650 research outputs found
Self-aligned 0.12mm T-gate In.53Ga.47As/In.52Al.48As HEMT Technology Utilising a Non Annealed Ohmic Contact Strategy
An InGaAs/InAlAs based HEMT structure, lattice matched to an InP substrate, is presented in which drive current and transconductance has been optimized through a double-delta doping strategy. Together with an increase in channel carrier density, this allows the use of a non-annealed ohmic contact process. HEMT devices with 120 nm standard and self-aligned T-gates were fabricated using the non-annealed ohmic process. At DC, self-aligned and standard devices exhibited transconductances of up to 1480 and 1100 mS/mm respectively, while both demonstrated current densities in the range 800 mA/mm. At RF, a cutoff frequency f/sub T/ of 190 GHz was extracted for the self-aligned device. The DC characteristics of the standard devices were then calibrated and modelled using a compound semiconductor Monte Carlo device simulator. MC simulations provide insight into transport within the channel and illustrate benefits over a single delta doped structure
Saltation transport on Mars
We present the first calculation of saltation transport and dune formation on
Mars and compare it to real dunes. We find that the rate at which grains are
entrained into saltation on Mars is one order of magnitude higher than on
Earth. With this fundamental novel ingredient, we reproduce the size and
different shapes of Mars dunes, and give an estimate for the wind velocity on
Mars.Comment: 4 pages, 3 figure
A two-species continuum model for aeolian sand transport
Starting from the physics on the grain scale, we develop a simple continuum
description of aeolian sand transport. Beyond popular mean-field models, but
without sacrificing their computational efficiency, it accounts for both
dominant grain populations, hopping (or "saltating") and creeping (or
"reptating") grains. The predicted stationary sand transport rate is in
excellent agreement with wind tunnel experiments simulating wind conditions
ranging from the onset of saltation to storms. Our closed set of equations thus
provides an analytically tractable, numerically precise, and computationally
efficient starting point for applications addressing a wealth of phenomena from
dune formation to dust emission.Comment: 23 pages, 9 figure
Minimal size of a barchan dune
Barchans are dunes of high mobility which have a crescent shape and propagate
under conditions of unidirectional wind. However, sand dunes only appear above
a critical size, which scales with the saturation distance of the sand flux [P.
Hersen, S. Douady, and B. Andreotti, Phys. Rev. Lett. {\bf{89,}} 264301 (2002);
B. Andreotti, P. Claudin, and S. Douady, Eur. Phys. J. B {\bf{28,}} 321 (2002);
G. Sauermann, K. Kroy, and H. J. Herrmann, Phys. Rev. E {\bf{64,}} 31305
(2001)]. It has been suggested by P. Hersen, S. Douady, and B. Andreotti, Phys.
Rev. Lett. {\bf{89,}} 264301 (2002) that this flux fetch distance is itself
constant. Indeed, this could not explain the proto size of barchan dunes, which
often occur in coastal areas of high litoral drift, and the scale of dunes on
Mars. In the present work, we show from three dimensional calculations of sand
transport that the size and the shape of the minimal barchan dune depend on the
wind friction speed and the sand flux on the area between dunes in a field. Our
results explain the common appearance of barchans a few tens of centimeter high
which are observed along coasts. Furthermore, we find that the rate at which
grains enter saltation on Mars is one order of magnitude higher than on Earth,
and is relevant to correctly obtain the minimal dune size on Mars.Comment: 11 pages, 10 figure
Dune formation on the present Mars
We apply a model for sand dunes to calculate formation of dunes on Mars under
the present Martian atmospheric conditions. We find that different dune shapes
as those imaged by Mars Global Surveyor could have been formed by the action of
sand-moving winds occuring on today's Mars. Our calculations show, however,
that Martian dunes could be only formed due to the higher efficiency of Martian
winds in carrying grains into saltation. The model equations are solved to
study saltation transport under different atmospheric conditions valid for
Mars. We obtain an estimate for the wind speed and migration velocity of
barchan dunes at different places on Mars. From comparison with the shape of
bimodal sand dunes, we find an estimate for the timescale of the changes in
Martian wind regimes.Comment: 16 pages, 12 figure
Achilles tendon moment arm in humans is not affected by inversion/eversion of the foot: a short report
