60 research outputs found
Evolution in coyotes (Canis latrans) in response to the megafaunal extinctions
Living coyotes modify their behavior in the presence of larger carnivores, such as wolves. However, little is known about the effects of competitor presence or absence on morphological change in coyotes or wolves over long periods of time. We examined the evolution of coyotes and wolves through time from the late Pleistocene, during which many large carnivorous species coexisted as predators and competitors, to the Recent; this allowed us to investigate evolutionary changes in these species in response to climate change and megafaunal extinctions at the end of the Pleistocene. We measured postcranial skeletal morphologies of wolves (Canis lupus) and coyotes (C. latrans) from Pleistocene-aged tar deposits, as well as early, mid, and recent Holocene populations of both. We found few morphological differences between Pleistocene and Holocene wolf populations. Conversely, we found many differences in coyotes: Pleistocene coyotes were larger and more robust than Holocene populations. However, within 1,000 y of the megafaunal extinctions, coyotes are morphologically indistinguishable from modern populations. We cannot attribute these differences directly to climate change because modern coyotes do not follow Bergmann’s rule, which states body size increases with decreasing temperature. Instead, we suggest that Pleistocene coyotes may have been larger and more robust in response to larger competitors and a larger-bodied prey base. Although we cannot separate competition from predator-prey interactions, this study indicates that the effects of biotic interactions can be detected in the fossil record
Measures of Relative Dentary Strength in Rancho La Brea Smilodon fatalis over Time
The late Pleistocene megafaunal extinction of approximately 12,000 years ago, included the demise of Smilodon fatalis, a hypercarnivore from the Rancho La Brea deposits, which has been studied across time by looking at different deposits or pits to determine morphological size and shape changes and trends during this time. To better understand functional aspects of these changes, this study focused on a measure of jaw strength over time, which can give an indication of morphological changes within the jaw that cannot be seen using surface morphometrics. By radiographing dentaries, cortical bone can be seen, which provides an estimate of resistance to bending forces while biting, and can be measured and used as an indicator of jaw strength. Measurements were taken at repeatable locations on the dentary of the depth of the cortical bone, and of a standardized measure of cortical bone, which allows for the comparison between different individuals. Specimens included those of five different pits ranging from about 37 Kybp to 13 Kybp (just before the extinction of S. fatalis). No significant difference was found in the depth of jaws at any of the measurement points from any of the pits. However, significant differences were found in both the actual thickness of cortical bone, and the standardized thickness of cortical bone at the lower P4 between pit 13 (which had the lowest amount of bone) and pit 61/67 (which had the highest). These conclusions support other studies that have shown that individuals in pit 13 were under physiological and perhaps dietary stress, which may be reflected in the deposition of cortical bone, while the opposite trend is seen in the individuals in pit 61/67. Our results further support findings suggesting Smilodon did not appear to be morphologically most vulnerable right before its extinction
The fossil record of phenotypic integration and modularity: A deep-time perspective on developmental and evolutionary dynamics
Variation is the raw material for natural selection, but the factors shaping variation are still poorly understood. Genetic and developmental interactions can direct variation, but there has been little synthesis of these effects with the extrinsic factors that can shape biodiversity over large scales. The study of phenotypic integration and modularity has the capacity to unify these aspects of evolutionary study by estimating genetic and developmental interactions through the quantitative analysis of morphology, allowing for combined assessment of intrinsic and extrinsic effects. Data from the fossil record in particular are central to our understanding of phenotypic integration and modularity because they provide the only information on deep-time developmental and evolutionary dynamics, including trends in trait relationships and their role in shaping organismal diversity. Here, we demonstrate the important perspective on phenotypic integration provided by the fossil record with a study of Smilodon fatalis (saber-toothed cats) and Canis dirus (dire wolves). We quantified temporal trends in size, variance, phenotypic integration, and direct developmental integration (fluctuating asymmetry) through 27,000 y of Late Pleistocene climate change. Both S. fatalis and C. dirus showed a gradual decrease in magnitude of phenotypic integration and an increase in variance and the correlation between fluctuating asymmetry and overall integration through time, suggesting that developmental integration mediated morphological response to environmental change in the later populations of these species. These results are consistent with experimental studies and represent, to our knowledge, the first deep-time validation of the importance of developmental integration in stabilizing morphological evolution through periods of environmental change
Evidence for Pleistocene gene flow through the ice-free corridor from extinct horses and camels from Natural Trap Cave, Wyoming
