325 research outputs found

    Pogodnosti i izazovi determinističkog referentnog modela radijskog kanala

    Get PDF
    The paper introduces a new paradigm for reference channel models. Current reference channel models are designed as platforms that generate radio channels for testing using random values for their parameters. These parameters follow some pre-established distribution based on process called parameterization, i.e. statistical processing of previous real measurements or accurate ray tracing simulations. The paper argues that random generated channels give either no new insight or even delusive information and should be replaced with the initial set of radio channels that was used for parameterization. Therefore a deterministic reference channel model, as an emulator of previously recorded real radio channels, is proposed and its potential elaborated.U radu se uvodi nova paradigma za referentni model radijskog kanala. Postojeći referentni modeli radijskog kanala dizajnirani su kao platforma koja generira radio kanale za testiranje pomoću slučajnih vrijednosti za svoje parametre. Ovi parametri prate neke unaprijed utvrđene raspodjele koje potječu iz procesa parametrizacije, odnosno statističke obrade prethodnih mjerenja ili točnih simulacija metodom slijeđenja zrake. U radu se tvrdi da slučajno generirani kanali ili ne daju nove uvide ili čak daju obmanjujuće informacije i valja ih zamijeniti s početnim skupom radijskih kanala koji je koriĆĄten za parametrizaciju. Stoga je predloĆŸen deterministički referentni model radijskog kanala, kao emulator prethodno snimljenih stvarnih radio kanala, te je njegov potencijal razrađen

    A nonlinear hydrodynamical approach to granular materials

    Full text link
    We propose a nonlinear hydrodynamical model of granular materials. We show how this model describes the formation of a sand pile from a homogeneous distribution of material under gravity, and then discuss a simulation of a rotating sandpile which shows, in qualitative agreement with experiment, a static and dynamic angle of repose.Comment: 17 pages, 14 figures, RevTeX4; minor changes to wording and some additional discussion. Accepted by Phys. Rev.

    Bifurcations of a driven granular system under gravity

    Full text link
    Molecular dynamics study on the granular bifurcation in a simple model is presented. The model consists of hard disks, which undergo inelastic collisions; the system is under the uniform external gravity and is driven by the heat bath. The competition between the two effects, namely, the gravitational force and the heat bath, is carefully studied. We found that the system shows three phases, namely, the condensed phase, locally fluidized phase, and granular turbulent phase, upon increasing the external control parameter. We conclude that the transition from the condensed phase to the locally fluidized phase is distinguished by the existence of fluidized holes, and the transition from the locally fluidized phase to the granular turbulent phase is understood by the destabilization transition of the fluidized holes due to mutual interference.Comment: 35 pages, 17 figures, to be published in PR

    NMR Experiments on a Three-Dimensional Vibrofluidized Granular Medium

    Full text link
    A three-dimensional granular system fluidized by vertical container vibrations was studied using pulsed field gradient (PFG) NMR coupled with one-dimensional magnetic resonance imaging (MRI). The system consisted of mustard seeds vibrated vertically at 50 Hz, and the number of layers N_ell <= 4 was sufficiently low to achieve a nearly time-independent granular fluid. Using NMR, the vertical profiles of density and granular temperature were directly measured, along with the distributions of vertical and horizontal grain velocities. The velocity distributions showed modest deviations from Maxwell-Boltzmann statistics, except for the vertical velocity distribution near the sample bottom which was highly skewed and non-Gaussian. Data taken for three values of N_ell and two dimensionless accelerations Gamma=15,18 were fit to a hydrodynamic theory, which successfully models the density and temperature profiles including a temperature inversion near the free upper surface.Comment: 14 pages, 15 figure

    Foundations of Dissipative Particle Dynamics

    Full text link
    We derive a mesoscopic modeling and simulation technique that is very close to the technique known as dissipative particle dynamics. The model is derived from molecular dynamics by means of a systematic coarse-graining procedure. Thus the rules governing our new form of dissipative particle dynamics reflect the underlying molecular dynamics; in particular all the underlying conservation laws carry over from the microscopic to the mesoscopic descriptions. Whereas previously the dissipative particles were spheres of fixed size and mass, now they are defined as cells on a Voronoi lattice with variable masses and sizes. This Voronoi lattice arises naturally from the coarse-graining procedure which may be applied iteratively and thus represents a form of renormalisation-group mapping. It enables us to select any desired local scale for the mesoscopic description of a given problem. Indeed, the method may be used to deal with situations in which several different length scales are simultaneously present. Simulations carried out with the present scheme show good agreement with theoretical predictions for the equilibrium behavior.Comment: 18 pages, 7 figure

    Transitions in the Horizontal Transport of Vertically Vibrated Granular Layers

    Full text link
    Motivated by recent advances in the investigation of fluctuation-driven ratchets and flows in excited granular media, we have carried out experimental and simulational studies to explore the horizontal transport of granular particles in a vertically vibrated system whose base has a sawtooth-shaped profile. The resulting material flow exhibits novel collective behavior, both as a function of the number of layers of particles and the driving frequency; in particular, under certain conditions, increasing the layer thickness leads to a reversal of the current, while the onset of transport as a function of frequency occurs gradually in a manner reminiscent of a phase transition. Our experimental findings are interpreted here with the help of extensive, event driven Molecular Dynamics simulations. In addition to reproducing the experimental results, the simulations revealed that the current may be reversed as a function of the driving frequency as well. We also give details about the simulations so that similar numerical studies can be carried out in a more straightforward manner in the future.Comment: 12 pages, 18 figure

    Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV

    Full text link
    A search for pair-production of supersymmetric particles under the assumption that R-parity is violated via a dominant LQDbar coupling has been performed using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV. The observed candidate events in the data are in agreement with the Standard Model expectation. This result is translated into lower limits on the masses of charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81 GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the 95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure

    Search for the glueball candidates f0(1500) and fJ(1710) in gamma gamma collisions

    Full text link
    Data taken with the ALEPH detector at LEP1 have been used to search for gamma gamma production of the glueball candidates f0(1500) and fJ(1710) via their decay to pi+pi-. No signal is observed and upper limits to the product of gamma gamma width and pi+pi- branching ratio of the f0(1500) and the fJ(1710) have been measured to be Gamma_(gamma gamma -> f0(1500)). BR(f0(1500)->pi+pi-) < 0.31 keV and Gamma_(gamma gamma -> fJ(1710)). BR(fJ(1710)->pi+pi-) < 0.55 keV at 95% confidence level.Comment: 10 pages, 3 figure

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Constraints on anomalous QGC's in e+e−e^{+}e^{-} interactions from 183 to 209 GeV

    Get PDF
    The acoplanar photon pairs produced in the reaction e(+) e(-) - → vvyy are analysed in the 700 pb(-1) of data collected by the ALEPH detector at centre-of-mass energies between 183 and 209 GeV. No deviation from the Standard Model predictions is seen in any of the distributions examined. The resulting 95% C.L. limits set on anomalous QGCs, a(0)(Z), a(c)(Z), a(0)(W) and a(c)(W), are -0.012 lt a(0)(Z)/Lambda(2) lt +0.019 GeV-2, -0.041 lt a(c)(Z)/Lambda(2) lt +0.044 GeV-2, -0.060 lt a(0)(W)/Lambda(2) lt +0.055 GeV-2, -0.099 lt a(c)(W)/Lambda(2) lt +0.093 GeV-2, where Lambda is the energy scale of the new physics responsible for the anomalous couplings
    • 

    corecore