268 research outputs found

    The Poisson geometry of SU(1,1)

    Full text link
    We study the natural Poisson structure on the Lie group SU(1,1) and related questions. In particular, we give an explicit description of the Ginzburg-Weinstein isomorphism for the sets of admissible elements. We also establish an analogue of Thompson's conjecture for this group.Comment: 11 pages, minor correction

    Longboard classification using Machine Learning

    Get PDF
    There are several techniques a rider can choose from that they can perform being distributed along the long-board ride. This research aims to create a machine-learning model that can efficiently classify these techniques at different periods of time using raw acceleration data. This paper presents the complete workflow of the application. This application involves analytical geometry, multidimensional calculus, and linear algebra and can be used to visualize and normalize time-invariant object paths. This model focuses on displacement data calculated from raw acceleration data and gyro sensor data from a smartphone application called Physics Toolbox Sensor Suite . We extracted features from each dynamic window of time in the displacement data and then fed them into machine learning algorithms with various statistical features, including supervised learning classifiers and Long short-term memory. We found that the Decision Tree with post-pruning produces a performance 93.4%, and the Random Forest produces a performance 96.8%. Although Decision Tree works faster than Random Forest, we ultimately used Random Forest classifier in our application, since the application does not perform prediction and classification in real-time

    The effect of ‘noise’ on estimates of the elastic thickness of the continental lithosphere by the coherence method

    Get PDF
    We model the lithosphere as a uniform elastic plate overlying an inviscid fluid and loaded with both surface and subsurface fractal loads to generate synthetic topography and gravity data. To simulate data having low (topographic) signal to (gravity) noise ratio we use an algebraically larger exponent for the subsurface load in the spectral synthesis fractal algorithm.The gravity power spectrum then decays less rapidly than that of topography, the spectra resembling those for central Australia. We find that the coherence method using multitaper spectral estimation yields significant underestimates of plate thickness for both low and normal signal-to-noise ratio data, unless the data window is larger than several times the true flexural wavelength. We quantify this bias for the parameters used here and apply it as a correction to an effective elastic thickness estimate for central Australia, obtaining a value of 115 25 km

    Novel Fas-TNFR chimeras that prevent Fas ligand-mediated kill and signal synergistically to enhance CAR T cell efficacy

    Get PDF
    The hostile tumor microenvironment limits the efficacy of adoptive cell therapies. Activation of the Fas death receptor initiates apoptosis and disrupting these receptors could be key to increasing CAR T cell efficacy. We screened a library of Fas-TNFR proteins identifying several novel chimeras that not only prevented Fas ligand-mediated kill, but also enhanced CAR T cell efficacy by signaling synergistically with the CAR. Upon binding Fas ligand, Fas-CD40 activated the NF-κB pathway, inducing greatest proliferation and IFN-γ release out of all Fas-TNFRs tested. Fas-CD40 induced profound transcriptional modifications, particularly genes relating to the cell cycle, metabolism, and chemokine signaling. Co-expression of Fas-CD40 with either 4-1BB- or CD28-containing CARs increased in vitro efficacy by augmenting CAR T cell proliferation and cancer target cytotoxicity, and enhanced tumor killing and overall mouse survival in vivo. Functional activity of the Fas-TNFRs were dependent on the co-stimulatory domain within the CAR, highlighting crosstalk between signaling pathways. Furthermore, we show that a major source for Fas-TNFR activation derives from CAR T cells themselves via activation-induced Fas ligand upregulation, highlighting a universal role of Fas-TNFRs in augmenting CAR T cell responses. We have identified Fas-CD40 as the optimal chimera for overcoming Fas ligand-mediated kill and enhancing CAR T cell efficacy

    Extension and Dynamics of the Andes inferred from the 2016 Parina (Huarichancara) Earthquake

