177 research outputs found

    A Synopsis of Global Mapping of Freshwater Habitats and Biodiversity: Implications for Conservation

    Get PDF
    Accurately mapping freshwater habitats and biodiversity at high-resolutions across the globe is essential for assessing the vulnerability and threats to freshwater organisms and prioritizing conservation efforts. Since the 2000s, extensive efforts have been devoted to mapping global freshwater habitats (rivers, lakes, and wetlands), the spatial representation of which has changed dramatically over time with new geospatial data products and improved remote sensing technologies. Some of these mapping efforts, however, are still coarse representations of actual conditions. Likewise, the resolution and scope of global freshwater biodiversity compilation efforts have also increased, but are yet to mirror the spatial resolution and fidelity of mapped freshwater environments. In our synopsis, we find that efforts to map freshwater habitats have been conducted independently of those for freshwater biodiversity; subsequently, there is little congruence in the spatial representation and resolution of the two efforts. We suggest that global species distribution models are needed to fill this information gap; however, limiting data on habitat characteristics at scales that complement freshwater habitats has prohibited global high-resolution biogeography efforts. Emerging research trends, such as mapping habitat alteration in freshwater ecosystems and trait biogeography, show great promise in mechanistically linking global anthropogenic stressors to freshwater biodiversity decline and extinction risk

    Digital Mapping and Environmental Characterization of National Wild and Scenic River Systems

    Get PDF
    Spatially accurate geospatial information is required to support decision-making regarding sustainable future hydropower development. Under a memorandum of understanding among several federal agencies, a pilot study was conducted to map a subset of National Wild and Scenic Rivers (WSRs) at a higher resolution and provide a consistent methodology for mapping WSRs across the United States and across agency jurisdictions. A subset of rivers (segments falling under the jurisdiction of the National Park Service) were mapped at a high resolution using the National Hydrography Dataset (NHD). The spatial extent and representation of river segments mapped at NHD scale were compared with the prevailing geospatial coverage mapped at a coarser scale. Accurately digitized river segments were linked to environmental attribution datasets housed within the Oak Ridge National Laboratory s National Hydropower Asset Assessment Program database to characterize the environmental context of WSR segments. The results suggest that both the spatial scale of hydrography datasets and the adherence to written policy descriptions are critical to accurately mapping WSRs. The environmental characterization provided information to deduce generalized trends in either the uniqueness or the commonness of environmental variables associated with WSRs. Although WSRs occur in a wide range of human-modified landscapes, environmental data layers suggest that they provide habitats important to terrestrial and aquatic organisms and recreation important to humans. Ultimately, the research findings herein suggest that there is a need for accurate, consistent, mapping of the National WSRs across the agencies responsible for administering each river. Geospatial applications examining potential landscape and energy development require accurate sources of information, such as data layers that portray realistic spatial representations

    ESA Protection for the American Eel: Implications for US Hydropower

    Get PDF

    Population-Level Responses of Life History Traits to Flow Regime in Three Common Stream Fish Species

    Get PDF
    Trait-based approaches may improve understanding in ecology by linking environmental variation to fitness-related characteristics of species. Most trait-environment studies focus on assemblage-level relationships; yet intraspecific trait variation is important for community, ecosystem, and evolutionary processes and has substantial implications for these approaches. Assessing population-level trait-environment relationships could test the generality of trait models while assessing intraspecific variation. We evaluated the generality of the trilateral life history model (TLHM of Winemiller and Rose 1992: opportunistic, periodic, and equilibrium endpoints) for fishes - a well-studied trait-environment model at the assemblage level - to populations of three stream fishes in the Midwestern United States in relation to flow regime. The TLHM adequately described major trade-offs in traits among populations in all species. Some TLHM flow-based predictions were confirmed, with periodic traits (high fecundity) favored at sites with greater flow seasonality and lower flow variability in two species, and equilibrium traits (large eggs) in more stable flow conditions in two species. Size at maturity was also inversely related to variability in one species. However, relationships contradicting the TLHM were also found. Coupled with the explanatory power of the TLHM for populations, supporting relationships suggest that synthesizing habitat template models with demographic life history theory could be valuable. Trait-environment models that are well-supported at multiple levels of biological organization could improve understanding of the impacts of environmental change on populations and communities and the valuable ecosystem services that they support

