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Abstract  76 
Dire wolves are considered one of the most common and widespread large carnivores in 77 
Pleistocene America, yet relatively little is known about their evolution or extinction. To 78 
reconstruct the evolutionary history of dire wolves, we sequenced five genomes from sub-fossil 79 
bones dating from 13,000 to over 50,000 years ago. Our results indicate that though they were 80 
similar morphologically to the extant gray wolf, dire wolves were a highly divergent lineage that 81 
split from living canids ~5.7 million years ago. In contrast to numerous examples of hybridization 82 
across Canidae, there is no evidence for gene flow between dire wolves and either North 83 
American gray wolves or coyotes. This suggests that dire wolves evolved in isolation from the 84 
Pleistocene ancestors of these species. Our results also support an early New World origin of 85 
dire wolves, while the ancestors of gray wolves, coyotes, and dholes evolved in Eurasia and 86 
only colonized North America relatively recently. 87 
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 88 
 89 
Main Text 90 
Dire wolves (Canis dirus) were large (~68 kg) wolf-like canids and among the most common 91 
extinct large carnivores of the American Late Pleistocene megafauna 1. Dire wolf remains are 92 
present in the North American paleontological record from at least ~250,000 to ~13,000 years 93 
ago, at the end of the Pleistocene, particularly in the lower latitudes 2 (Fig. 1A). Other canid 94 
species present in Late Pleistocene North America include the slightly smaller gray wolf (C. 95 
lupus), the much smaller coyote (C. latrans), and the dhole (or Asiatic wild dog; Cuon alpinus), 96 
though dire wolves appear to be more common overall 1. For example, >4,000 individuals have 97 
been excavated in California’s fossil-rich Rancho La Brea tar seeps alone, where they 98 
outnumber gray wolves more than 100-fold 3,4. 99 
 100 
Despite the abundance of dire wolf fossils, the origin, taxonomic relationships, and ultimate 101 
driver of their extinction remain unclear. Dire wolves are generally described as a sister species 102 
to 5–8, or even conspecific with the gray wolf 9. The leading hypothesis to explain their extinction 103 
is that, due to their larger body size than gray wolves and coyotes, dire wolves were more 104 
specialized for hunting large prey, and were unable to survive the extinction of their megafaunal 105 
prey (e.g. 10–12). To test this hypothesis, we performed geometric morphometric analyses of 106 
>700 specimens. Our results indicate that although dire wolves and gray wolves species can be 107 
differentiated, their morphology is highly similar (Supplementary Information; Fig. 1B; 108 
Supplementary Fig. 1-6). Although this morphometric similarity may partly be driven by 109 
allometry (Supplementary Information; Fig. 1B), the lack of distinctiveness between gray wolves 110 
and dire wolves has been interpreted as a result of a close evolutionary relationship 7,9.  111 
Alternatively, a competing hypothesis maintains that these morphological similarities are the 112 
result of convergence, and that dire wolves instead are a species belonging to a separate 113 
taxonomic lineage (classified in the monotypic genus Aenocyon; “terrible or dreadful wolf” 13).  114 
 115 
To resolve the evolutionary history of dire wolves, we screened 46 sub-fossil specimens for the 116 
presence of preserved genomic DNA (Supplementary Data 1). We identified five samples from 117 
Idaho (DireAFR & DireGB), Ohio (DireSP), Tennessee (DireGWC), and Wyoming (DireNTC) 118 
ranging in age from 12,900 to >50,000 years before present, that possessed sufficient 119 
endogenous DNA to obtain both mitochondrial genomes (between ~1x and 31x coverage) and 120 
low-coverage nuclear genome sequences (~0.01x to 0.23x coverage) using hybridization 121 
capture or shotgun sequencing methods (Supplementary Information). Although we did not 122 
successfully sequence DNA from the La Brea tar seeps dire wolf specimens, one specimen did 123 
contain type I collagen (COL1) suitable for sequencing using paleoproteomic methods 124 
(Supplementary Data 1; Supplementary Information). 125 
 126 
Analyses of the dire wolf COL1 sequence suggested that they were not closely related to gray 127 
