252 research outputs found

    N-Acetylcysteine improves mitochondrial function and ameliorates behavioral deficits in the R6/1 mouse model of Huntington\u27s disease

    Get PDF
    Huntington\u27s disease (HD) is a neurodegenerative disorder, involving psychiatric, cognitive and motor symptoms, caused by a CAG-repeat expansion encoding an extended polyglutamine tract in the huntingtin protein. Oxidative stress and excitotoxicity have previously been implicated in the pathogenesis of HD. We hypothesized that N-acetylcysteine (NAC) may reduce both excitotoxicity and oxidative stress through its actions on glutamate reuptake and antioxidant capacity. The R6/1 transgenic mouse model of HD was used to investigate the effects of NAC on HD pathology. It was found that chronic NAC administration delayed the onset and progression of motor deficits in R6/1 mice, while having an antidepressant-like effect on both R6/1 and wild-type mice. A deficit in the astrocytic glutamate transporter protein, GLT-1, was found in R6/1 mice. However, this deficit was not ameliorated by NAC, implying that the therapeutic effect of NAC is not due to rescue of the GLT-1 deficit and associated glutamate-induced excitotoxicity. Assessment of mitochondrial function in the striatum and cortex revealed that R6/1 mice show reduced mitochondrial respiratory capacity specific to the striatum. This deficit was rescued by chronic treatment with NAC. There was a selective increase in markers of oxidative damage in mitochondria, which was rescued by NAC. In conclusion, NAC is able to delay the onset of motor deficits in the R6/1 model of Huntington\u27s disease and it may do so by ameliorating mitochondrial dysfunction. Thus, NAC shows promise as a potential therapeutic agent in HD. Furthermore, our data suggest that NAC may also have broader antidepressant efficacy

    Simulating the detection of the global 21 cm signal with MIST for different models of the soil and beam directivity

    Full text link
    The Mapper of the IGM Spin Temperature (MIST) is a new ground-based, single-antenna, radio experiment attempting to detect the global 21 cm signal from the Dark Ages and Cosmic Dawn. A significant challenge in this measurement is the frequency-dependence, or chromaticity, of the antenna beam directivity. MIST observes with the antenna above the soil and without a metal ground plane, and the beam directivity is sensitive to the electrical characteristics of the soil. In this paper, we use simulated observations with MIST to study how the detection of the global 21 cm signal from Cosmic Dawn is affected by the soil and the MIST beam directivity. We simulate observations using electromagnetic models of the directivity computed for single- and two-layer models of the soil. We test the recovery of the Cosmic Dawn signal with and without beam chromaticity correction applied to the simulated data. We find that our single-layer soil models enable a straightforward recovery of the signal even without chromaticity correction. Two-layer models increase the beam chromaticity and make the recovery more challenging. However, for the model in which the bottom soil layer has a lower electrical conductivity than the top layer, the signal can be recovered even without chromaticity correction. For the other two-layer models, chromaticity correction is necessary for the recovery of the signal and the accuracy requirements for the soil parameters vary between models. These results will be used as a guideline to select observation sites that are favorable for the detection of the Cosmic Dawn signal.Comment: Accepted for publication in the Astrophysical Journa

    Correction to:Expanding controlled donation after the circulatory determination of death: statement from an international collaborative (Intensive Care Medicine, (2021), 47, 3, (265-281), 10.1007/s00134-020-06341-7)

    Get PDF
    The article “Expanding controlled donation after the circulatory determination of death: statement from an international collaborative”, written by Domínguez-Gil, B., Ascher, N., Capron, A.M. et al. was originally published electronically on the publisher’s internet portal on 21 February 2021 without open access. With the author(s)’ decision to opt for Open Choice the copyright of the article changed on 25 March 2021 to © The Author(s) 2021 and the article is forthwith distributed under a Creative Commons Attribution this article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/4.0/. The original article has been corrected

    Ground based ultraviolet remote sensing of volcanic gas plumes

    Get PDF
    Ultraviolet spectroscopy has been implemented for over thirty years to monitor volcanic SO2 emissions. These data have provided valuable information concerning underground magmatic conditions, which have been of utility in eruption forecasting efforts. During the last decade the traditionally used correlation spectrometers have been upgraded with miniature USB coupled UV spectrometers, opening a series of exciting new empirical possibilities for understanding volcanoes and their impacts upon the atmosphere. Here we review these technological developments, in addition to the scientific insights they have precipitated, covering the strengths and current limitations of this approach

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    corecore