65 research outputs found

    Release of Danger Signals during Ischemic Storage of the Liver: A Potential Marker of Organ Damage?

    Get PDF
    Liver grafts suffer from unavoidable injury due to ischemia and manipulation before implantation. Danger signals such as high-mobility group box -1(HMGB1) and macrophage migration inhibitory factor (MIF) play a pivotal role in the immune response. We characterized the kinetics of their release into the effluent during cold/warm ischemia and additional manipulation-induced mechanical damage. Furthermore, we evaluated the relationship between HMGB1/MIF release and ischemic/mechanical damage. Liver enzymes and protein in the effluent increased with increasing ischemia time. HMGB1/MIF- release correlated with the extent of hepatocellular injury. With increasing ischemia time and damage, HMGB1 was translocated from the nucleus to the cytoplasma as indicated by weak nuclear and strong cytoplasmic staining. Enhancement of liver injury by mechanical damage was indicated by an earlier HMGB1 translocation into the cytoplasm and earlier release of danger signals into the effluent. Our results suggest that determination of HMGB1 and MIF reflects the extent of ischemic injury. Furthermore, HMGB1and MIF are more sensitive than liver enzymes to detect the additional mechanical damage inflicted on the organ graft during surgical manipulation

    Process intensification for post combustion CO₂ capture with chemical absorption: a critical review

    Get PDF
    The concentration of CO₂ in the atmosphere is increasing rapidly. CO₂ emissions may have an impact on global climate change. Effective CO₂ emission abatement strategies such as carbon capture and storage (CCS) are required to combat this trend. Compared with pre-combustion carbon capture and oxy-fuel carbon capture approaches, post-combustion CO₂ capture (PCC) using solvent process is one of the most mature carbon capture technologies. There are two main barriers for the PCC process using solvent to be commercially deployed: (a) high capital cost; (b) high thermal efficiency penalty due to solvent regeneration. Applying process intensification (PI) technology into PCC with solvent process has the potential to significantly reduce capital costs compared with conventional technology using packed columns. This paper intends to evaluate different PI technologies for their suitability in PCC process. The study shows that rotating packed bed (RPB) absorber/stripper has attracted much interest due to its high mass transfer capability. Currently experimental studies on CO₂ capture using RPB are based on standalone absorber or stripper. Therefore a schematic process flow diagram of intensified PCC process is proposed so as to motivate other researches for possible optimal design, operation and control. To intensify heat transfer in reboiler, spinning disc technology is recommended. To replace cross heat exchanger in conventional PCC (with packed column) process, printed circuit heat exchanger will be preferred. Solvent selection for conventional PCC process has been studied extensively. However, it needs more studies for solvent selection in intensified PCC process. The authors also predicted research challenges in intensified PCC process and potential new breakthrough from different aspects

    Clonal Immune Responses of Mycobacterium-Specific γδ T Cells in Tuberculous and Non-Tuberculous Tissues during M. tuberculosis Infection

    Get PDF
    BACKGROUND: We previously demonstrated that unvaccinated macaques infected with large-dose M.tuberculosis(Mtb) exhibited delays for pulmonary trafficking of Ag-specific αβ and γδ T effector cells, and developed severe lung tuberculosis(TB) and "secondary" Mtb infection in remote organs such as liver and kidney. Despite delays in lungs, local immunity in remote organs may accumulate since progressive immune activation after pulmonary Mtb infection may allow IFNγ-producing γδ T cells to adequately develop and traffic to lately-infected remote organs. As initial efforts to test this hypothesis, we comparatively examined TCR repertoire/clonality, tissue trafficking and effector function of Vγ2Vδ2 T cells in lung with severe TB and in liver/kidney without apparent TB. METHODOLOGY/PRINCIPAL FINDINGS: We utilized conventional infection-immunity approaches in macaque TB model, and employed our decades-long expertise for TCR repertoire analyses. TCR repertoires in Vγ2Vδ2 T-cell subpopulation were broad during primary Mtb infection as most TCR clones found in lymphoid system, lung, kidney and liver were distinct. Polyclonally-expanded Vγ2Vδ2 T-cell clones from lymphoid tissues appeared to distribute and localize in lung TB granuloms at the endpoint after Mtb infection by aerosol. Interestingly, some TCR clones appeared to be more predominant than others in lymphocytes from liver or kidney without apparent TB lesions. TCR CDR3 spetratyping revealed such clonal dominance, and the clonal dominance of expanded Vγ2Vδ2 T cells in kidney/liver tissues was associated with undetectable or low-level TB burdens. Furthermore, Vγ2Vδ2 T cells from tissue compartments could mount effector function for producing anti-mycobacterium cytokine. CONCLUSION: We were the first to demonstrate clonal immune responses of mycobacterium-specific Vγ2Vδ2 T cells in the lymphoid system, heavily-infected lungs and lately subtly-infected kidneys or livers during primary Mtb infection. While clonally-expanded Vγ2Vδ2 T cells accumulated in lately-infected kidneys/livers without apparent TB lesions, TB burdens or lesions appeared to impact TCR repertoires and tissue trafficking patterns of activated Vγ2Vδ2 T cells