wolves, coyotes, African wolves (C. anthus), and dogs (C. familiaris) (Supplementary Fig. 7). 128 
These data, however, could not confidently resolve the relationships between more distantly 129 
related canids due to a lack of lineage-specific amino acid changes among these species 14. 130 
Phylogenetic analyses of the mitochondrial genomes indicated that dire wolves form a well-131 
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supported monophyletic group that is highly divergent from gray wolves and coyotes 132 
(Supplementary Fig. 10; see Supplementary Data 13 and Supplementary Table 2  for a list of 133 
the 13 species used in this analysis), contradicting recent paleontological analyses 5–7 (Figure 134 
1B). Canid mitochondrial phylogenies, however, may not represent the true species evolutionary 135 
relationships since both admixture and incomplete lineage sorting have been shown to affect 136 
canid phylogenetic topologies 15,16. 137 
 138 
In order to resolve the phylogenetic relationships of dire wolves, we analyzed our dire wolves’ 139 
nuclear genomic data with previously published genomic data from eight extant canids: gray 140 
wolf, coyote, African wolf, dhole, Ethiopian wolf (C. simensis), African wild dog (Lycaon pictus), 141 
Andean fox (Lycalopex culpaeus), and gray fox (Urocyon cinereoargenteus; an outgroup). Of 142 
these species, the geographical ranges of gray wolves, coyotes, dholes, and gray foxes 143 
overlapped with that of dire wolves during the Pleistocene (Fig. 1A). We also generated new 144 
nuclear genome sequences from a gray wolf from Montana and from the two endemic African 145 
jackals, the black-backed and side-striped jackal (C. mesomelas and C. adustus, respectively), 146 
in order to ensure representation of all extant members of the “wolf-like canid” clade (comprising 147 
Canis, Lycaon, Cuon, and their extinct relatives) (Supplementary Data 13). Supermatrix 148 
analyses, based on 70 Kb to 28 Mb nuclear sequence alignments (depending on overall 149 
coverage for each dire wolf genome, see Supplementary Table 5 & 7) confirmed a distant 150 
evolutionary relationship between dire wolves and the other wolf-like canids (Fig. 2A; 151 
Supplementary Fig. 11; Supplementary Fig. 15). This analysis, however, could not definitively 152 
resolve whether dire wolves were the basal members of the wolf-like canid clade, or the second 153 
lineage to diverge after the common ancestor of the two African jackals. 154 
 155 
We investigated canid phylogenetic relationships in greater detail using a range of species tree 156 
analyses 17,18 and D-statistics (Supplementary Information). These approaches produced 157 
concordant trees that support the monophyly of three primary lineages: dire wolves, African 158 
jackals, and a clade comprising all other extant wolf-like canids (Fig. 2A; Supplementary Fig. 11-159 
15). Although our species tree analyses provided equivocal results regarding the relationships 160 
among these lineages, gray wolves (genus Canis) are more closely related to dholes 161 
(Supplementary Fig. 21) (genus Cuon), African wild dogs (genus Lycaon) (Supplementary Fig. 162 
19) and Ethiopian wolves (Supplementary Fig. 22) than to either dire wolves or African jackals 163 
(both genus Canis). This finding is consistent with previously proposed designations of genus 164 
Lupulella 19 for the African jackals and Aenocyon 13 for dire wolves.  165 
 166 
To assess the timing of divergence among the major wolf-like canid lineages we performed a 167 
molecular clock analysis based on two fossil calibrations using MCMCtree20. Although the dire 168 
wolf sequences are low coverage and include post-mortem damage, extensive simulations 169 
indicated this is unlikely to affect the time of divergence estimates inferred by MCMCtree 170 
(Supplementary Information; Supplementary Fig. 17). This analysis confirmed that the initial 171 
divergences of the three primary wolf-like canid lineages occurred rapidly, contributing to the 172 
poor resolution of the tree as a result of incomplete lineage sorting (Fig. 2A). The dire wolf 173 
lineage last shared a common ancestor with extant wolf-like canids ~5.7 million years ago (95% 174 



 5 

HPD=4.0-8.5 million years ago; Fig. 2A), followed by the divergence of African jackals ~5.1 175 
