221 research outputs found

    The role of MYH and microsatellite instability in the development of sporadic colorectal cancer

    Get PDF
    Biallelic germline mutations in MYH are associated with colorectal neoplasms, which develop through a pathway involving somatic inactivation of APC. In this study, we investigated the incidence of the common MYH mutations in an Australian cohort of sporadic colorectal cancers, the clinicopathological features of MYH cancers, and determined whether inactivation of mismatch repair and base excision repair (BER) were mutually exclusive. The MYH gene was sequenced from lymphocyte DNA of 872 colorectal cancer patients and 478 controls. Two compound heterozygotes were identified in the cancer population and all three cancers from these individuals displayed a prominent infiltration of intraepithelial lymphocytes. In total, 11 heterozygotes were found in the cancer group and five in the control group. One tumour from an individual with biallelic germline mutation of MYH also demonstrated microsatellite instability (MSI) as a result of biallelic hypermethylation of the MLH1 promoter. Although MYH-associated cancers are rare in a sporadic colorectal population, this study shows that these tumours can develop through either a chromosomal or MSI pathway. Tumours arising in the setting of BER or mismatch repair deficiency may share a biological characteristic, which promotes lymphocytic infiltration

    Novel Allosteric Sites on Ras for Lead Generation

    Get PDF
    Aberrant Ras activity is a hallmark of diverse cancers and developmental diseases. Unfortunately, conventional efforts to develop effective small molecule Ras inhibitors have met with limited success. We have developed a novel multi-level computational approach to discover potential inhibitors of previously uncharacterized allosteric sites. Our approach couples bioinformatics analysis, advanced molecular simulations, ensemble docking and initial experimental testing of potential inhibitors. Molecular dynamics simulation highlighted conserved allosteric coupling of the nucleotide-binding switch region with distal regions, including loop 7 and helix 5. Bioinformatics methods identified novel transient small molecule binding pockets close to these regions and in the vicinity of the conformationally responsive switch region. Candidate binders for these pockets were selected through ensemble docking of ZINC and NCI compound libraries. Finally, cell-based assays confirmed our hypothesis that the chosen binders can inhibit the downstream signaling activity of Ras. We thus propose that the predicted allosteric sites are viable targets for the development and optimization of new drugs

    Characterization of Profilin Polymorphism in Pollen with a Focus on Multifunctionality

    Get PDF
    Profilin, a multigene family involved in actin dynamics, is a multiple partners-interacting protein, as regard of the presence of at least of three binding domains encompassing actin, phosphoinositide lipids, and poly-L-proline interacting patches. In addition, pollen profilins are important allergens in several species like Olea europaea L. (Ole e 2), Betula pendula (Bet v 2), Phleum pratense (Phl p 12), Zea mays (Zea m 12) and Corylus avellana (Cor a 2). In spite of the biological and clinical importance of these molecules, variability in pollen profilin sequences has been poorly pointed out up until now. In this work, a relatively high number of pollen profilin sequences have been cloned, with the aim of carrying out an extensive characterization of their polymorphism among 24 olive cultivars and the above mentioned plant species. Our results indicate a high level of variability in the sequences analyzed. Quantitative intra-specific/varietal polymorphism was higher in comparison to inter-specific/cultivars comparisons. Multi-optional posttranslational modifications, e.g. phosphorylation sites, physicochemical properties, and partners-interacting functional residues have been shown to be affected by profilin polymorphism. As a result of this variability, profilins yielded a clear taxonomic separation between the five plant species. Profilin family multifunctionality might be inferred by natural variation through profilin isovariants generated among olive germplasm, as a result of polymorphism. The high variability might result in both differential profilin properties and differences in the regulation of the interaction with natural partners, affecting the mechanisms underlying the transmission of signals throughout signaling pathways in response to different stress environments. Moreover, elucidating the effect of profilin polymorphism in adaptive responses like actin dynamics, and cellular behavior, represents an exciting research goal for the future