    Get PDF
    The M w 6.1 2016 Parina earthquake led to extension of the south Peruvian Andes along a normal fault with evidence of Holocene slip. We use InSAR, seismology and field mapping to determine a source model for this event and show that extension at Parina is oriented NE-SW, which is parallel to the shortening direction in the adjacent sub-Andean lowlands. In addition, we use earthquake source models and GPS data to demonstrate that shortening within the sub-Andes is parallel to topographic gradients. Both observations imply that forces resulting from spatial variations in gravitational potential energy are important in controlling the geometry of the deformation in the Andes. We calculate 9 the horizontal forces per unit length acting between the Andes and South America due to these potential energy contrasts to be 4 − 8 × 10 12 N per metre along-strike of the mountain range. Normal faulting at Parina implies that the Andes in south Peru have reached the maximum elevation that can be supported by the forces transmitted across the adjacent foreland, which requires that the foreland faults have an effective coefficient of friction <0.2. Additionally, the onset of extension in parts of the central Andes following orogen-wide compression in the late Miocene suggests there has been a change in the force balance within the mountains. We propose that shortening on weak detachment faults within the Andean foreland since ∼5-9 Ma reduced the shear tractions acting along the base of the upper crust in the eastern Andes, leading to extension in the highest parts of the range

    Climate fluctuations and the spring invasion of the North Sea by Calanus finmarchicus

    Get PDF
    The population of Calanus finmarchicus in the North Sea is replenished each spring by invasion from an overwintering stock located beyond the shelf edge. A combincation of field observations, statistical analysis of Continuous Plankton Recorder (CPR) data, and particle tracking model simulations, was used to investigate the processes involved in the cross-shelf invasion. The results showed that the main source of overwintering animals entering the North Sea in the spring is at depths of greater than 600m in the Faroe Shetland Channel, where concentrations of up to 620m -3 are found in association with the overflow of Norwegian Sea Deep Water (NSDW) across the Iceland Scotland Ridge. The input of this water mass to the Faroe Shetland Channel, and hence the supply of overwintering C. finmarchicus, has declined since the late 1960s due to changes in convective processes in the Greenland Sea. Beginning in February, animals start to emerge from the overwintering state and migrate to the surface waters, where their transport into the North Sea is mainly determined by the incidence of north-westerly winds that have declined since the 1960s. Together, these two factors explain a high proportion of the 30-year trends in spring abundance in the North Sea as measured by the CPR survey. Both the regional winds and the NSDW overflow are connected to the North Atlantic Oscillation Index (NAO), which is an atmospheric climate index, but with different time scales of response. Thus, interannual fluctuations in the NAO can cause immediate changes in the incidence of north-westerly winds without leading to corresponding changes in C. finmarchicus abundance in the North Sea, because the NSDW overflow responds over longer (decadal) time scales

    Notch ligation by Delta1 inhibits peripheral immune responses to transplantation antigens by a CD8⁺ cell–dependent mechanism

    No full text
    Notch signaling plays a fundamental role in determining the outcome of differentiation processes in many tissues. Notch signaling has been implicated in T versus B cell lineage commitment, thymic differentiation, and bone marrow hematopoietic precursor renewal and differentiation. Notch receptors and their ligands are also expressed on the surface of mature lymphocytes and APCs, but the effects of Notch signaling in the peripheral immune system remain poorly defined. The aim of the studies reported here was to investigate the effects of signaling through the Notch receptor using a ligand of the Delta-like family. We show that Notch ligation in the mature immune system markedly decreases responses to transplantation antigens. Constitutive expression of Delta-like 1 on alloantigen-bearing cells renders them nonimmunogenic and able to induce specific unresponsiveness to a challenge with the same alloantigen, even in the form of a cardiac allograft. These effects could be reversed by depletion of CD8⁺ cells at the time of transplantation. Ligation of Notch on splenic CD8⁺ cells results in a dramatic decrease in IFN-γ with a concomitant enhancement of IL-10 production, suggesting that Notch signaling can alter the differentiation potential of CD8⁺ cells. These data implicate Notch signaling in regulation of peripheral immunity and suggest a novel approach for manipulating deleterious immune responses
    corecore