Natural Trap Cave (Bighorn Mountains, Wyoming) preserves an abundance of fossil remains from extinct Late Pleistocene fauna and is situated near a past migration route that likely connected populations in Eastern Beringia and the contiguous US—the ice-free corridor between the Cordilleran and Laurentide icesheets. Some palaeontological evidence supports a correspondingly high affinity between fauna recorded in Natural Trap Cave and Eastern Beringia versus elsewhere in the contiguous US, but this hypothesis has not yet been extensively tested using genetic data. In the present study, we analysed 16 horse specimens and one camel specimen from Natural Trap Cave. Of the horse specimens we analysed, we obtained 10 unique and previously unreported mitochondrial haplotypes belonging to two distinct (extinct) genetic clades—two haplotypes corresponded to a caballine horse (Equus sp.) and eight corresponded to the stilt-legged horse (Haringtonhippus francisci). With only one exception, it appears these newly sequenced individuals all shared a common ancestor more recently with Eastern Beringian individuals than with others from the contiguous US. In addition, mitochondrial data from a specimen assigned to Camelops sp. revealed that it shares a closer affinity with specimens from the Yukon Territory than those from Idaho or Nevada, though all appear to belong to a single species (“yesterday''s camel”; Camelops cf. hesternus). Together, these results are consistent with a high level of genetic connectivity between horse and camel populations in the Bighorn Mountains and Eastern Beringia during the Pleistocene. © 2021 Elsevier Ltd and INQU
Radiographs Reveal Exceptional Forelimb Strength in the Sabertooth Cat, Smilodon fatalis
Background: The sabertooth cat, Smilodon fatalis, was an enigmatic predator without a true living analog. Their elongate canine teeth were more vulnerable to fracture than those of modern felids, making it imperative for them to immobilize prey with their forelimbs when making a kill. As a result, their need for heavily muscled forelimbs likely exceeded that of modern felids and thus should be reflected in their skeletons. Previous studies on forelimb bones of S. fatalis found them to be relatively robust but did not quantify their ability to withstand loading. Methodology/Principal Findings: Using radiographs of the sabertooth cat, Smilodon fatalis, 28 extant felid species, and the larger, extinct American lion Panthera atrox, we measured cross-sectional properties of the humerus and femur to provide the first estimates of limb bone strength in bending and torsion. We found that the humeri of Smilodon were reinforced by cortical thickening to a greater degree than those observed in any living felid, or the much larger P. atrox. The femur of Smilodon also was thickened but not beyond the normal variation found in any other felid measured. Conclusions/Significance: Based on the cross-sectional properties of its humerus, we interpret that Smilodon was a powerful predator that differed from extant felids in its greater ability to subdue prey using the forelimbs. This enhanced forelimb strength was part of an adaptive complex driven by the need to minimize the struggles of prey in order to protec
Dire wolves were the last of an ancient New World canid lineage
Dire wolves are considered to be one of the most common and widespread large carnivores in Pleistocene America1, yet relatively little is known about their evolution or extinction. Here, to reconstruct the evolutionary history of dire wolves, we sequenced five genomes from sub-fossil remains dating from 13,000 to more than 50,000 years ago. Our results indicate that although they were similar morphologically to the extant grey wolf, dire wolves were a highly divergent lineage that split from living canids around 5.7 million years ago. In contrast to numerous examples of hybridization across Canidae2,3, there is no evidence for gene flow between dire wolves and either North American grey wolves or coyotes. This suggests that dire wolves evolved in isolation from the Pleistocene ancestors of these species. Our results also support an early New World origin of dire wolves, while the ancestors of grey wolves, coyotes and dholes evolved in Eurasia and colonized North America only relatively recently
Data from: Morphological convergence of the prey-killing arsenal of sabertooth predators
Sabertooth members of the Felidae, Nimravidae, and Barbourofelidae are well-known for their elongated saber-shaped canines. However, within these groups, there is a wide range of independently derived tooth shapes and lengths, including dirk-tooth and scimitar-tooth morphs. In conjunction with the saberteeth, forelimbs were also used to subdue prey. Thus, there may be a functional link between canine shape and forelimb morphology. Because there are no living sabertooth forms for comparison, extant felids make a good proxy for examining the morphology of these extinct organisms. Here, I examine the forelimb morphology of different sabertooth groups from across North America; I address whether forelimb morphologies are associated with tooth morphologies, and whether these associated tooth and forelimb morphologies are convergent among different families. To answer these questions, I analyzed six functional indices of the forelimbs and two canine characters for 13 species of sabertooth predators and 15 extant felid species. Results indicate that sabertooth morphs with longer, thinner canines show more robust limb proportions. These patterns were convergent among sabertooth felids, nimravids, and barbourofelids, and indicate a positive functional relationship between saber elongation and increased forelimb robustness. This suggests that sabertooth carnivorans demonstrated niche partitioning of predation strategies according to canine shape and corresponding forelimb morphology
Data from: Postcranial diversity and recent ecomorphic impoverishment of North American gray wolves
Recent advances in genomics and palaeontology have begun to unravel the complex evolutionary history of the gray wolf, Canis lupus. Still, much of their phenotypic variation across time and space remains to be documented. We examined the limb morphology of the fossil and modern North American gray wolves from the late Quaternary (< ca.70 ka) to better understand their postcranial diversity through time. We found that the late-Pleistocene gray wolves were characterised by short-leggedness on both sides of the Cordilleran-Laurentide ice sheets, and that this trait survived well into the Holocene despite the collapse of Pleistocene megafauna and disappearance of the “Beringian wolf” from Alaska. In contrast, extant populations in the Midwestern United States and north-western North America are distinguished by their elongate limbs with long distal segments, which appear to have evolved during the Holocene possibly in response to a new level or type of prey depletion. One of the consequences of recent extirpation of the Plains (C. l. nubilus) and Mexican wolves (C. l. baileyi) from much of the United States is an unprecedented loss of postcranial diversity through removal of short-legged forms. Conservation of these wolves is thus critical to restoration of the ecophenotypic diversity and evolutionary potential of gray wolves in North America
- …