    Detection of astrophysical tau neutrino candidates in IceCube

    Get PDF
    High-energy tau neutrinos are rarely produced in atmospheric cosmic-ray showers or at cosmic particle accelerators, but are expected to emerge during neutrino propagation over cosmic distances due to flavor mixing. When high energy tau neutrinos interact inside the IceCube detector, two spatially separated energy depositions may be resolved, the first from the charged current interaction and the second from the tau lepton decay. We report a novel analysis of 7.5 years of IceCube data that identifies two candidate tau neutrinos among the 60 “High-Energy Starting Events” (HESE) collected during that period. The HESE sample offers high purity, all-sky sensitivity, and distinct observational signatures for each neutrino flavor, enabling a new measurement of the flavor composition. The measured astrophysical neutrino flavor composition is consistent with expectations, and an astrophysical tau neutrino flux is indicated at 2.8σ\sigma significance

    Multimessenger Search for Sources of Gravitational Waves and High-Energy Neutrinos: Results for Initial LIGO-Virgo and IceCube

    Get PDF
    We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of gravitational-wave emission energy of 10−210^{-2}\,M⊙_\odotc2^2 at ∌150\sim 150\,Hz with ∌60\sim 60\,ms duration, and high-energy neutrino emission of 105110^{51}\,erg comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the source rate below 1.6×10−21.6 \times 10^{-2}\,Mpc−3^{-3}yr−1^{-1}. We also examine how combining information from gravitational waves and neutrinos will aid discovery in the advanced gravitational-wave detector era

    Measurement of Astrophysical Tau Neutrinos in IceCube's High-Energy Starting Events

    Get PDF
    We present the results of a search for astrophysical tau neutrinos in 7.5 years of IceCube's high-energy starting event data. At high energies, two energy depositions stemming from the tau neutrino charged-current interaction and subsequent tau lepton decay may be resolved. We report the first detection of two such events, with probabilities of ∌76%\sim 76\% and ∌98%\sim 98\% of being produced by astrophysical tau neutrinos. The resultant astrophysical neutrino flavor measurement is consistent with expectations, disfavoring a no-astrophysical tau neutrino flux scenario with 2.8σ\sigma significance.Comment: This article is supported by a long-form paper that discusses the high-energy starting event selection titled: "The IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of data.

    Searching for VHE gamma-ray emission associated with IceCube neutrino alerts using FACT, H.E.S.S., MAGIC, and VERITAS

    Get PDF
    The realtime follow-up of neutrino events is a promising approach to search for astrophysical neutrino sources. It has so far provided compelling evidence for a neutrino point source: the flaring gamma-ray blazar TXS 0506+056 was observed in coincidence with the high-energy neutrino IceCube-170922A detected by IceCube. The detection of very-high-energy gamma rays (VHE, E > 100 GeV) from this source helped establish the coincidence and constrained the modeling of the blazar emission at the time of the IceCube event. The four major imaging atmospheric Cherenkov telescope arrays (IACTs) - FACT, H.E.S.S., MAGIC, and VERITAS - operate an active follow-up program of target-of-opportunity observations of neutrino alerts sent by IceCube. This program has two main components. One are the observations of known gamma-ray sources around which a cluster of candidate neutrino events has been identified by IceCube (Gamma-ray Follow-Up, GFU). The second one is the follow-up of single high-energy neutrino candidate events of potential astrophysical origin such as IceCube-170922A. GFU has been recently upgraded by IceCube in collaboration with the IACT groups. We present here recent results from the IACT follow-up programs of IceCube neutrino alerts and a description of the upgraded IceCube GFU system

    A search for time-dependent astrophysical neutrino emission with IceCube data from 2012 to 2017

    Full text link
    High-energy neutrinos are unique messengers of the high-energy universe, tracing the processes of cosmic-ray acceleration. This paper presents analyses focusing on time-dependent neutrino point-source searches. A scan of the whole sky, making no prior assumption about source candidates, is performed, looking for a space and time clustering of high-energy neutrinos in data collected by the IceCube Neutrino Observatory between 2012 and 2017. No statistically significant evidence for a time-dependent neutrino signal is found with this search during this period since all results are consistent with the background expectation. Within this study period, the blazar 3C 279, showed strong variability, inducing a very prominent gamma-ray flare observed in 2015 June. This event motivated a dedicated study of the blazar, which consists of searching for a time-dependent neutrino signal correlated with the gamma-ray emission. No evidence for a time-dependent signal is found. Hence, an upper limit on the neutrino fluence is derived, allowing us to constrain a hadronic emission model
    • 

    corecore