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Outline

Science becomes particularly appealing when it makes contact with our own experience. Many
systems that fall into this category are subsumed under the notion soft condensed matter. They
are soft, because their macroscopic characteristics can be probed at energy, length, and time
scales amenable to us humans. Typical examples of soft-matter systems range from polymer
solutions, colloidal suspensions, liquid crystals, surfactants, foams, to granulates.1,2 Often, their
macroscopic phenomenology is described in terms of coarse-grained quantities, like average
particle concentrations, fluxes, transport coefficients, response functions, etc., which obey macro-
scopic (hydrodynamic) laws that rest on general physical principles, most prominently mass,
momentum, and energy conservation. Dealing with such averaged quantities, these laws may
represent drastic idealizations of the system, because they inevitably wipe out its heterogeneous
microstructure, as, for instance, characteristic for granular media and polymer solutions. And
indeed, such fluctuations often crucially influence the macroscopic properties of the soft ma-
terials and, in particular, their dynamic response. To estimate the consequential corrections to
the macroscopic laws, one has to resort to a microscopic description. One is then left with a
complicated many-body problem that can only be tackled numerically, by means of computer
simulations. An alternative approach that goes beyond the macroscopic level of description is
based on mesoscopic (pseudo-)objects and quantities that take relevant fluctuations into account,
while ignoring most of the “uninteresting” microscopic degrees of freedom. For the systems
considered in this thesis, identifying such mesoscopic entities turns however out to be quite
subtle and is often guided by some intuition and by the particular investigated problem. In this
regard, the approach used here is conceptually somehow related to the notion of quasi particles
or Cooper pairs, say, which were introduced as abstract mesoscopic entities in order to explain
complicated many-body phenomena, like the effective mass of an electron traveling through a
semiconductor or the superconductivity properties that arise from an electron-pair condensate.

Throughout this thesis, the concept of mesoscopicity is employed to theoretically investigate
and discuss two groups of soft-matter systems: (i) aeolian sand transport and the ensuing structure
formation and (ii) entangled solutions of stiff biopolymers. They both give rise to numerous
relevant and ubiquitous phenomena we encounter in our everyday lives. When you take a
walk along the beach on a windy day, you may, for instance, watch the irregular meandering
of wind-blown sand clouds and the formation of wavy sand ripples. This transport process
shapes arid regions on Earth and other extraterrestrial bodies. Biopolymers, on the other side,
are responsible for the mechanical properties of our cells and tissue. When you pull on your skin

1M. Kleman and O. D. Laverntovich, Soft matter physics: an introduction (Springer Science & Business Media,
2007).

2M. Doi, Soft matter physics (Oxford University Press, 2013).
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or stretch your muscles, you probe the mechanics of the cytoskeleton, which is the polymeric
meshwork inside our cells. Despite their obvious phenomenological dissimilarity, both sand
transport and biopolymer solutions feature a peculiar mesoscale structure that emerges from
their underlying microscopic physics and that carries over to the diverse macroscopic properties.
A common theme of the presented theoretical approaches is thus the attempt to identify effective
mesoscopic degrees of freedom that govern the macroscopic physics but are largely insensitive
to the many details of the complex microphysics.

Part I of the thesis discusses aeolian sand transport and the ensuing formation of a whole
hierarchy of sand structures, ranging from delicate ripple patterns to vast dune fields.3 The
very transport process itself is of distinct stochastic nature, mainly due to the inherently erratic
collisions of the hopping grains with the sand bed. Describing the transport statistics and
dynamics thus requires a sound understanding of these bed collisions and the ensuing splash
process of the bed grains. In a first step, we address this task by developing an analytical
splash model that is based on the collision geometry and fundamental physical principles, like
momentum and energy conservation. It predicts the full rebound and ejection statistics and it
gives rise to a first emergent mesoscopic length scale, namely the average hop height of splashed
bed grains. This height turns out to be of particular relevance for the mesoscale structure of the
wind-driven transport layer, as it echoes the presence of two qualitatively different types of grain
trajectories: short trajectories of the low-energy ejected bed grains and long trajectories of fast
grains that create the ejecta during their successive bed collisions. This insight gives rise to a
so-called two-species approximation to the complicated transport statistics. Its main concept is
illustrated in Fig. 1a. For wind-dependent averages, like the height-integrated mass flux, we find
this approach to be in better agreement with various wind-tunnel data than the conventional
mean-field (i.e., single-trajectory) models. However, since our splash model provides us with the
full splash statistics, we are actually able to go beyond the two-species approximation and to
derive an analytical description of the full mesostructure of the transport layer. This statistical
approach allows us to identify various emergent mesoscopic length scales, like the mean hop
length, the characteristic transport-layer height, or, most eminently, the so-called saturation
length. The latter is the characteristic length needed for the transport process to respond to a
perturbation in wind strength or sand availability. It is of particular relevance, as it is expected to
essentially correspond to the minimum size of a sand dune.

The aforementioned concept of mesoscopicity—and the necessity of taking some of the
nontrivial fluctuations into account—is best illustrated for the wind-strength dependence of the
saturation length. It has been discussed very controversially in the literature, with apparently
contradictory proposals for its wind dependence. Here, we are able to reconcile them using
coarse-grained computer simulations that rest on our splash model. In particular, we show that
intermittent turbulent wind fluctuations, which are paramount in the field, drastically influence
the dependence of the transient transport on the average wind strength. To understand the field
data, these fluctuations have to be taken into account and must not be dismissed.

Besides the stochastic bed collisions and the intermittent turbulent wind-speed variations, it
is the polydispersity of the irregular sand grains that crucially influences the transport physics.
The mesoscale heterogeneities arising from this polydispersity are responsible for the formation

3For convenience, citations are omitted in the rest of this outline. Please consult the main text of the thesis for
references to the relevant literature.
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Figure 1: Mesoscopic concepts employed in this thesis. (a) Aeolian sand transport is characterized
by a broad distribution of grain trajectories. Due to the hopping grains’ bed collisions, it exhibits
a bimodal structure, which suggests to approximate the whole ensemble (indicated by the grey
trajectories) by two representative species. The corresponding mesoscale transport modes
“saltation” and “reptation” represent that the long wind-blown trajectories and the passive ejecta,
respectively. The background image shows a snapshot of wind-blown sand grains taken in the
wind tunnel at the Thermocinetique Nantes Laboratory (image credit: BBC; kindly provided by
Alexandre Valance). (b) The physics of a pure solution of biopolymers is dominated by their
entanglements. They constrain the thermal motion of a test filament (red), effectively confining
it to a tube-like cage (blue) that is collectively formed by surrounding filaments (gray). The
microscopic image in the back shows an F-actin solution, with a fraction of 1/1000 of the filaments
being fluorescently labeled (image credit: Evelin Jaschinski).

of a particular bedform, called megaripples. They stand out from normal sand ripples and dunes
due to the characteristic—typically bimodal—grading of the sand they are made from. We thus
suggest wind-driven sorting of polydisperse sand as a prerequisite for the megaripple formation:
fine-grain winnowing (due to erosion) leaves behind a surface lag of coarse grains from which
the megaripples are formed. The coarse grains moreover provide an armoring layer that makes
the megaripples particularly robust against wind gusts, allowing them to become much larger
than the fragile and highly transient normal ripples made from nearly monodisperse sand. The
combination of sand polydispersity, the heterogeneous mesostructure of aeolian sand transport,
and the turbulent wind fluctuations is thus key to the megaripples’ formations, evolution, and
their stability. From our splash model for to poly- or bidisperse sand mixtures, we first identify
the creep-like motion of the coarse bed grains that are mobilized by fast fine-grain impacts
as the important transport process responsible for the megaripple formation. Secondly, we
explain the accumulation of coarse surface lag by means of an erosion-driven sand-sorting model.
And thirdly, we analyze a number of field observations and measurements, which reveal that
the megaripples have a lot in common with (isolated) sand dunes. Indeed, their morphology,
dynamics, and stability turn out to be well understood from a “reptation-dune” model.

