413 research outputs found

    OCIS Public Goods Tool Development

    Get PDF
    There has recently been an increase in interest amongst policy-makers in the question of whether farming provides a “public good” beyond the simple production of food, which justifies support from, for instance, EU agricultural policy. Benefits such as an improved environment or better water quality can be perceived to be public goods. It is the provision of these sorts of benefits which may be used in the future to justify continued support of the agricultural sector through subsidies. Given the current level of interest in this topic Natural England, with the approval of Defra, through OCIS (Organic Conversion Information Service), wished to create a tool which could be used by an advisor or an informed land owner to assess the public good provided by a/their farm. Thus, the OCIS Public Good Tool was developed

    Assessing the public goods provided by organic agriculture: lessons learned from practice

    Get PDF
    The role of farms as providers of public goods has long been recognised, and measuring performance in this area is of increasing interest to policy makers, in light of the approaching Common Agricultural Policy reform. The Organic Research Centre has been working on this topic in recent years, through the development of sustainability assessment tools. The latest outcome from this process is a ‘Public Goods’ assessment tool, developed through a Natural England funded project which aimed to evaluate the benefits accruing from organic management and entering into an Organic Entry Level Stewardship (OELS) agreement. This paper describes the development of the Public Goods (PG) tool, and what has been learned in the process

    Narrow structure in the coherent population trapping resonances in rubidium and Rayleigh scattering

    Full text link
    The measurement of the coherent-population-trapping (CPT) resonances in uncoated Rb vacuum cells has shown that the shape of the resonances is different in different cells. In some cells the resonance has a complex shape - a narrow Lorentzian structure, which is not power broadened, superimposed on the power broadened CPT resonance. The results of the performed investigations on the fluorescence angular distribution are in agreement with the assumption that the narrow structure is a result of atom interaction with Rayleigh scattering light. The results are interesting for indication of the vacuum cleanness of the cells and building of magnetooptical sensors

    Dissolved Al in the zonal N Atlantic section of the US GEOTRACES 2010/2011 cruises and the importance of hydrothermal inputs

    Get PDF
    Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 116 (2015): 176-186, doi:10.1016/j.dsr2.2014.07.006.The distribution of dissolved aluminium determined during GA03, the US GEOTRACES North Atlantic Transects (US GT NAZT) shows large inputs to the basin from three main sources, atmospheric deposition, outflow from the Mediterranean, and inputs from hydrothermal sources along the Mid Atlantic Ridge (MAR). The partial dissolution of atmospheric aerosols emanating from the Sahara yield high concentrations of dissolved Al in the surface waters of the basin and are used to estimate the geographical pattern of dust deposition. The Mediterranean outflow delivers a large source of dissolved Al to the intermediate waters of the eastern basin and its subsequent distribution within the basin can be explained by simple isopycnal mixing with surrounding water masses. Hydrothermal venting at the Trans-Atlantic Geotraverse (TAG) hydrothermal field in the MAR produces a neutrally buoyant plume that introduces copious quantities of dissolved Al (with concentrations of up to 40nM) to the deeper waters of the North Atlantic that can be seen advecting to the west of the MAR. The concentration of dissolved Al in the deep waters of the eastern basin of the Atlantic can be accounted for by admixing the MAR Al enriched plume water and Antarctic Bottom Water (AABW) as they pass through the Vema Fracture Zone. The data sets show no evidence for biological remineralisation of dissolved Al from Si carrier phases in deep waters.This work was supported by NSF OCE-0928741 and OCE-1137812 to CIM

    Surface water dissolved aluminum and titanium: Tracers for specific time scales of dust deposition to the Atlantic?

    Get PDF
    Surface water distributions of dissolved Al (dAl) and dissolved Ti (dTi) were investigated along a meridional Atlantic transect and related to dust deposition estimates. In the zone of Saharan dust deposition, highest dAl concentrations occurred in the tropical salinity minimum and suggest increasing Al dissolution from Saharan aerosols with wet deposition. By contrast, the dTi distribution is not related to precipitation but agrees with the pattern of annual dust deposition. In the zone of Patagonian dust deposition, elevated dTi concentrations contrasted with decreased dAl concentrations, indicating excess dAl scavenging onto biogenic particles in surface waters. Estimated residence times range from months to years for dAl and are ∼10 times higher for dTi. This suggests that dAl reflects seasonal changes in dust deposition, while dTi is related to longer temporal scales. However, spatial variations in input and removal processes complicate the quantification of dust deposition from surface water concentrations

    Using legume-based mixtures to enhance the nitrogen use efficiency and economic viability of cropping systems - Final report (LK09106/HGCA3447)