    Genome-wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed

    Get PDF
    Brassica napus (AACC, 2n=38) is an important oilseed crop grown worldwide. However, little is known about the population evolution of this species, the genomic difference between its major genetic groups, such as European and Asian rapeseed, and the impacts of historical large-scale introgression events on this young tetraploid. In this study, we reported the de novo assembly of the genome sequences of an Asian rapeseed (B. napus), Ningyou 7 and its four progenitors and compared these genomes with other available genomic data from diverse European and Asian cultivars. Our results showed that Asian rapeseed originally derived from European rapeseed but subsequently significantly diverged, with rapid genome differentiation after hybridization and intensive local selective breeding. The first historical introgression of B. rapa dramatically broadened the allelic pool but decreased the deleterious variations of Asian rapeseed. The second historical introgression of the double-low traits of European rapeseed (canola) has reshaped Asian rapeseed into two groups (double-low and double-high), accompanied by an increase in genetic load in the double-low group. This study demonstrates distinctive genomic footprints and deleterious SNP (Single Nucleotide Polymorphism) variants for local adaptation by recent intra- and interspecies introgression events and provides novel insights for understanding the rapid genome evolution of a young allopolyploid cro

    Insecticidal Triterpenes in Meliaceae: Plant Species, Molecules, and Activities: Part II (<i>Cipadessa</i>, <i>Melia</i>)

    No full text
    Plant-originated triterpenes are important insecticidal molecules. Research on the insecticidal activity of molecules from Meliaceae plants has always been a hotspot due to the molecules from this family showing a variety of insecticidal activities with diverse mechanisms of action. In this paper, we discussed 116 triterpenoid molecules with insecticidal activity from 22 plant species of five genera (Cipadessa, Entandrophragma, Guarea, Khaya, and Melia) in Meliaceae. In these genera, the insecticidal activities of plants from Entandrophragma and Melia have attracted substantial research attention in recent years. Specifically, the insecticidal activities of plants from Melia have been systemically studied for several decades. In total, the 116 insecticidal chemicals consisted of 34 ring-intact limonoids, 31 ring-seco limonoids, 48 rearranged limonoids, and 3 tetracyclic triterpenes. Furthermore, the 34 ring-intact limonoids included 29 trichilin-class chemicals, 3 azadirone-class chemicals, and 1 cedrelone-class and 1 havanensin-class limonoid. The 31 ring-seco limonoids consisted of 16 C-seco group chemicals, 8 B,D-seco group chemicals, 4 A,B-seco group chemicals, and 3 D-seco group chemicals. Furthermore, among the 48 rearranged limonoids, 46 were 2,30-linkage group chemicals and 2 were 10,11-linkage group chemicals. Specifically, the 46 chemicals belonging to the 2,30-linkage group could be subdivided into 24 mexicanolide-class chemicals and 22 phragmalin-class chemicals. Additionally, the three tetracyclic triterpenes were three protolimonoids. To sum up, 80 chemicals isolated from 19 plant species exhibited antifeedant activity toward 14 insect species; 18 chemicals isolated from 17 plant species exhibited poisonous activity toward 10 insect species; 16 chemicals isolated from 11 plant species possessed growth-regulatory activity toward 8 insect species. In particular, toosendanin was the most effective antifeedant and insect growth-regulatory agent. The antifeedant activity of toosendanin was significant. Owing to its high effect, toosendanin has been commercially applied. Three other molecules, 1,3-dicinnamoyl-11-hydroxymeliacarpin, 1-cinnamoyl-3-methacryl-11-hydroxymeliacarpin, and 1-cinnamoyl-3-acetyl-11-hydroxymeliacarpin, isolated from Meliaazedarach, exhibited a highly poisonous effect on Spodoptera littoralis; thus, they deserve further attention

    Insecticidal Triterpenes in Meliaceae: Plant Species, Molecules and Activities: Part Ⅰ (<i>Aphanamixis</i>-<i>Chukrasia</i>)