Emergent mesoscopic length scales will also play a central role in Part II of the thesis, where
we discuss the physics of biopolymer solutions. A very prominent paradigm of such a length scale



iv

is the persistence length of a semiflexible polymer. It is defined as the characteristic contour
length over which the local polymer direction is randomized. In physical terms, it is a measure
for the polymer’s bending stiffness—and it thus abstractly represents the microscopic chemical
binding structure of the adjacent monomers of the filamentous macromolecule. The value of
the persistence length thereby echoes the balance between enthalpic and entropic free energy
contributions, which is of central importance for the biopolymer physics. While the enthalpic
bending rigidity favors a straight rod-like shape, entropic free-energy contributions originating
from thermal contour fluctuations favor a coiled polymer conformation. From a slightly different
perspective, one might say that the zero-temperature limit of the polymer (which actually is a
rigid rod) is “dressed up” by thermal bending fluctuations—quite similar to the saturation length
for the aeolian sand transport that is dressed up by intermittent wind fluctuations in the field.

An even richer mesoscale structure appears as we go from the isolated single polymer to
entangled solutions of many polymers. Since the polymers cannot pass through each other, they
are topologically constrained to a region in phase space that can only be reached by geometrically
allowed polymer fluctuations once the system has been prepared (if these constraints are assumed
to be conserved). More precisely, neighboring polymers of a test polymer form a tube-like
confinement cage that impedes the test polymer’s bending fluctuations. This is the principal
idea of the tube model for entangled semiflexible polymer solutions, illustrated in Fig. 1b. Only
polymer segments shorter than some characteristic length, called the entanglement length, can
equilibrate within this tube, longer fluctuation modes are topologically impeded. The bending free
energy that is stored in these impeded modes is now argued to be responsible for the mechanical
response of the solutions. This again underscores the pertinence of the (thermal) fluctuations
that can be incorporated into a mesoscopic concept—the tube—, which in turn serves as a very
handy concept for predicting the macroscopic properties. It allows us to investigate the influence
of imposed nematic order and an externally applied shear deformation on the mesoscale packing
structure. Eventually, we discuss the viscoelastic response of entangled biopolymer solutions.
As a main conclusion, we argue that nonaffine contributions and frictional (or sticky) polymer
contacts may be responsible for various experimental observations that cannot be predicted by
the standard affine tube model, especially for the nonlinear rheology that exhibits a softening–
stiffening transition as a function of the polymer concentration, polymer length, deformation
rate, and various solvent properties. In these regards, the purely entangled solutions exhibit close
similarities to (transiently) crosslinked polymer networks, as we detail in the last section of the
thesis.

In terms of publications, it is fair to say that I was far more productive in the field of aeolian
sand transport than in that of biopolymers. As a consequence, Part I happened to become slightly
longer, while Part II is more like a short literature review that might serve as a solid starting point
for future work. For the same reason, I found it appropriate to include a not yet finished study
about the viscoelastic response of biopolymer solutions to the last section. It proposes a new
modeling perspective that aims to explain some of the above mentioned rheological phenomena
on the basis of the mesoscale structure of entangled biopolymer solutions.
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Part I

Aeolian sand transport and
megaripple formation
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CHAPTER 1
Introduction

Sand is the most ubiquitous example for granular matter. Defined as a loose assembly of grains
of sizes between about 100 microns to a few millimeters [1], its physics is determined by the
collective behavior of athermal, dissipatively interacting particles1 and its rich phenomenology
shares features of solids, liquids, and gases [3]. Here, dissipation can originate from the inelastic
grain deformations, from a viscous solvent, and from the sliding friction between contacting
grains [4–6]. The main reason for the non-trivial behavior of granular media is that the typical
grain size (>1 µm, in order to be athermal) is often only a few orders of magnitude below the
size of the considered system, so that their heterogeneous microstructure becomes noticeable
on macroscopic scales and hydrodynamic approaches that rest on the system’s large-scale
homogeneity are not generally applicable. Moreover, the inelastic interactions tend to create
mesostructures, e.g., via inelastic collapse, jamming, etc. This gives rise to a hierarchy of scales
that determines the statistics and dynamics of granular systems. Solid-like properties of a granular
material, for instance, emerge on the mesoscopic scale, when mechanical load is transmitted
along contact chains that extend throughout the whole granular packing [7, 8]. Such force chains
can cause a pressure dip under the apex of a static sand pile [9, 10] and lead to dangerously large
local pressure peaks at the wall of a silo. Since thermal fluctuations are not sufficient to move
the grains, granular systems are usually trapped—or jammed [11–14]—in metastable states far
from equilibrium [15]. Jamming due to the mesoscopic contact networks formed by a granular
packing is also responsible for its complex viscoelastic and plastic dynamical response when
driven by imposed stresses [16–22]. Another famous example for a very peculiar property of
granulates is the volume increase upon shearing, called dilatancy, due to which wet beach sand
becomes dry as it is deformed under your feet.

The heterogeneous nature of granular media also plays an important role for the physics
of aeolian sand transport, which is the wind-driven erratic grain hopping you can occasionally
observe on a windy day at the beach. This highly stochastic non-equilibrium process attracts

1Athermal means that the macroscopic grains do not undergo Brownian motion. The reader might, however,
question the combination “athermal” and “dissipatively interacting”: the microscopics responsible for the dissipation
(due to dry/viscous friction or grain deformation) is of course of thermal nature, leading to an increase of the overall
entropy as the granulate cools down via collisions [2].

3



4 CHAPTER 1. INTRODUCTION

hop length

⟨ℓ⟩ ℓsat Lmin

10−3 10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102
P
(ℓ
)

rip
pl
es

m
eg
ar
ip
pl
es

du
ne
s

m
eg
ad
un

es

10−3 10−2 10−1 100 101 102 103 104
0

10

20

30

40

50

ℓ, L [m]

dρ
/
dl
n
L

Figure 1.1: Hierarchy of scales associated with aeolian sand transport. The typical hop-length
distribution P(ℓ) (blue, our theoretical prediction of Ref. [52] with model parameters obtained
by fitting field data by Namikas [53] for the vertical sand flux) is compared to field data for
the length L of various aeolian bedforms gathered in one histogram (red, ρ is the relative area
fraction, adapted from Ref. [41]). The strong length-scale separation between the mean hop
length ⟨ℓ⟩ and the saturation length ℓsat is plainly echoed by the void between ripples and dunes—
only megaripples that are made from polydisperse sand can populate this otherwise forbidden
wavelength gap. The arrows at the top axis show the theoretically expected values for ⟨ℓ⟩, the
lower bound of ℓsat, and the ensuing minimum dune size Lmin ≈ 35ℓsat predicted for typical dune
sand [52]. (Note that ℓsat diverges near the transport threshold, as we discuss in Chap. 3.)

the physicist’s interest, for various reasons. It combines the hybrid gas-, fluid-, and solid-like
character of granular media due to the strong density variations, from very dilute in the upper part
of the transport layer to randomly packed in the sand bed [23, 24]. Further, it is responsible for a
whole hierarchy of the most accessible and widely observed examples of spontaneous structure
formation in the desert. Ranging from fragile sand ripples and long-lived megaripples [25–30]
over dunes [31, 32] and megadunes (or draas) [33–36] to vast dune fields [37–39], these structures
span orders of magnitude in size, from a few centimeters to kilometers [40–42] (see Fig. 1.1).
They inevitably emerge whenever a (turbulent) flow meets loose grains. Not only deserts and
beaches are decorated with such aeolian features, they can also be found on snowscapes [25].
Also wavy patterns on riverbeds have been shown to be essentially down-scaled cousins of
desert dunes [43–46]. And even the sandy surfaces of our extraterrestrial neighbors Venus, Mars,
Saturn’s moon Titan, and the very recently observed comet 67P/Churyumov-Gerasimenko are
evidently shaped by wind, with abundant morphometric structures that share many features
with their relatives on Earth, despite the different ambient conditions [1, 47–51]. (See Sec. 1.2, for
a brief discussion of our current understanding about the aeolian transport on Mars.)