    Get PDF
    As costs for mineral fertilisers rise, legume-based leys are recognised as a potential alternative nitrogen source for crops. Here we demonstrate that including species-rich legume-based leys in rotations helps to maximise synergies between agricultural productivity and other ecosystem services. By using functionally diverse plant species mixtures, these services can be optimised and fine-tuned to regional and farm-specific needs. Replicated field experiments were conducted over three years at multiple locations, testing the performance of 12 legume species and 4 grass species sown in monocultures, as well as in a mixture of 10 of the legumes and all 4 grasses (called the All Species Mix, ASM). In addition, we compared this complex mixture to farmer-chosen ley mixtures on 34 sites across the UK. The trials showed that there is a large degree of functional complementarity among the legume species. No single species scored high on all evaluation criteria. In particular, the currently most frequently used species, white clover, is outscored by other legume species on a number of parameters such as early development and resistance to decomposition. Further complementarity emerged from the different responses of legume species to environmental variables, with soil pH and grazing or cutting regime being among the more important factors. For example, while large birdsfoot trefoil showed better performance on more acidic soils, the opposite was true for sainfoin, lucerne and black medic. In comparison with the monocultures, the ASM showed increased ground cover, increased above-ground biomass and reduced weed biomass. Benefits of mixing species with regard to productivity increased over time. In addition, the stability of biomass production across sites was greater in the ASM than in the legume monocultures. Within the on-farm trials, we further found that on soils low in organic matter the biomass advantage of the ASM over the Control ley was more marked than on the soils with higher organic matter content. Ecological modelling revealed that the three best multifunctional mixtures all contained black medic, lucerne and red clover. Within the long term New Farming Systems (NFS) rotational study, the use of a clover bi-crop showed improvement to soil characteristics compared to current practice (e.g. bulk density and water infiltration rate). Improvements in wheat yield were also noted with respect to the inclusion of a clover bi-crop in 2010, but there was evidence of a decline in response as the N dose was increased. Cumulatively, over both the wheat crop and the spring oilseed rape crop, the clover bi-crop improved margin over N. The highest average yield response (~9%) was associated with the ASM legume species mix cover cropping approach

    Estimating the Benthic Efflux of Dissolved Iron on the Ross Sea Continental Shelf

    Get PDF
    Continental margin sediments provide a potentially large but poorly constrained source of dissolved iron (dFe) to the upper ocean. The Ross Sea continental shelf is one region where this benthic supply is thought to play a key role in regulating the magnitude of seasonal primary production. Here we present data collected during austral summer 2012 that reveal contrasting low surface (0.08 +/- 0.07 nM) and elevated near-seafloor (0.74 +/- 0.47 nM) dFe concentrations. Combining these observations with results from a high-resolution physical circulation model, we estimate dFe efflux of 5.8 x 10(7) mol yr(-1) from the deeper portions (\u3e400m) of the Ross Sea continental shelf; more than sufficient to account for the inferred winter reserve dFe inventory at the onset of the growing season. In addition, elevated dFe concentrations observed over shallower bathymetry suggest that such features provide additional inputs of dFe to the euphotic zone throughout the year

    Basin-scale inputs of cobalt, iron, and manganese from the Benguela-Angola front to the South Atlantic Ocean

    Get PDF
    Author Posting. © Association for the Sciences of Limnology and Oceanography, 2012. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 57 (2012): 989-1010, doi:10.4319/lo.2012.57.4.0989.We present full-depth zonal sections of total dissolved cobalt, iron, manganese, and labile cobalt from the South Atlantic Ocean. A basin-scale plume from the African coast appeared to be a major source of dissolved metals to this region, with high cobalt concentrations in the oxygen minimum zone of the Angola Dome and extending 2500 km into the subtropical gyre. Metal concentrations were elevated along the coastal shelf, likely due to reductive dissolution and resuspension of particulate matter. Linear relationships between cobalt, N2O, and O2, as well as low surface aluminum supported a coastal rather than atmospheric cobalt source. Lateral advection coupled with upwelling, biological uptake, and remineralization delivered these metals to the basin, as evident in two zonal transects with distinct physical processes that exhibited different metal distributions. Scavenging rates within the coastal plume differed for the three metals; iron was removed fastest, manganese removal was 2.5 times slower, and cobalt scavenging could not be discerned from water mass mixing. Because scavenging, biological utilization, and export constantly deplete the oceanic inventories of these three hybrid-type metals, point sources of the scale observed here likely serve as vital drivers of their oceanic cycles. Manganese concentrations were elevated in surface waters across the basin, likely due to coupled redox processes acting to concentrate the dissolved species there. These observations of basin-scale hybrid metal plumes combined with the recent projections of expanding oxygen minimum zones suggest a potential mechanism for effects on ocean primary production and nitrogen fixation via increases in trace metal source inputs.This research was supported US National Science Foundation Chemical Oceanography (Division of Ocean Sciences OCE-0452883, OCE-0752291, OCE-0928414, OCE-1031271), the Center for Microbial Research and Education, the Gordon and Betty Moore Foundation, the WHOI Coastal Ocean Institute, and the WHOI Ocean Life Institute

    Ultrashort filaments of light in weakly-ionized, optically-transparent media

    Get PDF
    Modern laser sources nowadays deliver ultrashort light pulses reaching few cycles in duration, high energies beyond the Joule level and peak powers exceeding several terawatt (TW). When such pulses propagate through optically-transparent media, they first self-focus in space and grow in intensity, until they generate a tenuous plasma by photo-ionization. For free electron densities and beam intensities below their breakdown limits, these pulses evolve as self-guided objects, resulting from successive equilibria between the Kerr focusing process, the chromatic dispersion of the medium, and the defocusing action of the electron plasma. Discovered one decade ago, this self-channeling mechanism reveals a new physics, widely extending the frontiers of nonlinear optics. Implications include long-distance propagation of TW beams in the atmosphere, supercontinuum emission, pulse shortening as well as high-order harmonic generation. This review presents the landmarks of the 10-odd-year progress in this field. Particular emphasis is laid to the theoretical modeling of the propagation equations, whose physical ingredients are discussed from numerical simulations. Differences between femtosecond pulses propagating in gaseous or condensed materials are underlined. Attention is also paid to the multifilamentation instability of broad, powerful beams, breaking up the energy distribution into small-scale cells along the optical path. The robustness of the resulting filaments in adverse weathers, their large conical emission exploited for multipollutant remote sensing, nonlinear spectroscopy, and the possibility to guide electric discharges in air are finally addressed on the basis of experimental results.Comment: 50 pages, 38 figure
    corecore