set resulted in configurations to be lost.

Tab. 7. Number of Configurations for DAS & APS Data Sets

I variants # configuration
Intermediate TFM DFM

1 v0 - v1 - 32

2 v0 - v3 8 32

3 v0 - v5 32 32

.
.
.

Results for subsequent intermediate TFMs are identical to that of I = 3

9 as two EOSs suffice to fully converge towards the DFM (cf. Tab. 5)

↑ DAS ↑ ↓ APS ↓

1 v0 - v1 - 4

2 v0 - v2 4104 8

3 v0 - v3 32 8

4 v0 - v4 64 8

5 v0 - v5 16 8

6 v0 - v6 16 16

7 v0 - v7 16 16

8 v0 - v8 6 16

However, we argue that such errors could, in each increment I,
be resolved with fewer edits (cf. Tab. 5). Overall, we observe that

our approach can preserve existing configurations and, in instances

where such are rendered void (e.g., for v0 −v8 of the APS data set),
such problems can be addressed quickly (cf. three edits in Tab. 5).

5.1 Threats to Validity
Following guidelines in [59], threats to validity are inherently

present for our approach, and we discuss them in paragraphs below.

Internal Validity: We provide edit operations, and we acknowl-

edge that users may judge differently on their completeness and

soundness. To mitigate threats regarding completeness, we adopted

operations provided by FeatureIDE [41], a sophisticated modeling

tool. Nevertheless, we acknowledge that further operations may ex-

ist that we did not consider. Regarding the soundness of our edit op-

erations, we argue that they must not be configuration-preserving,

as we address the evolution of an FM by means of individual design

decisions, rather that the refactoring of an FM. Hence, certain edit

operations can render existing configurations void, if respective

edits are applied by the user. However, our evaluation has shown

that for the analyzed data sets, configurations can be preserved.

Construct Validity: To evaluate our approach, we used specific
orders, in which we included variants in the analysis. While we

acknowledge that different orders may impact the results, our prior

work mitigates this threat by constructing the 150% model, used

as basis for our approach independently of input order [64, 65].

External Validity: For our evaluation, we used synthetic vari-

ants from one domain only. We acknowledge that other domains
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and models may exhibit peculiarities we did not consider that

limit the generalizability of our approach. We argue that the vari-

ants exhibit a considerable complexity and are, at least to some

extent, representative for models from the automotive domain.

Moreover, the modifications we performed on an FM must not

reflect practices employed by others and respective operations

can vary in number and scope for every user. However, we ar-

gue that our approach specifically aims to provide such freedom,

recognizing feature modeling as an inherently creative process.

Conclusion Validity: For the evaluated data sets, we consider

our approach to be feasible, but acknowledge that experts may

judge differently on its quality and practical usage. We argue that

we have shown our approach to cope with different increment

strategies, in both size and order, to mitigate, at least to some ex-

tent, threats regarding quality. To mitigate threats regarding the

practical usage of our approach, we argue that evaluated models

exhibit a considerable size and complexity and that results provide

at least an indication on our approaches’ behavior in an industrial

setting. However, we acknowledge that a comprehensive study

with domain experts is needed to answer questions about qualita-

tive aspects, the usefulness of results and how domain information

included in the DFM could be useful for the evolution of the SPL.

6 RELATED WORK
In addition to prior work on solution-space variability (cf. Sec. 2.3),

we acknowledge feature-location techniques [20, 58]. However, our

approach differs from respective work as we allow for features to

be defined by users via modeling an FM, initially retrieved from

variability inherent to products’ implementations. Similar to our ap-

proach, Martinez et al. [39] describes the location and extraction of

features from a family of models. However, their technique is fragile

against changes as they assume no modifications to features (e.g.,

refactorings) between variants. In difference, the editing we pro-

vide specifically enables the incorporation of such domain knowl-

edge to cope with respective modifications. Furthermore, Font et al.

