9 research outputs found

    Predictive Accuracy of the Veterans Aging Cohort Study Index for Mortality With HIV Infection

    No full text
    BackgroundBy supplementing an index composed of HIV biomarkers and age (restricted index) with measures of organ injury, the Veterans Aging Cohort Study (VACS) index more completely reflects risk of mortality. We compare the accuracy of the VACS and restricted indices (1) among subjects outside the Veterans Affairs Healthcare System, (2) more than 1-5 years of prior exposure to antiretroviral therapy (ART), and (3) within important patient subgroups.MethodsWe used data from 13 cohorts in the North American AIDS Cohort Collaboration (n = 10, 835) limiting analyses to HIV-infected subjects with at least 12 months exposure to ART. Variables included demographic, laboratory (CD4 count, HIV-1 RNA, hemoglobin, platelets, aspartate and alanine transaminase, creatinine, and hepatitis C status), and survival. We used C-statistics and net reclassification improvement (NRI) to test discrimination varying prior ART exposure from 1 to 5 years. We then combined Veterans Affairs Healthcare System (n = 5066) and North American AIDS Cohort Collaboration data, fit a parametric survival model, and compared predicted to observed mortality by cohort, gender, age, race, and HIV-1 RNA level.ResultsMean follow-up was 3.3 years (655 deaths). Compared with the restricted index, the VACS index showed greater discrimination (C-statistics: 0.77 vs. 0.74; NRI: 12%; P < 0.0001). NRI was highest among those with HIV-1 RNA <500 copies per milliliter (25%) and age ≥50 years (20%). Predictions were similar to observed mortality among all subgroups.ConclusionsVACS index scores discriminate risk and translate into accurate mortality estimates over 1-5 years of exposure to ART and for diverse patient subgroups from North American

    Description and Cross-Sectional Analyses of 25,880 Adults and Children in the UK National Registry of Rare Kidney Diseases Cohort

    No full text
    Introduction: The National Registry of Rare Kidney Diseases (RaDaR) collects data from people living with rare kidney diseases across the UK, and is the world's largest, rare kidney disease registry. We present the clinical demographics and renal function of 25,880 prevalent patients and sought evidence of bias in recruitment to RaDaR. Methods: RaDaR is linked with the UK Renal Registry (UKRR, with which all UK patients receiving kidney replacement therapy [KRT] are registered). We assessed ethnicity and socioeconomic status in the following: (i) prevalent RaDaR patients receiving KRT compared with patients with eligible rare disease diagnoses receiving KRT in the UKRR, (ii) patients recruited to RaDaR compared with all eligible unrecruited patients at 2 renal centers, and (iii) the age-stratified ethnicity distribution of RaDaR patients with autosomal dominant polycystic kidney disease (ADPKD) was compared to that of the English census. Results: We found evidence of disparities in ethnicity and social deprivation in recruitment to RaDaR; however, these were not consistent across comparisons. Compared with either adults recruited to RaDaR or the English population, children recruited to RaDaR were more likely to be of Asian ethnicity (17.3% vs. 7.5%, P-value < 0.0001) and live in more socially deprived areas (30.3% vs. 17.3% in the most deprived Index of Multiple Deprivation (IMD) quintile, P-value < 0.0001). Conclusion: We observed no evidence of systematic biases in recruitment of patients into RaDaR; however, the data provide empirical evidence of negative economic and social consequences (across all ethnicities) experienced by families with children affected by rare kidney diseases

    Effects of rare kidney diseases on kidney failure: a longitudinal analysis of the UK National Registry of Rare Kidney Diseases (RaDaR) cohort

    No full text
    Individuals with rare kidney diseases account for 5-10% of people with chronic kidney disease, but constitute more than 25% of patients receiving kidney replacement therapy. The National Registry of Rare Kidney Diseases (RaDaR) gathers longitudinal data from patients with these conditions, which we used to study disease progression and outcomes of death and kidney failure.People aged 0-96 years living with 28 types of rare kidney diseases were recruited from 108 UK renal care facilities. The primary outcomes were cumulative incidence of mortality and kidney failure in individuals with rare kidney diseases, which were calculated and compared with that of unselected patients with chronic kidney disease. Cumulative incidence and Kaplan-Meier survival estimates were calculated for the following outcomes: median age at kidney failure; median age at death; time from start of dialysis to death; and time from diagnosis to estimated glomerular filtration rate (eGFR) thresholds, allowing calculation of time from last eGFR of 75 mL/min per 1·73 m2 or more to first eGFR of less than 30 mL/min per 1·73 m2 (the therapeutic trial window).Between Jan 18, 2010, and July 25, 2022, 27 285 participants were recruited to RaDaR. Median follow-up time from diagnosis was 9·6 years (IQR 5·9-16·7). RaDaR participants had significantly higher 5-year cumulative incidence of kidney failure than 2·81 million UK patients with all-cause chronic kidney disease (28% vs 1%; p Background Methods Findings Interpretation Funding</p
    corecore