    Direct observations of the effect of fine sediment deposition on the vertical movement of Gammarus pulex (Amphipoda: Gammaridae) during substratum drying

    Get PDF
    Benthic macroinvertebrates inhabit the streambed sediments of temporary streams during drying events. Fine sediment (< 2 mm in diameter) deposition and clogging of interstitial pathways reduces the connectivity between benthic and subsurface habitats, potentially inhibiting macroinvertebrate vertical movements. Direct observations within subsurface sediments are, however, inherently difficult. As a result, confirmation of macroinvertebrate vertical movement, and the effect of fine sediment, is limited. We used laboratory mesocosms containing transparent gravel sized particles (10–15 mm) to facilitate the direct observation and tracking of vertical movements by Gammarus pulex in response to water level reduction and sedimentation. Seven sediment treatments comprised two fine sediment fractions (small: 0.125–0.5 mm, coarse sand: 0.5–1 mm) deposited onto the surface of the substrate, and a control treatment where no fine sediment was applied. We found that G. pulex moved into the subsurface gravel sediments in response to drying, but their ability to remain submerged during water level reduction was impeded by fine sediment deposition. In particular deposition of the coarser sand fraction clogged the sediment surface, limiting vertical movements. Our results highlight the potential effect of sedimentation on G. pulex resistance to drying events in streams

    Fish and mussels: importance of fish for freshwater mussel conservation

    Get PDF
    Co-extinctions are increasingly recognized as one of the major processes leading to the global biodiversity crisis, but there is still limited scientific evidence on the magnitude of potential impacts and causal mechanisms responsible for the decline of affiliate (dependent) species. Freshwater mussels (Bivalvia, Unionida), one of the most threatened faunal groups on Earth, need to pass through a parasitic larval (glochidia) phase using fishes as hosts to complete their life cycle. Here, we provide a synthesis of published evidence on the fish–mussel relationship to explore possible patterns in co-extinction risk and discuss the main threats affecting this interaction. We retrieved 205 publications until December 2015, most of which were performed in North America, completed under laboratory conditions and were aimed at characterizing the life cycle and/or determining the suitable fish hosts for freshwater mussels. Mussel species were reported to infest between one and 53 fish species, with some fish families (e.g., Cyprinidae and Percidae) being used more often as hosts than others. No relationship was found between the breadth of host use and the extinction risk of freshwater mussels. Very few studies focused on threats affecting the fish–mussel relationship, a knowledge gap that may impair the application of future conservation measures. Here, we identify a variety of threats that may negatively affect fish species, document and discuss the concomitant impacts on freshwater mussels, and suggest directions for future studies.The Portuguese Foundation for Science and Technology—FCT through POPH/FSE funds supported VM, MI and MLL under grants (SFRH/BD/108298/2015), (SFRH/BPD/90088/2012), (SFRH/BD/115728/2016), respectively. KD acknowledges the support from the Czech Science Foundation (13-05872S). RS acknowledges the support of the strategic programme UID/BIA/04050/2013 (POCI-01-0145- FEDER-007569) funded by national funds through the FCT I.P. and by the ERDF through the COMPETE2020-Programa Operacional Competitividade e Internacionalização (POCI). This study was conducted as part of the project FRESHCO: Multiple implications of invasive species on Freshwater Mussel co-extinction processes, supported by FCT (contract: PTDC/AGRFOR/1627/2014)

    Emerging Themes and Future Directions of Multi-Sector Nexus Research and Implementation

    Get PDF
    Water, energy, and food are all essential components of human societies. Collectively, their respective resource systems are interconnected in what is called the “nexus”. There is growing consensus that a holistic understanding of the interdependencies and trade-offs between these sectors and other related systems is critical to solving many of the global challenges they present. While nexus research has grown exponentially since 2011, there is no unified, overarching approach, and the implementation of concepts remains hampered by the lack of clear case studies. Here, we present the results of a collaborative thought exercise involving 75 scientists and summarize them into 10 key recommendations covering: the most critical nexus issues of today, emerging themes, and where future efforts should be directed. We conclude that a nexus community of practice to promote open communication among researchers, to maintain and share standardized datasets, and to develop applied case studies will facilitate transparent comparisons of models and encourage the adoption of nexus approaches in practice
    • …
    corecore