1,031 research outputs found

    Dynamic Power Convertor Development for Radioisotope Power Systems at NASA Glenn Research Center

    Get PDF
    The Thermal Energy Conversion Branch at NASA Glenn Research Center (GRC) is supporting the development of high-efficiency power convertors for use in Radioisotope Power Systems (RPS). Significant progress was made towards such a system that utilized Stirling conversion during the 2001 to 2015 timeframe. Flight development of the Advanced Stirling Radioisotope Generator (ASRG) was cancelled in 2013 by the Department of Energy (DOE) and NASA Headquarters primarily due to budget constraints, and the Advanced Stirling Convertor (ASC) technology contract was subsequently concluded in 2015. A new chapter of technology development has recently been initiated by the NASA RPS Program. This effort is considering all dynamic power convertor options, such as Stirling and Brayton cycles. Four convertor development contracts supporting this effort were awarded in 2017. The awarded contracts include two free-piston Stirling, one thermoacoustic Stirling, and one turbo-Brayton designs. The technology development contracts each consist of up to three phases: Design, Fabricate, and Test. As of May 2018, all contracts have completed the Design Phase, and each underwent a design review with an independent review board. Three of the contracts are planned to execute the Phase 2 option for fabrication. Convertors manifesting from these development efforts will then undergo independent validation and verification at NASA facilities, which will consist of convertor performance and RPS viability demonstrations. Example tests include launch vibration simulation, performance mapping over the environmental temperature range, and static acceleration exposure. In parallel with this renewed development effort, NASA GRC is still demonstrating free-piston Stirling convertor technology using assets from previous projects. The Stirling Research Laboratory (SRL) is still operating several convertors from previous development projects which have similarities and relevance to current contract designs. Four of which are flexure-bearing based, and another six are gas-bearing based. One of the flexure-bearing convertors has accumulated over 110,000 hours of operation, and holds the current record for maintenance-free heat-engine run-time. Another flexure-bearing convertor was recently manually shutdown after 105,620 hours of operation, then disassembled and inspected. This inspection produced a wealth of information about the effects of this amount of runtime on the technology's components. One of the engineering unit flexure-bearing convertors recently underwent launch simulation vibration test, a static acceleration exposure up to 20 g, and was then placed on extended operation. Amongst the gas-bearing convertors, the longest running unit has accumulated over 70,000 hours of operation. Four high-fidelity gas-bearing convertors from the ASRG project are still operating continuously, for which the longest runtime has reached 28,000 hours

    Domain Walls in Two-Component Dynamical Lattices

    Full text link
    We introduce domain-wall (DW) states in the bimodal discrete nonlinear Schr{\"{o}}dinger equation, in which the modes are coupled by cross phase modulation (XPM). By means of continuation from various initial patterns taken in the anti-continuum (AC) limit, we find a number of different solutions of the DW type, for which different stability scenarios are identified. In the case of strong XPM coupling, DW configurations contain a single mode at each end of the chain. The most fundamental solution of this type is found to be always stable. Another solution, which is generated by a different AC pattern, demonstrates behavior which is unusual for nonlinear dynamical lattices: it is unstable for small values of the coupling constant CC (which measures the ratio of the nonlinearity and coupling lengths), and becomes stable at larger CC. Stable bound states of DWs are also found. DW configurations generated by more sophisticated AC patterns are identified as well, but they are either completely unstable, or are stable only at small values of CC. In the case of weak XPM, a natural DW solution is the one which contains a combination of both polarizations, with the phase difference between them 0 and π\pi at the opposite ends of the lattice. This solution is unstable at all values of CC, but the instability is very weak for large CC, indicating stabilization as the continuum limit is approached. The stability of DWs is also verified by direct simulations, and the evolution of unstable DWs is simulated too; in particular, it is found that, in the weak-XPM system, the instability may give rise to a moving DW.Comment: 14 pages, 14 figures, Phys. Rev. E (in press

    Spontaneous charged lipid transfer between lipid vesicles

    Get PDF
    An assay to study the spontaneous charged lipid transfer between lipid vesicles is described. A donor/acceptor vesicle system is employed, where neutrally charged acceptor vesicles are fluorescently labelled with the electrostatic membrane probe Fluoresceinphosphatidylethanolamine (FPE). Upon addition of charged donor vesicles, transfer of negatively charged lipid occurs, resulting in a fluorescently detectable change in the membrane potential of the acceptor vesicles. Using this approach we have studied the transfer properties of a range of lipids, varying both the headgroup and the chain length. At the low vesicle concentrations chosen, the transfer follows a first-order process where lipid monomers are transferred presumably through the aqueous solution phase from donor to acceptor vesicle. The rate of transfer decreases with increasing chain length which is consistent with energy models previously reported for lipid monomer vesicle interactions. Our assay improves on existing methods allowing the study of a range of unmodified lipids, continuous monitoring of transfer and simplified experimental procedures

    Psychosocial determinants of adherence with oral anticancer treatment: 'we don't need no education'