million years ago (95% HPD=3.5-7.6 million years ago; Fig. 2B).  176 
 177 
Given the propensity for sympatric canid species to interbreed 15,21,22, we tested for genomic 178 
signals of admixture between extant North American canids and dire wolves using D statistics23 179 
(Supplementary Information) in a data set that included 22 modern North American gray wolves 180 
and coyotes, three ancient dogs 24–26 , and a Pleistocene wolf 27 (Supplementary Data 13). 181 
Specifically, we computed statistics of the form D (outgroup [gray fox]; dire wolf; North American 182 
canid [gray wolf or coyote], African wolf/Eurasian wolf) and found no significant excess of 183 
shared derived alleles between dire wolves and any extant North American canid (Fig. 2B; 184 
Supplementary Fig. 18; Supplementary Data 14). This result indicates that the dire wolves 185 
sequenced in this study did not possess ancestry from gray wolves, coyotes, or their recent 186 
North American ancestors. Although we cannot exclude the possibility that some unsampled 187 
canid population has some dire wolf hybrid ancestry, the lack of  signal of hybridization in our 188 
broad set of genomes suggests that admixture is unlikely to have occurred. While we did not 189 
find evidence of recent admixture, we did find that African wild dogs share fewer derived alleles 190 
with dire wolves than with gray wolves, coyote, African wolves, dhole, or Ethiopian wolves (Fig. 191 
2C; Supplementary Fig. 20; Supplementary data 15). This indicates that an episode of ancient 192 
admixture between the ancestor of dire wolves and the ancestor of wolves, coyotes, and dhole 193 
occurred at least ~3 million years ago (based on the lower bound of the 95% HPD on the age of 194 
their common ancestor; Fig. 2A), which may have contributed challenges resolving the 195 
branching order of the basal wolf-like canid lineages (Fig. 2A). 196 
 197 
Hybridization is common among wolf-like canid lineages when their ranges overlap. For 198 
example, modern gray wolves and coyotes hybridize readily in North America (e.g., 21). 199 
Genomic data also suggest gene flow occurred between dholes and African wild dogs during 200 
the Pleistocene 15, millions of years after their divergence. Consequently, our finding of no 201 
evidence for gene flow between dire wolves and gray wolves, coyotes, or their common 202 
ancestor, despite substantial range overlap with dire wolves during the Late Pleistocene 203 
suggests that the common ancestor of gray wolves and coyotes probably evolved in 204 
geographical isolation from members of the dire wolf lineage. This result is consistent with the 205 
hypothesis that dire wolves originated in the Americas 1,4,28,29, likely from the extinct 206 
Armbruster’s wolf (C. armbrusteri 5). 207 
 208 
Long term isolation of the dire wolf lineage in the Americas implies that other American fossil 209 
taxa, such as the Pliocene C. edwardii, a proposed relative of the coyote 5, may instead belong 210 
to the dire wolf lineage. Thus, the diversification of the extant wolf-like canids likely occurred in 211 
parallel outside of the Americas, and perhaps began earlier than hypothesized. The living Canis 212 
species may have descended from Old World members of the extinct genus Eucyon, which first 213 
appeared in the fossil record of Africa and Eurasia at the end of the Miocene (see 30). 214 
Geographic isolation since the late Miocene is consistent with our molecular estimates for the 215 
age of the dire wolf lineage, and may have allowed dire wolves to evolve some degree of 216 
reproductive isolation prior to the Late Pleistocene North American arrival of gray wolves, 217 
coyotes, dholes, and Xenocyon (another extinct wolf-like canid). 218 
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 219 
Despite their overall phenotypic similarities, gray wolves and coyotes survived the Late 220 
Pleistocene megafaunal extinctions while dire wolves did not. One possible reason may be that 221 
both gray wolves and coyotes possessed greater morphological plasticity and dietary flexibility, 222 
thus allowing them to avoid extinction and become the dominant terrestrial predators in North 223 
America 12,31. This scenario is supported by the date we obtained from the DireGWC specimen 224 
(12,820-12,720 calBP), which suggests that dire wolves survived until at least the Younger 225 