Besides the creation of this impressive hierarchy of sand waves, the sediment movement by
a turbulent flow is also responsible for a number of interesting ecologically and economically
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Figure 1.2: Bottom-up approach to aeolian structure formation.

relevant geological phenomena, like desertification [1], erosion [54, 55], dust proliferation [56–
59], hazardous shifting sands [42, 60–62], and, ultimately, rock structure and composition [63,
64]. Its far-reaching implications and manifold applications clearly make aeolian sand transport
an important interdisciplinary topic that concerns physics, meteorology, geology, and even
chemistry and biology [1, 42].

1.1 Bottom-up approach to aeolian structure formation

Modern desert geomorphology is inextricably linked with the name of R. A. Bagnold, a British
engineer and veteran of both world wars, whose pioneering field journeys and laboratory
investigations back in the 1930s and 40s have inspiredmany researches ever since. The exploratory
approach by Bagnold and many of his successors was—and still is–essential to gain insight into
the phenomenology of the fascinating wind-created features in the desert and of the various
processes responsible for there emergence. A systematic theoretical understanding, however,
calls for a bottom-up approach that starts from the grain-scale physics and goes all the way up
to the wind-shaped sand structures. Thanks to the vast experimental and theoretical progress
made over the last decades, we are now in the position to follow such an ambitious program. Its
principal structure is outlined in Fig. 1.2.

At the basis of this hierarchy is the dissipative collisions of the sand grains—more precisely,
the collisions between hopping grains and bed grains. During this splash process, an impacting
grain can bounce off the bed grains and eject some of them if it is sufficiently fast. Crucially
controlled by mesoscopic contact network in the bed-grain packing, these highly stochastic bed
collisions give rise to a characteristic mesoscopic structure of the lower region of the transport
layer, where the statistics of the grain trajectories turns out to follow remarkably universal laws,
as we detail in Chaps. 2 and 3. The combination of the dissipative splash with the interaction
between hopping grains and the turbulent air flow is the fundamental mechanism at the grain
scale of aeolian sand transport. When the momentum (or energy) transferred from the air to
the grains is balanced by the dissipation rate due to the bed collisions, the transport becomes
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stationary, whereas any imbalance will give rise to transients, during which the sand transport
rate relaxes towards its steady-state value. Such changes in the mass of the blown sand go along
with erosion or deposition of sand, which means they change the topography. The topography,
in turn, alters the (space- and time-dependent) turbulent flow field, which feeds back to the local
transport conditions. This interplay between transport, topography, and flow field gives rise to
an important mesoscopic structure of aeolian sand transport (not the only one, as we will discuss
in Chap. 4) and is at the core of aeolian structure formation at the meso- and macroscopic scales,
as illustrated by the dashed box in Fig. 1.2.

One of the main goals of this first part of the thesis, finally reached in Chap. 4, is to develop a
theoretical description for so-called megaripples—wind-created structures of a few decimeters
up to meters in length that are made from polydisperse sand, usually of bimodal grain-size
distribution [26, 27, 29, 40, 41]. They are formed under erosive wind conditions that lead to a
deflation lag of coarse grains, which build an armoring layer that stabilizes the sand bed and
makes the wind-shaped structures resistant to pervasive wind gusts. Megaripples can therefore
become older and larger than normal ripples made from unimodal sand (cf., Fig. 1.1). Although
coarse grains at the bed surface are not transported efficiently by the wind, they move downwind
with the help of fine-grain bombardment—a transport mode called creep or reptation [40, 65,
66]. A physically sound description of the transport of polydisperse sand is thus vital to the
understanding of the formation and evolution of megaripples. Following the hierarchy of Fig. 1.2,
we first take a closer look into the physics of the bed collisions in Chap. 2, with a particular
emphasis on bidisperse sand mixtures. In Chap. 3, this splash description is used to develop
two closely related transport models for wind-blown monodisperse sand. The first one divides
the grain trajectories into two species corresponding to wind-blown fast saltating and ejected
reptating bed grains, very much reminiscent of a bidisperse-sand approximation to megaripples.
The second approach goes beyond this extended mean-field picture and derives the whole
distribution of trajectories from the splash statistics. In Chap. 4, we finally consider a model
for erosive wind-driven sand sorting, which predicts coarse bed grains to accumulate at the
surface, and combine it with the results for the bidisperse bed collisions in order to describe the
megaripples that are made from the coarse deflation lag. As the typical reptation length of these
bigger bed grains is on the order of their own size, megaripples are characterized by a strong scale
separation between the responsible transport process and the ripple size, similar to what holds
for large sand dunes. And indeed, megaripples and sand dunes share various features and can be
well modeled along the same lines, when one plugs in the correct length scale characterizing the
underlying transport process, as we demonstrated in Ref. [67] (attached to Chap. 4), where we
established a “reptation-dune” description for the megaripples.

In the remainder of this introduction, I would like to give a short overview of the relevant
literature and the recent experimental and theoretical achievements related to aeolian sediment
transport.

1.2 A short survey of the literature

Written more than 75 years ago, Bagnold’s classic text book “The Physics of Blown Sand and
Desert Dunes” [40] must be considered as the bible in the context of wind-blown sand transport
and the related structure formation. It provides a comprehensive view of the rich phenomenology
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and the underlying physics and is an excellent starting point to familiarize yourself with this
subject. Bagnold’s treatise starts with the grain-scale mechanism of the transport process and the
crucial interplay between wind and the hopping grains, with many references to his own seminal
wind tunnel studies. His overview on the formation, morphology, and dynamics of sand ripples,
megaripples (called ridges by Bagnold), and dunes has become the basis for various branches of
geomorphological research established over the past decades.

Scientific progress after Bagnold’s influential work is for example documented in the books
“Wind as a geological process on Earth, Mars, Venus and Titan” by R. Greeley and J. D. Iversen [1],
“Aeolian Sand and Sand Dunes” by K. Pye and H. Tsoar [42], and “Physics and Modelling of Wind
Erosion” by Y. Shao [56]. The first one stands out from this collection due to its particular focus on
extraterrestrial aeolian features, which are discussed by the authors in various contexts ranging
from the grain-scale physics (especially, the transport threshold), over the morphology of aeolian
bedforms, to abrasion, erosion, and dust transport. The analysis by Greeley and Iversen is mainly
guided by phenomenological aspects and field observations, quite similar to the approach by Pye
and Tsoar, two researches with a strong background in sedimentology and geomorphology, whose
book covers the properties and formation of aeolian sediments, the formation and dynamics of
aeolian bedforms, and outreaching topics like the anthropogenic impact on dune areas and the
vegetation and stabilization of dunes. (Further details on sedimentology and dust can also be
found in K. Pye’s classic book “Aeolian dust and dust deposits” [68].) Shao’s book has a clear
focus on the underlying physical principles and on theoretical modeling. Being closest to his own
research, the chapters on aeolian erosion, dust emission, and dust transport definitely provide a
profound introduction to these subjects.

Aeolian sediment transport is a topic of active research. The quite substantial recent experi-
mental and theoretical progress has been gathered in various review articles [45, 46, 57, 69–73].
An important motivation for the present research clearly comes from the elaborate experimental
techniques [73], ranging from particle tracking and laser Doppler velocimetry [23, 74–77] over
low/high pressure wind tunnels [73, 78] to long-term records in the field [79–81]. Over the last
years, field measurements on our own planet have been substantially complemented by data for
aeolian features observed on extraterrestrial bodies, most prominently on Mars, either remotely
taken by orbiters or acquired during landing missions [47–50]. The combination of these manifold
observations with profound theoretical modeling approaches and extensive computer simulations
have paved the road towards a comprehensive understanding of the statistical and dynamical
characteristics of the transport process and its mesoscopic nature, which manifests itself in the
heterogeneous structure of the transport layer and in the sand patterns that emerge from the
seemingly chaotic grain-scale process.