The triceps surae primarily acts as plantarflexor of the ankle joint. However, the group also causes inversion and eversion at the subtalar joint. Despite this, the Achilles tendon moment arm is generally measured without considering the potential influence of inversion/eversion of the foot during plantarflexion. This study investigated the effect of foot inversion and eversion on the plantarflexion Achilles tendon moment arm. Achilles tendon moment arms were determined using the centre-of-rotation method in MR images of the left ankle of 11 participants. The foot was positioned at 15° dorsiflexion, 0° or 15° plantarflexion using a Styrofoam wedge. In each of these positions the foot was either 10° inverted, neutral or 10° everted using an additional Styrofoam wedge. Achilles tendon moment arm in neutral foot position was 47.93 ± 4.54 mm and did not differ significantly when the foot was positioned in 10° inversion and 10° eversion. Hence, inversion/eversion position of the foot may not considerably affect the length of the Achilles tendon moment arm. This information could be useful in musculoskeletal models of the human lower leg and foot and when estimating Achilles tendon forces during plantarflexion with the foot positioned in inversion or eversion
The effect of the environment on the P1/P2 period ratio for kink oscillations of coronal loops
The P1/P2 period ratio of transversal loop oscillations is currently used for
the diagnostics of longitudinal structuring of coronal loops as its deviation
from 2 is intrinsically connected to the density scale-height along coronal
loops and/or the sub-resolution structure of the magnetic field. The same
technique can be applied not only to coronal structures, but also to other
oscillating magnetic structures. The oscillations in magnetic structures are
described by differential equations whose coefficients depend on the
longitudinal structure of the plasma. Using a variational principle written for
the transversal component of the velocity vector, developed earlier by McEwan
et al. (2008), we investigate how the different temperature of the environment
compared to the temperature of the magnetic structure will influence the P1/P2
ratio for typical coronal and prominence conditions. The possible changes are
translated into quantities that are used in the process of remote plasma
diagnostics in the solar atmosphere
A Continuum Saltation Model for Sand Dunes
We derive a phenomenological continuum saltation model for aeolian sand
transport that can serve as an efficient tool for geomorphological
applications. The coupled differential equations for the average density and
velocity of sand in the saltation layer reproduce both known equilibrium
relations for the sand flux and the time evolution of the sand flux as
predicted by microscopic saltation models. The three phenomenological
parameters of the model are a reference height for the grain-air interaction,
an effective restitution coefficient for the grain-bed interaction, and a
multiplication factor characterizing the chain reaction caused by the impacts
leading to a typical time or length scale of the saturation transients. We
determine the values of these parameters by comparing our model with wind
tunnel measurements. Our main interest are out of equilibrium situations where
saturation transients are important, for instance at phase boundaries
(ground/sand) or under unsteady wind conditions. We point out that saturation
transients are indispensable for a proper description of sand flux over
structured terrain, by applying the model to the windward side of an isolated
dune, thereby resolving recently reported discrepancies between field
measurements and theoretical predictions.Comment: 11 pages, 7 figure
Resonantly damped surface and body MHD waves in a solar coronal slab with oblique propagation
The theory of magnetohydrodynamic (MHD) waves in solar coronal slabs in a
zero- configuration and for parallel propagation of waves does not allow
the existence of surface waves. When oblique propagation of perturbations is
considered both surface and body waves are able to propagate. When the
perpendicular wave number is larger than a certain value, the body kink mode
becomes a surface wave. In addition, a sausage surface mode is found below the
internal cut-off frequency. When non-uniformity in the equilibrium is included,
surface and body modes are damped due to resonant absorption. In this paper,
first, a normal-mode analysis is performed and the period, the damping rate,
and the spatial structure of eigenfunctions are obtained. Then, the
time-dependent problem is solved, and the conditions under which one or the
other type of mode is excited are investigated.Comment: 19 pages, 9 figures, accepted for publication in Solar Physic
- …