    Get PDF
    INTRODUCTION: Given the potentially fatal consequences of inadequate adherence with oral anticancer treatment in persons with cancer, understanding the determinants of adherence is vital. This paper aims at identifying psychosocial determinants of adherence to oral anticancer treatment. METHODS: We reviewed the literature on psychosocial determinants of adherence with oral anticancer treatment, based on published literature in English, from 2015 to present. Literature searches were performed in PubMed, Embase, Web of Science, Cochrane library, Emcare, and PsychINFO, with 'cancer', 'medication adherence', 'psychology', and 'oral anticancer treatment' as search terms. The obtained 608 papers were screened by two independent reviewers. RESULTS: In the 25 studies identified, illness perceptions, medication beliefs, health beliefs, and depression were found to be the major psychosocial determinants of adherence to oral anticancer treatment; sociodemographic and clinical characteristics were found to be of no major importance. The quality of the identified studies as assessed by two independent reviewers was found to be acceptable overall. The majority of papers were from North America and focused on patients with breast cancer; sample size varied from 13 to 1371; adherence was assessed with questionnaires derived from various theoretical models, pill counts and electronic pharmacy records; illness perceptions reflecting adaptive coping, and medication beliefs reflecting high necessity and low concerns were found to be associated with adherence. CONCLUSION: Psychosocial concepts are major determinants of adherence with oral anticancer treatment. 'Beliefs about medicines' and 'illness perceptions' in particular determine adherence with this treatment. Studies aiming at impacting adherence would benefit from interventions with a solid basis in behavioral theory in order to help health care providers explore and address illness perceptions and medication beliefs. Pre-consultation screening of adherence behavior may be a helpful supportive approach to improve adherence. Blaming the victim ('patients should be educated about the importance of adherence') is better replaced by encouraging health professionals to identify and address maladaptive psychosocial determinants of adherence

    Common carotid intima media thickness and ankle-brachial pressure index correlate with local but not global atheroma burden:a cross sectional study using whole body magnetic resonance angiography

    Get PDF
    Common carotid intima media thickness (CIMT) and ankle brachial pressure index (ABPI) are used as surrogate marker of atherosclerosis, and have been shown to correlate with arterial stiffness, however their correlation with global atherosclerotic burden has not been previously assessed. We compare CIMT and ABPI with atheroma burden as measured by whole body magnetic resonance angiography (WB-MRA).50 patients with symptomatic peripheral arterial disease were recruited. CIMT was measured using ultrasound while rest and exercise ABPI were performed. WB-MRA was performed in a 1.5T MRI scanner using 4 volume acquisitions with a divided dose of intravenous gadolinium gadoterate meglumine (Dotarem, Guerbet, FR). The WB-MRA data was divided into 31 anatomical arterial segments with each scored according to degree of luminal narrowing: 0 = normal, 1 = <50%, 2 = 50-70%, 3 = 70-99%, 4 = vessel occlusion. The segment scores were summed and from this a standardized atheroma score was calculated.The atherosclerotic burden was high with a standardised atheroma score of 39.5±11. Common CIMT showed a positive correlation with the whole body atheroma score (β 0.32, p = 0.045), however this was due to its strong correlation with the neck and thoracic segments (β 0.42 p = 0.01) with no correlation with the rest of the body. ABPI correlated with the whole body atheroma score (β -0.39, p = 0.012), which was due to a strong correlation with the ilio-femoral vessels with no correlation with the thoracic or neck vessels. On multiple linear regression, no correlation between CIMT and global atheroma burden was present (β 0.13 p = 0.45), while the correlation between ABPI and atheroma burden persisted (β -0.45 p = 0.005).ABPI but not CIMT correlates with global atheroma burden as measured by whole body contrast enhanced magnetic resonance angiography in a population with symptomatic peripheral arterial disease. However this is primarily due to a strong correlation with ilio-femoral atheroma burden

    New CHARMM force field parameters for dehydrated amino acid residues, the key to lantibiotic molecular dynamics simulations

    Get PDF
    Lantibiotics are an important class of naturally occurring antimicrobial peptides containing unusual dehydrated amino acid residues. In order to enable molecular dynamics simulations of lantibiotics, we have developed empirical force field parameters for dehydroalanine and dehydrobutyrine, which are compatible with the CHARMM all-atom force field. The parameters reproduce the geometries and energy barriers from MP2/6-31G*//MP2/cc-pVTZ quantum chemistry calculations. Experimental, predicted and calculated NMR chemical shifts for the amino protons and alpha-, beta- and carbonyl carbon atoms of the dehydrated residues are consistent with a significant charge redistribution. The new parameters are used to perform the first molecular dynamics simulations of nisin, a widely used but poorly understood lantibiotic, in an aqueous environment and in a phospholipid bilayer. The simulations show surface association of the peptide with membranes in agreement with solid state NMR data and formation of beta-turns in agreement with solution NMR

    RNA secondary structure prediction from multi-aligned sequences

    Full text link
    It has been well accepted that the RNA secondary structures of most functional non-coding RNAs (ncRNAs) are closely related to their functions and are conserved during evolution. Hence, prediction of conserved secondary structures from evolutionarily related sequences is one important task in RNA bioinformatics; the methods are useful not only to further functional analyses of ncRNAs but also to improve the accuracy of secondary structure predictions and to find novel functional RNAs from the genome. In this review, I focus on common secondary structure prediction from a given aligned RNA sequence, in which one secondary structure whose length is equal to that of the input alignment is predicted. I systematically review and classify existing tools and algorithms for the problem, by utilizing the information employed in the tools and by adopting a unified viewpoint based on maximum expected gain (MEG) estimators. I believe that this classification will allow a deeper understanding of each tool and provide users with useful information for selecting tools for common secondary structure predictions.Comment: A preprint of an invited review manuscript that will be published in a chapter of the book `Methods in Molecular Biology'. Note that this version of the manuscript may differ from the published versio
    • …
    corecore