Structure formation. Theoretical attempts have been very successful in describing the for-
mation and evolution of aeolian sand dunes and their subaqueous analogs [45, 46, 57, 69, 72].
The main reason for this success is the strong scale separation between the grains’ average hop
length and the typical size of the dune. In fact, a simple mean-field continuum model [82, 83]
that maps the complex grain hopping onto a single representative grain trajectory has provided
very accurate and non-trivial predictions about many interesting features of sand dunes, such
as their non-universal shapes, their minimum size as a function of the atmospheric conditions,
their growth and migration dynamics, etc. [43, 84–88] But such a highly coarse-grained model is
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unlikely sufficient to yield much insight regarding the structure formation on the very scale that
was deliberately washed out in its formulation. That the length of the typical grain trajectory
sets the wavelength of these smaller ripple patterns was already hypothesized by Bagnold [40],
later called into question by (apparently too simplistic) modeling approaches [89], and only
recently substantiated by means of full-fledged grain-scale computer simulations that clarified
the seemingly mysterious interplay between the high- and low-energy grain populations in the
transport layer [90]. Classifying the ensemble of trajectories into such two species has also been
proven instrumental for an accurate, yet technically manageable, analytical description of the
transport process[91, 92]. We will come back this approach in Chap. 3.

Grain collisions and splash. On the grain-scale level, good progress has been achieved from
the concentrated effort to systematically investigate the dissipative grain collisions and the
various mechanisms contributing to the total force exerted on the hopping grains. Chapter 2
starts with a commented list of the relevant works on grain collisions and, in particular, on the
splash process when wind-blown grains hit the sand bed. Regarding the force contributions, it is
fair to say that gravity and drag largely dominate the grain trajectories [57]. Other secondary
hydrodynamic forces, like Archimedes, added-mass, Basset, Magnus, and Saffman force are much
smaller and often neglected in transport models. A concise overview of these contributions can
be found in Ref. [70].

Electrostatic interactions. In addition to the hydrodynamics, electrostatic interactions can
influence the grain trajectories. The electrification of wind-blown sediment has been observed
in various wind-tunnel [93] and field [94–96] experiments. It is usually traced back to the
triboelectric charging during grain collisions of different size (including the bed or a wall [97]),
with smaller grains becoming negatively charged [98]. Combined with the size-dependent hop
heights [99–105], the charges are separated in the transport layer and build up an electric field. An
alternative explanation relates the charge separation to the collisions of grains that are polarized
by an external [106] and/or their own [107–110] electric field. The resulting electric forces are
argued to be of high relevance for both the entrainment process and the suspension of light
dust particles [57, 71], but they may also enhance the transport of the normal sand grains [77,
111, 112]. On the other side, triboelectric charging may lead to attractive forces between the
grains, making them less susceptible to the wind, especially on extraterrestrial surfaces where
the chemical properties of the grains make them more likely to become charged [113]. Despite
the recent progress, the triboelectric charging process itself remains still purely understood, its
manifold consequences call for further systematic experimental studies and theoretical attempts.

Wind fluctuations. Similarly, various questions regarding the important influence of inter-
mittent turbulent wind fluctuations (see Sec. 3.5.2) on the transport process and the structure
formation [57, 70] are yet unanswered. This becomes particularly evident for wind strengths fluc-
tuating around the transport threshold, where the measurements repeatedly sample the initiation
and cessation process [114] (Sec. 3.5.5). The latter is characterized by a distinct hysteresis, i.e.,
stronger winds are required to initiate the transport than to sustain it. The gap between the two
threshold wind strengths is believed to be especially pronounced on Mars and is therefore held
responsible for the current activity of Martian aeolian sand features despite the relatively low aver-
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age wind strength [115–118]. Also under terrestrial conditions, the highly non-linear dependence
of, e.g., the transport rate [119] or the size of aeolian sand dunes [120] and (mega)ripples [79]
on the wind strength leads to nontrivial effects, namely that their time averages can deviate
markedly from their values taken at the average wind strength. So, any field measurement is
decorated with systematic “errors” due to the pervasive wind fluctuations, and theoretical models
should account for them in terms of fluctuation-induced renormalizations of their predictions [52,
119, 121]. Despite the recent effort made in controlled wind-tunnel experiments [122, 123],
extensive field studies [124–126], and theoretical modeling approaches [127–130], our insight
into the complicated interplay between the wind-speed variations and the transiently responding
transport and its consequences for the sand patterns observed in the field is still rudimentary.
Unraveling the impact of the wind variations on the structure formation would require a large
number of long-term records, only sparsely available today. From a theoretical perspective,
the combination of intermittent wind fluctuations with the stochastic nature of the transport
itself seems particularly interesting and challenging [124, 131, 132]. Future studies should also
investigate this complex interplay between such fluctuations and the heterogeneity arising from
a distribution of grain sizes [101] (see also Sec. 3.5.5).

Sand polydispersity. Natural sand is always polydisperse, because it is created by quite
chaotic processes, like turbulent transport, breaking up crustal rock and crushing by weathering,
erosion, abrasion, etc. [42] These processes are expected to give rise to log-normal [133] or,
after the sand has been transported by wind, to log-hyperbolic [134] grain-size distributions,
as indeed frequently observed in the field [135]. The sand’s polydispersity plays a crucial role
for several phenomena already mentioned above: megaripples, for instance, are characterized
by bimodal grain-size distributions [80] and large enough grain-size ratios are thought to be
needed for efficient triboelectric charging [93]. While the transport of mixed sand has been
studied in various field [100, 101, 105] and wind-tunnel [99, 102, 104, 136] experiments, the
physics governing the transport of sand mixtures is relatively poorly understood. Some modeling
approaches [101, 137–139] have accounted for distributed grain sizes. But, a purely qualitative
discussion by Martin and Kok [105], who aimed at disentangling the various contributions to the
size-dependence of the height-resolved transport characteristics, reveals that solid systematic
predictions are still lacking. A major challenge is surely a reasonable parametrization of the bed
collisions in coarse-grained models. The theoretical approach we proposed in Ref. [140] may
help to bridge this divide in the future (see Chap. 2).

Aeolian sand transport and structure formation on Mars. The numerous field surveys
and wind-tunnel studies on our own planet have been complemented by orbiter and rover
missions on Mars, which allowed for detailed investigations of the abundant aeolian features. As
we will discuss in Chap. 3, the more dilute atmosphere and lower gravity on Mars leads to long
grain trajectories [141], so that Martian dunes [85, 142], ripples, and megaripples [140] are larger
than their terrestrial analogs. Another consequence of the particular atmospheric conditions on
Mars is that the threshold wind strength at which aeolian sand transport sets in is about one
order of magnitude larger than on Earth [1, 85] (see Sec. 3.5.5 of Chap. 3). The high threshold
implies that relatively strong storms are required to create and evolve the sand structures. As
mentioned above, this limitation might be relaxed by the prevalent wind fluctuations, together
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with a pronounced hysteresis effect due to the very small threshold wind strength at which once
initiated transport ceases [85, 116, 128]. Combined with intermittent turbulent wind fluctuations,
the hysteresis has been argued to be responsible for the numerous currently active (i.e., migrating,
growing/shrinking) aeolian features observed on Mars, despite the average wind is expected to
be below the fluid threshold [115–118, 128, 143–146]. Anyhow, Martian wind gusts seem to be
strong enough to cause rather frequent dust storms and to keep the observed sand structures at
some locations similarly active as on Earth [117, 145, 146]. Large ripple-like patterns referred to as
“transverse aeolian ridges” (TARs) in the literature [48], are very robust against storms and seem
to be immobile over years—a property they share with the biggest gravel-covered megaripples
on Earth [147–149]. The pronounced hysteresis of the transport was also put forward as an
explanation for the formation of ripples from grains that are so fine that they are expected to be
entrained directly into suspension by the wind—once lifted by a short gust, the fine sand might
form ripples as long as the wind strength remains above the much lower impact threshold [118].

