63 research outputs found

    Triple F - a comet nucleus sample return mission

    Get PDF
    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA's Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three sample cores of the upper 50cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS. © The Author(s) 2008

    Ice structures, patterns, and processes: A view across the ice-fields

    Get PDF
    We look ahead from the frontiers of research on ice dynamics in its broadest sense; on the structures of ice, the patterns or morphologies it may assume, and the physical and chemical processes in which it is involved. We highlight open questions in the various fields of ice research in nature; ranging from terrestrial and oceanic ice on Earth, to ice in the atmosphere, to ice on other solar system bodies and in interstellar space

    UV-photoprocessing of interstellar ice analogs: Detection of hexamethylenetetramine-based species

    Get PDF
    The physical conditions governing the dense cloud environment are reproduced in a high vacuum experimental setup at low temperature T ≈ 12 K. The accretion and photoprocessing of ices on grain surfaces is simulated by depositing an ice layer on a cold finger, while it is irradiated by ultraviolet (UV) photons. After irradiation the sample is slowly warmed to room temperature; a residue remains, containing the most refractory products of photo- and thermal processing. In this paper we report on the analysis of the residues performed by means of gas chromatography-mass spectrometry (GC–MS). A number of new molecules based on hexamethylenetetramine (HMT, C6H12N4), the most abundant component of the residues reported here, were detected: methyl-HMT (C6H11N4–CH3), hydroxy-HMT (C6H11N4–OH), methanyl-HMT (C6H11N4–CH2OH), amin-aldehyd-HMT (C6H11N4–NH–CHO) and methanyl-aldehyd-HMT (C6H11N4–CHOH–CHO). To the best of our knowledge, this is the first reported synthesis of these molecules. Currently, these are the heaviest identified components of the residue. These species might also be present in the interstellar medium, given that the ice was submitted to high temperatures, of the order of 300 K, and form part of comets. Our work serves as preparation for the ESA-Rosetta mission, which plans to do in situ analysis of the composition of a comet nucleus with the COSAC instrumentation

    Gas chromatography for in situ analysis of a cometary nucleus V. Study of capillary columns' robustness submitted to long-term reduced environmental pressure conditions

    No full text
    International audienceWith the European Space Agency's Rosetta space mission to comet 67P/Churyumov-Gerasimenko, a gas chromatograph, part of the COmetary Sampling And Composition (COSAC) experiment, travelled for about 10 years in the interplanetary medium before operating at the surface of the cometary nucleus in November 2014. During its journey in space, the instrument was exposed to the constraining conditions of the interplanetary medium, including reduced environmental pressures. In order to estimate the potential influence of this severe condition on the chromatographic capillary columns, their stationary phase and the subsequent separation capability, a set of flight spare columns were kept under reduced environmental pressure in the laboratory for the same duration as the probe sent to the comet. The columns' analytical performances were evaluated recently and compared to the original ones obtained just before the launch of the Rosetta probe. The results presented here show that the chromatographic performances of the spare chromatographic columns were not altered in time. From this result, it can be expected that the flight instrument will perform nominally for the analysis of the first cometary nucleus sample to be collected ever, and that the preparation of the interpretation of the data to be taken at the cometary surface nucleus can be done through calibration of these spare columns, and other spare components of the instrumen

    The effects of circularly polarized light on amino acid enantiomers produced by the UV irradiation of interstellar ice analogs

    No full text
    Two irradiation experiments on interstellar ice analogs at 80 K under interstellar-like conditions were performed with the LURE SU5 synchrotron beamline to assess, for the first time, the photochemical effect of circularly polarized ultraviolet light (UV CPL) at 167 nm (7.45 eV) with right and left polarizations on such ice mixtures. Methods. This effect was measured by determining the enantiomeric excesses (e.e.s) for two amino acids formed in the solid organic residues produced during the subsequent warm-up of the irradiated samples to room temperature: alanine, the most abundant chiral proteinaceous amino acid produced (both polarizations) and 2,3-diaminopropanoic acid (DAP), a non-proteinaceous amino acid (rightpolarization experiment). These excesses were compared to those measured for the same amino acids produced after unpolarized UV irradiation of the same ice mixtures (expected to be zero), in order to determine the contribution of CPL only. A careful estimate of all the associated uncertainties (statistical and systematic errors) was also developed. Results. It appears that the enantiomeric photochemical effect at this wavelength is weak, since both alanine and DAP e.e.s were found to be small, at most of the order of 1% in absolute values, and tends to be inconclusive since the effects obtained for both amino acids and both polarizations are not those expected. In light of these results, the hypothesis that CPL may be one source responsible for the e.e.s measured for such amino acids in some meteorites and, more generally, that CPL may be directly related to the origin of biomolecular homochirality on Earth is discussed
    corecore