Dryas cold reversal, a period that also witnessed the latest known dates for other specialized 226 
North American mega-carnivores such as the American lion (Panthera atrox) and giant short-227 
faced bear (Arctodus simus)32,33. Alternatively, gray wolves and coyotes may have survived as a 228 
result of their ability to hybridize with other canids. Through adaptive introgression with dogs, 229 
North American gray wolves are known to have acquired traits related to coat color, hypoxia, 230 
and immune response 34,35. Specifically, enhanced immunity may have allowed gray wolves to 231 
resist novel diseases carried by newly arriving Old World taxa. Since our results demonstrate 232 
that dire wolves did not derive any ancestry from other wolf-like canid species, it is plausible that 233 
reproductive isolation prevented dire wolves from acquiring traits that may have allowed them to 234 
survive into the Holocene. 235 
  236 
 237 
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318 
Figure 1.  Map of dire wolf remains and morphological differentiation with wolf-like 319 
canids A. Right: map representing the geographic range (obtained from IUCN, 320 
https://www.iucnredlist.org) of the canid species investigated in this study. Left: map 321 
representing the distribution of sites in the Americas where dire wolf remains (Canis dirus) were 322 
identified (Supplementary Table 1). Colored circles represent the location and approximate age 323 
of the remains, with crossed circles representing the five samples from Idaho (2), Ohio (1), 324 
Tennessee (1), and Wyoming (1) that yielded sufficient endogenous DNA to reconstruct both 325 
mitochondrial genomes and low-coverage nuclear genome sequences. B. Procrustes distance 326 
between the combined mandible and M1 shape of dire wolf and other extant canid species. 327 
Pairwise procrustes distances were calculated by superimposing landmarks from molar and 328 
mandibular shapes between pairs of specimens and by computing the square root of the 329 
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squared differences between the coordinates of corresponding landmarks, with and without 330 
correction for allometry (Supplementary Information).  331 
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 332 
Figure 2. Relationships among living and extinct wolf-like canids A. Time-scaled nuclear 333 
phylogeny generated in MCMCtree based on the best species tree topology obtained from BPP 334 
and SNAPP. Values associated with nodes are mean age estimates (millions of years before 335 
present) while bars represent 95% Highest Posterior Densities. The inset table shows levels of 336 
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support for the three possible arrangements of the dire wolf (red), the African jackals (orange), 337 
and the remaining wolf-like canids (blue) that we obtained under different analytical frameworks 338 
(Supplementary Information) when including either one or both of our two highest coverage dire 339 
wolf samples (DireSP and DireGB). Although only one dire wolf branch is depicted in the tree,   340 
multiple dire wolf individuals were included they formed a monophyletic clade (Supplementary 341 
Fig. 12-13, and 15). B. Results of D statistics used to assess the possibility of gene flow 342 
between the dire wolf and extant North American canids. Each dot represents the mean D 343 
calculated along the genome and the error bar represents 3 standard deviations. These plots 344 
show that the dire wolf genomes do not share significantly more derived alleles with extant 345 
North American canids compared to Eurasian wolves (values of D not significantly different to 346 
zero), suggesting that no hybridization occurred between the dire wolf and the ancestor of 347 
extant North American canids. Non significant D-statistics were also obtained using an 348 
alternative reference genome and using the African wolf as P2 (Supplementary Fig. 18 and 349 
Supplementary Data 14). C. Results of D statistics showing the existence of an ancient gene 350 
flow event between the ancestor of the dhole, Ethiopian wolf, African wolf, gray wolf and 351 
coyotes and the lineage of the dire wolf (consistently non-zero values of D regardless of P1).  352 
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