The mechanism of sustained transport after a burst-like gust was recently called into question
by Sullivan and Kok [150]. Referring to wind tunnel experiments [40, 132] that indicate that such
temporary transport quickly ceases once the upwind sand supply is turned off (see pp. 31–32 of
Ref. [40]), they argued that the self-sustained transport at lower wind strengths is rather unlikely.
As one reads through the aforementioned recent articles (e.g., Refs. [117, 145, 146]), one might get
the impression that the apparent contradiction between the present wind conditions on Mars and
the observed activity of various aeolian features could be a result of a deep-rooted misconception:
it is widely argued that sand grains of some representative size cannot be transported at the typical
wind strength. However, both the wind and the susceptibility for sand grains to be transported
(and mobilized) are of immanently stochastic character—the grains, for instance, vary in size,
roughness, and geometry or their location at the sand bed (protruding form vs. sheltered by
other bed grains, located at the ripple trough vs. crest), which may be subsumed into an effective
grain-size distribution. While the wind fluctuations dominate the actual transport mode on Earth
(e.g., “saltation streamers” follow the turbulence structures of local high energy density [131,
151]), the wide gap between the fluid and impact thresholds on Mars gives more weight to the
heterogeneity of the sand itself. As a consequence of the sand dispersity, transport can be initiated
at relatively low wind speeds—close to the impact threshold of the average grain—by mobilizing
only a certain fraction of the bed grains. When these grains gain enough kinetic energy during
their flight to eject some of the immobile bed grains during the bed collisions, steady transport
is possible [150]. A comprehensive investigation of the activity of aeolian sand transport and
the ensuing structure formation on Mars should thus combine the sand and intermittent wind
statistics with the transport physics. Despite the numerous publications that touch this problem
(see, for instance, the computer simulations proposed by Dupont et al. [131]), such an approach,
with application to the particular Martian atmospheric conditions, is still lacking.



CHAPTER 2
The splash process

Dissipative collisions between hopping grains and the sand bed are at the core of aeolian sand
transport. A physically sound parametrization of this splash process is thus an integral part
of any transport model, while providing itself an interesting and theoretically challenging
phenomenon that combines various outstanding properties of granular matter. It is determined by
two elementary physical ingredients: dissipative inter-particle contacts and the collision geometry
between the incident grain and the bed grains. What makes it theoretically appealing (and
challenging) is its stochastic character and, in particular, the complicated impact-driven ejection
of the bed grains, which depends on the irregular bed geometry and the momentum/energy
distribution along contact chains in the granular packing.

The splash process has been intensively studied in wind-tunnel experiments for saltating
sand [136, 152–157], ice/snow [158–160], mustard seeds [158], and plastic beads [157], and by
shooting sand [27, 161], glass [162], steel [163], and plastic grains [164–167] into a quiescent bed
packing. While the impact speed and impact angle of the saltating grains in the wind tunnel can
be influenced only indirectly, namely via the wind strength [155, 159] and the bed slope [153],
they can be varied systematically in the shot experiments, which allow to analyze the influence
of these variables on various observables, like the rebound/ejection speed, the rebound/ejection
angle, the total/vertical restitution, and the number of ejected grains. In most experiments that
have been performed in the past, the sand samples were approximately monodisperse with a
mean grain diameter between 100 and 600 µm. Rice et al. [136] used polydisperse sand, which
they dyed according to three size fractions in order to analyze the influence of the impator–
bed grain-size ratio on the splash statistics during the saltation process. Nishida et al. [168]
performed collision experiments for impactor–bed combinations of various densities and sizes.
Besides the experimental effort, further insight has been gained from discrete-element computer
simulations in two [161, 169–175] and three dimensions [174, 176], and, more recently, also
for polydisperse granulates [175, 177–181]. To interpret these manifold observations and to
make them applicable for analytical and numerical transport models, various coarse-grained
theoretical models have been proposed in the past [139, 140, 160, 182–187]. However, guided by
experiments and computer simulations, some of them rest on rather simplistic parametrizations
for the rebound and the ejection process, namely via effective macroscopic restitution coefficients

11
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and an effective energy/momentum balance [139, 166, 183], whereas only few approaches aim at
deriving the splash properties from the underlying physics, determined by the dissipative grain
collisions and the impactor–bed geometry [160, 184–186]. Moreover, the splash models often
lack simple predictions that can be directly used to fit the data or applied in transport models,
and most attempts are restricted to monodisperse sand, while we know that the influence of
poly-/bidispersity on the transport is essential for, say, the formation of megaripples [26, 27, 29,
40, 41]. We took this as a motivation to propose a new splash model [140] that allows for arbitrary
size ratios between the incident grain and the hit bed grains. Besides this major achievement,
our formalism enabled us to derive a number of simple analytical results describing the splash
statistics, like the velocity distribution of the rebounded impactor and the number and velocity
distribution of the ejected bed grains. The full model is presented in the article attached at the
end of this chapter.

2.1 The basic physics of the splash process

The microscopic basis of the splash process is the inelastic deformation of and the friction
between the contacting grains, which are conveniently described by normal and tangential
restitution coefficients. In principle, they both depend on the relative velocity and the size of the
colliding particles [188, 189], which can be approximately resolved by viscoelastic models (i.e.,
a Hookian/Hertzian spring plus a dash pot), as done in various simulations [169, 171, 173, 174,
176, 181]. However, the minor quantitative corrections introduced by these dependencies can be
neglected to fair accuracy [184], because most splash properties are dominated by the collision
geometry [182]. In fact, it was shown in Refs. [140, 160] that the rebound statistics obtained in
experiments and simulations can be accurately described within such a simple approach, and
that the bed-grain ejection crucially depends on the energy/momentum splitting cascade in the
grain packing [160, 184, 186], but not so much on the details of the velocity restitution at the
grain contacts. As a direct consequence, both the ejection statistics and thus the lower region of
the transport layer exhibit a universal structure, as for instance reflected by the grain-velocity or
hop-height distributions (see Chap. 3).

In general, the bed collisions can be quantified in terms of the so-called splash function [65,
160]

P(v ′,v ′
1,v

′
2, . . . |v) , (2.1)

which is the probability density function for the rebound velocityv ′ and the ejection velocities
v ′
1,v

′
2, . . . of the mobilized bed grains that reach a certain height (on the order of the grain size)

above the bed for a given the impact velocityv . For both conceptual and practical reasons, the
splash process is usually divided into the rebound of the impacting grains and the ejection of the
bed grains. Equation (2.1) is then split up into a rebound probability of the form Preb(v

′ |v) and
a velocity distribution Pej(v

′
1 |v) of the ejected grains, while the number N of ejected grains is

approximated by its average, given by a function N (v) of the impact velocity. Often, it is even
more convenient to rewrite the velocities in terms of their absolute values and corresponding
impact/rebound/ejection angles and to discuss the pairwise dependencies between these quantities
separately.
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Coarse-grained models for the grain splashing typically start with the overall energy and
momentum balance [56, 139]

1
2mv

2 =
1
2m(v ′)2 +

1
2
∑
n

mn(v
′
n)