    No full text
    Plant-originated triterpenes are important insecticidal molecules. The research on insecticidal activity of molecules from Meliaceae plants has always received attention due to the molecules from this family showing a variety of insecticidal activities with diverse mechanisms of action. In this paper, we discuss 102 triterpenoid molecules with insecticidal activity of plants of eight genera (Aglaia, Aphanamixis, Azadirachta, Cabralea, Carapa, Cedrela, Chisocheton, and Chukrasia) in Meliaceae. In total, 19 insecticidal plant species are presented. Among these species, Azadirachta indica A. Juss is the most well-known insecticidal plant and azadirachtin is the active molecule most widely recognized and highly effective botanical insecticide. However, it is noteworthy that six species from Cedrela were reported to show insecticidal activity and deserve future study. In this paper, a total of 102 insecticidal molecules are summarized, including 96 nortriterpenes, 4 tetracyclic triterpenes, and 2 pentacyclic triterpenes. Results showed antifeedant activity, growth inhibition activity, poisonous activity, or other activities. Among them, 43 molecules from 15 plant species showed antifeedant activity against 16 insect species, 49 molecules from 14 plant species exhibited poisonous activity on 10 insect species, and 19 molecules from 11 plant species possessed growth regulatory activity on 12 insect species. Among these molecules, azadirachtins were found to be the most successful botanical insecticides. Still, other molecules possessed more than one type of obvious activity, including 7-deacetylgedunin, salannin, gedunin, azadirone, salannol, azadiradione, and methyl angolensate. Most of these molecules are only in the primary stage of study activity; their mechanism of action and structure–activity relationship warrant further study

    Diabetes and cognitive deficits in chronic schizophrenia: a case-control study

    Get PDF
    Cognitive impairment occurs in both schizophrenia and diabetes. There is currently limited understanding whether schizophrenia with diabetes has more serious cognitive deficits than schizophrenia without diabetes or diabetes only. This study assessed cognitive performance in 190 healthy controls, 106 diabetes only, 127 schizophrenia without diabetes and 55 schizophrenia with diabetes. This study was conducted from January 2008 to December 2010. Compared to healthy controls, all patient groups had significantly decreased total and five index RBANS scores (all p\u3c0.01-

    Preparation and Study of a Simple Three-Matrix Solid Electrolyte Membrane in Air

    No full text
    Solid-state lithium batteries have attracted much attention due to their special properties of high safety and high energy density. Among them, the polymer electrolyte membrane with high ionic conductivity and a wide electrochemical window is a key part to achieve stable cycling of solid-state batteries. However, the low ionic conductivity and the high interfacial resistance limit its practical application. This work deals with the preparation of a composite solid electrolyte with high mechanical flexibility and non-flammability. Firstly, the crystallinity of the polymer is reduced, and the fluidity of Li+ between the polymer segments is improved by tertiary polymer polymerization. Then, lithium salt is added to form a solpolymer solution to provide Li+ and anion and then an inorganic solid electrolyte is added. As a result, the composite solid electrolyte has a Li+ conductivity (3.18 &times; 10&minus;4 mS cm&minus;1). The (LiNi0.5Mn1.5O4)LNMO/SPLL (PES-PVC-PVDF-LiBF4-LAZTP)/Li battery has a capacity retention rate of 98.4% after 100 cycles, which is much higher than that without inorganic oxides. This research provides an important reference for developing all-solid-state batteries in the greenhouse

    Terahertz Broadband Absorber Based on a Combined Circular Disc Structure

    No full text
    To solve the problem of complex structure and narrow absorption band of most of today′s terahertz absorbers, this paper proposes and utilizes the finite element (COMSOL) method to numerically simulate a broadband absorber based on a straightforward periodic structure consisting of a disk and concentric ring. The final results show that our designed absorber has an absorption rate of over 99% in the broadband range of 9.06 THz to 9.8 THz and an average of over 97.7% in the ultra-broadband range of 8.62 THz to 10 THz. The reason for the high absorption is explained by the depiction of the electric field on the absorber surface at different frequencies. In addition, the materials for the top pattern of the absorber are replaced by Cu, Ag, or Al, and the absorber still achieves perfect absorption with different metal materials. Due to the perfect symmetry of the absorber structure, the absorber is very polarization-insensitive. The overall design is simple, easy to process and production. Therefore, our research will offer great potential for applications in areas such as terahertz electromagnetic stealth, sensing, and thermal imaging
    corecore