[25] stress that many automatic variability extraction approaches

concerned with model variants fail to adequately reflect the ex-

pectations of domain experts. To reduce manual effort imposed

on domain experts, Font et al. apply heuristic techniques from

operations research and search-based software engineering (e.g.,

genetic algorithms) to further converge towards a realistic repre-

sentation [26–28]. We overcome the inaccuracy of such approaches

by proposing a semi-automatic and incremental technique that

allows domain experts to manually edit an initially extracted TFM.

Most importantly, we try to eliminate redundant manual work

by recording atomic edit operations (i.e., the applied domain knowl-

edge) systematically and replay them on subsequent TFMs cre-

ated for further reverse engineering increments. To the best of our

knowledge, such incremental approaches capturing, i.e., preserving,
replayable domain knowledge (i.e. design decisions) at such fine

gain to reduce redundant labor are scarce in the scientific commu-

nity. Finally, we benefit from a closely related field regarding the

restructuring of FMs, namely product-line evolution, where a new

version of an FM is derived by applying a sequence of edit opera-

tions similar to our approach. Bürdek et al. [12] identify a total of 19

atomic edit operations for the feature-model dialect supported by

FeatureIDE [42]. Kehrer et al. [37] present an approach to automat-

ically derive a set of consistency-preserving edit operations for a

given modeling language including FMs. These works do not explic-

itly cover the co-evolution of FMs and references to their realization

artifacts, such that operations as fusing and splitting features are not
addressed directly. However, some taxonomies of edit operations

for FM evolution acknowledge the importance of such operations [9,

68, 82] and Seidl et al. [71] provide a selection of such operations,

which partially inspired our work. Apart from that, many reasoning

techniques [23, 48, 75] on FM edits to ensure consistency through-

out the manual editing are also applicable in our context as-is.

Metzger et al. [44] formalize the relationship of orthogonal vari-

ability models (OVMs) to FMs to facilitate an automated reasoning,

e.g., to assert Boolean satisfiability. In difference, our work focuses

on the incremental inclusion of model variants into an FM, for

which work by Metzger et al. can be complementary. Similar to

our approach, Bécan et al. [7] aim to synthesize FMs, albeit based

on ontologies. In contrast to our work, the FM is synthesized and

refactored once, whereas we focus on evolving the FM over various

reverse engineering increments, by preserving design decisions.

Schroeter et al. [70] promote a multi-perspective approach for FMs

that is representing it differently for varying scenarios, e.g., techni-

cal vs. non-technical. In difference, our approach focuses on the evo-

lution of an FM and its changes over reverse engineering increments.

7 CONCLUSION AND FUTUREWORK
FMs are a constituent part of an SPL, but yielding a sensible FM from

an automated synthesis of multiple related software system vari-

ants remains a major challenge. Moreover, during an incremental

reverse engineering, subsequently synthesized FMs may overwrite

previously induced design decisions and, hence, domain knowledge.

We address this problem and, focusing on MATLAB/Simulink

models, largely automate the synthesis of a suitable FM from a set

of related model variants as part of reverse engineering an SPL. We

automatically derive a technical FM (TFM) that reflects realization

artifacts and their variability. Furthermore, users can individually

edit such TFM to incorporate domain knowledge to construct a

domain FM (DFM). Most importantly, we capture all such edits and

replay them on a structurally different TFM stemming from a sub-

sequent analysis that included further model variants. We demon-

strate the feasibility of our approach using two MATLAB/Simulink

data sets from the automotive domain and show our approach to

capture all edits applied during reverse engineering increments and

to, in each such increment, to converge the newly created TFMs

towards the DFM by reapplying previously recorded edits.

In future work, we plan to incorporate constraints by reasoning

about occurrences and dependencies of realization artifacts associ-

ated with features. Moreover, we aim to create configurations and

to subsequently derive new MATLAB/Simulink model variants by

exploiting the selected feature’s references to realization artifacts.

Finally, we aim to incorporate domain experts in our approach to

assess its usefulness and overall applicability in industrial settings.
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