2 + Ebed , (2.2a)

mv =mv ′ +
∑
n

mnv
′
n + pbed (2.2b)

between the impact and the sum of the rebound, ejection, and some bed contributions, given
by the dissipated energy Ebed lost to the sand bed and the total momentum pbed taken up by the
bed. Here,m andmn refer to the masses of the impactor and the n-th ejected bed grain. The
common ansatz to get rid of the unknown dissipation term is to assume Ebed ∝ (m/2)v2 with
some numerical prefactor that is obtained by fitting the model predictions to experiments or
simulations. Kok and Renno [139] used a “friction-free” version of Eqs. (2.2), with Ebed = 0 and
pbed = 0, to estimate whether energy or momentum provides the stronger constraint on the total
number of ejected grains. To this end, they replacedv ′

n by the average ejection velocity and all
velocity vectors in Eq. (2.2b) by their absolute values. While the first approximation is uncritical,
the interpretation of the scalar momentum balance seems highly dubious. Very recently, Comola
and Lehning [187] used the same approach, but argued that, due to the shallow impacts typical for
saltation, the horizontal components of themomenta largely exceed the vertical ones, such that the
latter may be neglected in the momentum balance. This again is highly questionable and neglects
the essential character of the bed collisions, namely that they convert the horizontal momentum
of the impacting grains into vertical movement of both the rebounded and ejected grains. Based
on their simplification, Kok and Renno found that saltation is dominantly constrained by the
scalar momentum balance. Combined with the assumed proportionality v ′ ∝ v between rebound
and impact speed and the (empirically suggested) constant ejection velocity v ′

n = vej that does
not depend on v , this immediately yields an affine law N ∝ (v − vbed)/vej for the number of
ejected grains, which is indeed in agreement with collision experiments [164–167] and computer
simulations [161, 169, 171, 174]. Despite this apparent success, some caution seems in order,
because it is often hard to decide whether N depends affinely on v or follows some (weak)
power law [166], and, moreover, the energy budget analyzed in the experiments and simulations
suggests that an energy balance in fact holds [167, 190]. Instead of the weakly founded and
somehow misleading coarse-grained momentum balance, the statics of the ejecta should rather
be traced back to the collision chains in the bed packing [160]. This was, for instance, done
by Ho et al. [186], who used a fragmentation model to describe the energy splitting at each
grain contact in the packing. This gives rise to a log-normal energy distribution for the ejected
grains, in excellent agreement with wind-tunnel experiments performed by the same authors. In
Ref. [140] (attached below this section), we used this approach to predict the number of ejected
grains and their mean velocity as a function of the impact speed and the impact angle. The
good agreement with collision experiments again supports the energy-fragmentation picture.
An important consequence of this branching process is the very weak influence of the impact
energy on the energy distribution for the ejected bed grains. The average energy transmitted to
a bed grain is then roughly given by the minimum kinetic energy for which the fragmentation
cascade ends, which is on the ordermaд, withm being the grain mass, a its diameter, and д the
gravitational acceleration. Defining the ejected grains as those that reach at least a minimum
height of their own size, their average ejection height is then found to be on the order of 10a
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and largely independent of the impact velocity. In Chap. 3, the log-normal ejection-energy (or
ejection-height) distribution and the average ejection height will serve as the fundamental starting
point for formulating a model for aeolian sand transport that resolves the whole distribution of
grain trajectories.
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simulations. We extract a set of analytical asymptotic relations for shallow impact geometries, which can readily
be used in coarse-grained analytical modeling or computer simulations of geophysical particle-laden flows.
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I. INTRODUCTION

Granular flows are ubiquitous in nature and frequently en-
countered in everyday life. Their profound understanding is a
necessary prerequisite for designing and improving processing
steps in industry as well as for predicting hazards like rockfall,
avalanches, or devastating shifting sands. In particular, the
grain hopping excited by strong winds shapes arid regions on
Earth or other astronomical bodies, thereby creating a whole
hierarchy of structures that span orders of magnitude in size.
The collisions of the hopping grains with the sand bed result in
a dissipative rebound and grain splashing. These are essential
features that need to be understood to predict aeolian transport
and the whole ensuing structure formation.

Since Bagnold’s [1] pioneering investigations back in the
1940s, grain-bed collisions have been studied in wind tunnels
[2–7], by shooting steel or plastic beads onto a quiescent
granular bed [8–14], and in (event-driven) computer simula-
tions [15–19]. The general aim is to parametrize the complex
stochastic process by the so-called splash function [20]. It
provides the average velocity of the rebounding grain after the
collision and the average number and the velocity distribution
of bed particles ejected in the splash, given the velocity of the
impacting particle and the size ratio of the impacting particle
to the bed particles. Unequal grain sizes are of interest, because
field observations indicate that aeolian structure formation may
be linked to grains sorting, as observed in megaripples [21–23].
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For their theoretical understanding, a robust and reliable
parametrization for the splash function of bidisperse granulates
could be of great help. To establish such a parametrization
based on physical arguments and mathematical modeling was
a major motivation for the study reported below.

We divide the presentation into two parts, according to the
two physical processes at work during the splash process, the
rebound of the impacting grain and the impact-driven ejection
of bed grains. The first process appears to be both conceptually
and technically less complex, as it can, in a reasonable approxi-
mation, be reduced to a two-body scattering problem. This can
be analyzed straightforwardly by means of a combination of
elementary geometric considerations and basic physical prin-
ciples, like momentum conservation. In the first part of Sec. II,
we show how various rebound observables, e.g., rebound an-
gles and coefficients of restitution, their dependence on impact
angle and impactor-bed grain-size ratio, and their distributions
can be obtained from such an approach. Then we illustrate
that the predictions compare well with experimental data
available form the literature and with our own discrete-element
computer simulations. The second process, grain splashing
from the bed, is a full-fledged many-body problem that is much
harder to grasp and requires a smart ansatz to formalize the
complex momentum propagation through the disordered grain
packing. It is analyzed in Sec. III, based on a fragmentation
model that is applied to the energy-splitting process in the
bed, as recently proposed by Ho et al. [24]. The combination
of the results from Secs. II and III constitutes a complete and
self-contained description of the splash process with various
potential applications, as outlined in the concluding section.

II. REBOUND PROCESS

The starting point of our analysis of the impacting grain’s
rebound is a purely geometric picture, where the bed packing
is approximated by a bumpy wall of infinite mass. To
account for finite-mass effects on the energy dissipation during

2470-0045/2017/95(2)/022902(13) 022902-1 Published by the American Physical Society
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FIG. 1. The two-dimensional collision model. The spherical
impactor of diameter d1 strikes the homogeneous flat bed with impact
velocity v1 and bounces off the target bed grain of diameter d2

located at the origin. Without the bed grains, the impactor would
cross the x axis at R1. The rebound velocity v′

1 is computed using two
independent coefficients of restitution for the tangential and normal
component of v1 according to Eq. (6). As a consequence, the rebound
speed is proportional to the impact speed, |v1|′ ∝ |v1|, which can thus
be scaled out, so it suffices to characterize the impactor by its impact
angle θ1 only.

the rebound, we introduce effective bead-bead restitution
coefficients that have the same form but different values
as the “microscopic” restitution coefficients characterizing
binary collisions. Introducing a phenomelogically motivated
dependence on the impactor-bed grain-size ratio allows for a
simple and transparent discussion of the geometry that yields
manageable analytical predictions.

For pedagogical reasons, we first present a two-dimensional
version of our rebound model that can straightforwardly be
extended to three dimensions. As the predictions turn out
to be relatively insensitive to the dimensionality, the simpler
two-dimensional version suggests itself as the more promising
starting point for most practical purposes. It can easily be
solved analytically and provides asymptotic scaling laws for
various quantities of interest.

A. Two-dimensional collision model

Our formal description of the rebound process is similar
to the two-dimensional model proposed by Rumpel [25],
who considered a regular packing of identical spheres hit
by an impactor of the same size as the bed grains. As a
first generalization, we account for different diameters d1

and d2 of the impactor and the bed grains, respectively. In
the following, all lengths are given in units of the mean
diameter d ≡ (d1 + d2)/2, so d1 + d2 = 2. We denote the
impact velocity by v1 and label all postcollision quantities by
a prime. The collision geometry and the main quantities that
we use to describe the rebound are summarized in Fig. 1. The
rebound velocity of the impinging particle, for instance, reads
v′

1. For given impact velocity v1, the statistical distribution

P (A|v1) = δ{A − f [v′
1(v1,n̂)]}

= 1

d2

∫ x0+d2

x0

dx δ{A − f [v′
1(v1,n̂)]} (1)

with mean

A(v1) =
∫

dAAP (A|v1) = 1

d2

∫ x0+d2

x0

dx f [v′
1(v1,n̂)] (2)

of an observable function A = f (v′
1) of the rebound velocity

is obtained by averaging over all possible impact positions x.
We have taken them to be uniformly distributed over the width
d2 of one bed grain. The implicit x dependence of f originates
from the normal unit vector n̂ ≡ n̂(x) of the bed surface that
is obtained from the collision condition

n̂ = R1 − tv1 (3)

between the bed grain located at the origin and the impactor
that would cross the x axis at R1 = (x,0) at time t = 0, see
Fig. 1. The collision time t = R1 · v1/|v1|2 + (1/|v1|2)[(1 −
R2

1)|v1|2 + (R1 · v1)2]1/2 is obtained by inserting Eq. (3) into
n̂2 = 1, which yields the normal vector

n̂ = (1− v̂1v̂1) · R1 −
√

1 − R1 · (1− v̂1v̂1) · R1 v̂1 (4)

on the bed-grain surface at the collision point, where v̂1 ≡
v1/|v1| denotes the normalized velocity vector. This impact
direction is most conveniently characterized in terms of the
impact angle θ1 as v̂1 = (cos θ1, sin θ1). Besides the (relative)
bed coarseness d2, the impact angle θ1 crucially affects
the value of the leftmost impact position x0 in Eqs. (1)
and (2). Determining x0 from the contact condition between
the impactor and the bed grain located at the origin requires
us to discriminate between shallow and steep impact angles.
For shallow impact trajectories, the smallest value of x0 is
obtained for a trajectory that is tangential to the left neighbor
of the central grain; for steep trajectories, it is determined by
the impact position at which the impactor hits the two bed
grains at once. This yields

x0 =
{

cscθ1 − d2, 2 sin θ1 < d2,

cot θ1

√
1 − (d2/2)2 − d2/2, else.

(5)

Note that the value of the scaled bed grain diameter d2

ranges from 0 to 2, corresponding to big and small impactors,
respectively.

Before we can evaluate the integrals in Eqs. (1) and (2),
we have to specify the (implicit) x dependence of the function
f [v′

1(v1,n̂)]. To this end, we model the momentum dissipation

v′
1(v1,n̂) = [−α n̂n̂ + β(1− n̂n̂)] · v1 (6)

during the rebound in terms of the effective restitution
coefficients

α = 1 + ε

1 + μ
− 1 and β = 1 − (2/7)(1 − ν)

1 + μ
(7)

for the normal and the tangential velocity component of the
rebounding grain, respectively. The expressions for α and β

are derived for two inelastically colliding spheres of mass ratio
μ, where the total momentum is taken to be conserved and the
energy dissipation is determined by the microscopic restitution
coefficients ε and ν for the normal and tangential component
of the relative surface velocity of the collision partners. (The
latter can be taken to be material parameters, independent of
the grain sizes and impact speed.) We outline this classical
calculation in Appendix A. To account for the nontrivial
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grain-size dependence of the energy dissipation in the bed, we
freely interpret the grain-mass ratio as an effective parameter
that interpolates between the exactly known asymptotic scaling
μ ∼ d3

1/d3
2 [26] for small grain-size ratios d1/d2 � π/2 and a

phenomenological value that accounts for the high number of
excited bed grains for large d1/d2 → ∞. In the first case,
energy transfer to the packing becomes negligible, so the
rebound process reduces to a binary collision. In the second
case, for large impactors (d1/d2 	 1), the large number of
excited bed grains makes the collision highly dissipative, for
which we impose the limit μ ∼ ε, so the normal rebound
velocity vanishes (α → 0). The expression

μ = εd3
1

/(
d3

1 + εd3
2

)
, (8)

provides a plausible parametrization that fulfills both of these
conditions.

Inserting Eq. (4) for the normal vector n̂ into Eq. (6)
and recalling that R1 = (x,0), we get the wanted dependence
of f [v′

1(v1,n̂)] on the impact position x. In particular, for
the identity function f [v′

1(v1,n̂)] = v′
1(v1,n̂), we obtain the

components

v′
1x

|v1| = −α cos θ1 + (α + β)x2 sin2 θ1 cos θ1

+ (α + β)x sin2 θ1

√
1 − x2 sin2 θ1, (9a)

v′
1z

|v1| = α sin θ1 − (α + β)x2 sin3 θ1

+ (α + β)x sin θ1 cos θ1

√
1 − x2 sin2 θ1, (9b)

of the rebound velocity v′
1 = (v′

1x,v
′
1z). It follows that the

rebounding grain continues moving downward into the
bed after the first collision if 1/(1 + β/α) < x2 sin2 θ1 −
x cos θ1

√
1 − x2 sin2 θ1. In this case, it thus collides with an

adjacent second bed grain. In the remainder of the current
section, we neglect such secondary collisions for simplicity,
which allows us to derive analytically manageable expressions
for the asymptotic scaling of various averages. Further below,
it is demonstrated that only marginal errors are incurred by
this approximation.

1. Shallow impacts (θ1 � π/2).

To facilitate the following analysis, we now make the x

dependence of the function f in Eq. (1) explicit and identify
f (x) = f [v′

1(v1,n̂)]. The x integral in Eq. (1) can be evaluated
if all branches f −1

i of the inverse of f (x) are known. For
shallow impacts, θ1 � π/2, there exists only a single branch
and the rebound distribution evaluates to

P (A|v1) ∼
{

1
d2

∣∣ df −1

dA

∣∣, 0 < cscθ1 − f −1(A) < d2,

0, else,
(10)

where we inserted the first line of Eq. (5) for x0. As an example
for an interesting observable, consider the rebound angle,
i.e., f (x) = θ ′

1 = arctan(v′
1z/v

′
1x). Replacing x in Eq. (9) by

the shifted coordinate x + d2 − cscθ1, we obtain its exact
shallow-impact asymptotics θ ′

1 ∼ (1 + α/β)
√

2(d2 − x)θ1 −
θ1. Inserting this into Eq. (10), we calculate the statistical

distribution

P (θ ′
1|θ1) ∼

{
β2(θ1+θ ′

1)
(α+β)2d2θ1

, 0 <
β(θ1+θ ′

1)
(α+β)

√
2d2θ1

< 1,

0, else,
(11)

and mean

θ ′
1 ∼ (2/3)(1 + α/β)

√
2d2θ1 − θ1. (12)

of the rebound angle. The same procedure can be applied to
the total and the vertical restitution e ≡ |v′

1|/|v1| and ez ≡
v′

1z/|v1z|, respectively. For small θ1, e ∼ β − (β2 − α2)(d2 −
x)θ1/β and ez ∼ −β + (α + β)

√
2(d2 − x)/θ1 follows from

Eq. (9) after shifting the x coordinate by cscθ1 − d2. Inserting
these asymptotically exact results into Eq. (10) yields

P (e|θ1) ∼
{

β

(β2−α2)d2θ1
, 0 <

β(β−e)
(β2−α2)d2θ1

< 1,

0, else,
(13)

e ∼ β − (β2 − α2)d2θ1/(2β), (14)

and

P (ez|θ1) ∼
{

(ez+β)θ1

(α+β)2d2
, 0 <

ez+β

(α+β)
√

2d2/θ1
< 1,

0, else,
(15)

ez ∼ −β + (2/3)(α + β)
√

2d2/θ1. (16)

2. Steep impacts (θ1 ≈ π/2)

For steep impacts, similar relations can be derived by
expanding the observables θ ′

1, e, and ez, introduced above, in
the impact angle θ1 up to linear order around π/2. This strategy
provides analytical expressions for their mean values, obtained
by averaging over the impact position x, but gives no access
to their distributions. The reason is that the x dependence
A = f (x) of an observable A is now nonlinear (in contrast to
the shallow-impact expansions), which precludes the inversion
x = f −1(A), required in Eq. (1). Reasonable approximations
of the distributions can nevertheless be obtained by expanding
f (x) up to first or second order in x, as documented in
Appendix B together with further technical details of the
steep-impact expansion. Here, we only quote the first-order
asymptotics of the mean rebound angle, the mean total
restitution, and the mean vertical restitution, respectively:

θ ′
1 ∼ π − θ1 + sin−1(d2/2)

√
4/d2

2 − 1(θ1 − π/2)

+ tan−1

⎛
⎝ β/α√

4/d2
2 − 1

⎞
⎠√

4/d2
2 − 1(θ1 − π/2), (17)

e ∼ (1/4)
√

4α2 + (β2 − α2)d2
2

+ α2

(β2 − α2)d2
tanh−1

[
β2 − α2

4α2 + (β2 − α2)d2
2

]
, (18)

ez ∼ α − (α + β)d2
2/12. (19)

3. Full numerical solution

The numerical solution of the proposed rebound model is
illustrated in Fig. 2, where θ ′

1, e, and ez are plotted against the
impact angle θ1 and the impactor-bed grain-size ratio d1/d2.
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FIG. 2. The two-dimensional collision model predicts the mean
rebound angle θ ′

1 = arctan(v′
1z/v

′
1x), the total restitution e ≡ |v′

1|/|v1|,
and the vertical restitution and ez ≡ v′

1z/|v1z| as a function of the
impact angle θ1 and the impactor-bed grain-size ratio d1/d2 from an
average over the possible impact positions of the regularly packed
bed. Solid lines represent the asymptotic scaling relations, Eqs. (12),
(14), (16), and (17)–(19) derived for shallow and steep impacts,
respectively. The microscopic restitution coefficients are ε = 0.75
and ν = 0.

The plots reveal that the asymptotic relations for shallow and
steep impacts, Eqs. (12), (14), (16), and (17)–(19), shown as
dashed lines, indeed provide useful expressions if θ1 < 20◦

and θ1 > 80◦, respectively. Note that small impactors with a
large-enough impact angle are scattered backwards (i.e., to the
left in Fig. 1) for most possible impact positions, yielding a
mean rebound angle larger than 90◦, as it is the case for the 60◦

impacts shown in the upper right panel of Fig. 2 (green curve).
So far, we kept the two-dimensional formulation as simple

as possible in order to derive the above analytical relations. One
might suspect this approach to be too simplistic and therefore
prone to some unphysical artifacts. To obtain a more realistic
rebound description, we therefore account for a second recoil
from the bed grains, thereby suppressing negative (or too
large) rebound angles. This refinement provides only minor
quantitative corrections that can approximately be subsumed
into a moderate renormalization of the microscopic restitution
coefficients ε and ν, as illustrated in Sec. II D, where we
compare the various model versions with experimental data
and our computer simulations. More significant consequences
on the rebound statistics are obtained from a three-dimensional
extension of our model that we present in the following section.

B. Three-dimensional collision model

To extend the above toy model to three dimensions, we
represent the bed surface by a periodic hexagonal plane

packing of spheres. On contact, the vector connecting the
centers of the impacting grain and the bed grain with lattice
coordinates (i,j ) reads

R1ij ≡ [R1 − (i + j/2)d2ex − (
√

3/2)jd2ey]. (20)

Replacing its 2D analog R1i by this expression, all equations
of Sec. II A stay the same for the 3D model version. But
now, the average is over three parameters: two dimensions of
initial position and the horizontal angle of incidence, which
by symmetry needs to vary by π/3.

To compare with experiments employing a single camera,
we have to replace the rebound velocity with its projection

v′
1,iz = (1− qq) · v′

1, q ≡ v1 × ez/|v1 × ez|, (21)

on the plane viewed by the camera, for which we assume that
it is always the plane of incidence (i.e., spanned by v1 and
the z axis). As already pointed out above, such a collision
can result in a rebound velocity that points downwards, thus
leading to secondary collisions. Altogether, we thus end up
with four versions of our geometrical collision model: two
or three dimensional, each with one or two bed collisions,
which we label in the following as 2D, 2D2, 3D, and 3D2,
respectively. To keep the following analysis and comparison
with numerical and experimental data manageable, we will
not explicitly consider the 3D model version, because it
would neither provide any qualitatively new insight nor is
it computationally much more efficient, as we have to evaluate
both the 3D and the 3D2 version numerically, anyway.

To evaluate the difference between the two- and the
three-dimensional descriptions, we compare the distribution
P (θ ′

1|θ1) of the rebound angle θ ′
1 for given impact angle θ1

obtained from the 2D and 3D model version for various θ1

and d1/d2 in Fig. 3. The plot reveals that both approaches
yield rather similar distributions, suggesting that the much
simpler 2D version suffices in most applications. Only for
shallow impacts, we find that the two- and three-dimensional
approaches differ qualitatively: While the graph of the 2D
distribution has a triangular shape, as we also expect form the
asymptotic Eq. (11), its 3D analog appears to be smoothed,
with a considerable contribution of large rebound angles. The
latter is a consequence of the fact that an impactor can reach
relatively low—and thus quite steep—parts of a 3D packing
when it approaches the trough formed by three neighboring bed
grains. This three-dimensional effect can also be rationalized
by considering the 2D slices that cut through the regular
three-dimensional packing. They appear to be highly irregular,
characterized by strong variations of the size of the solid
disks and intermittent voids. It should thus be possible to
effectively simulate the effects due to the three-dimensional
collision geometry by introducing some surface irregularity
into the two-dimensional bed. This idea is addressed in the
next section.

C. Effective disordered two-dimensional bed

To effectively simulate the irregularities encountered along
two-dimensional cuts though a three-dimensional bed, we
introduce a distribution p(sd,sv) of the reduced disk and void
size sd and sv, respectively. Here sdd2 is the actual size of the
effective two-dimensional bed grains at the surface and svd2
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FIG. 3. The rebound angle distribution P (θ ′
1|θ1) as obtained from

the 2D and 3D version of our model. The qualitative differences
are most significant for small impact angles θ1 and can be traced
back to the irregular packing of two-dimensional slices through a
regular three-dimensional granular packing. We effectively account
for this effect by introducing a uniform distribution of void sizes
between neighboring bed grains in the 2D model. Thereby, we can
analytically determine the asymptotic form of P (θ ′

1|θ1) for shallow
impacts, Eq. (30) (dashed lines in the lower panels), which reproduces
the bell shape obtained from the numerically evaluated full 3D model
rather than the triangular shape predicted by Eq. (11) (dashed lines
in the upper panels). The microscopic restitution coefficients are ε =
0.75 and ν = 0.

the void size between them. For each pair (sd,sv), the bed may
be considered a regular lattice with periodicity (sd + sv)d2. The
distribution and mean of an observable A(v1) that characterizes
the rebound of an impactor of velocity v1 now read

P (A|v1) =
∫

dsddsv
p(sd,sv)

(sd + sv)d2

×
∫ x0+sdd2

x0−svd2

dx δ{A − f [v′
1(v1,n̂)]} (22)

and

A(v1) =
∫

dsddsv
p(sd,sv)

(sd + sv)d2

∫ x0+sdd2

x0−svd2

dx f [v′
1(v1,n̂)],

(23)

respectively. The integrals in Eqs. (22) and (23) average over
the void to the left of the bed grain hit by the impactor, whereby
the range of the possible impact positions x is determined by

x0 =

⎧⎪⎨
⎪⎩

cscθ1 − sdd2, 2 sin θ1 < (sd + sv)d2,

cot θ1

√
1 − [(sd + sv)d2/2]2 − (sd − sv)d2/2,

else.

(24)

As the s dependence of x0 obviously complicates the cal-
culation of the double integral in Eq. (22), it is useful to
bring it into a more transparent form. Following the formalism
introduced in Sec. II A, we again make the x dependence of
the function f (x) = f [v′

1(v1,n̂)] in Eq. (22) explicit. The x

integral evaluates to the sum
∑

i |df −1
i /dA| over all branches

f −1
i of the inverse of f . In general, the support of each f −1

i is
not the whole image f ([x0 − svd2,x0 + sdd2]) of f but only a
subset of it. The integral thus becomes

P (A|v1) =
∑

i

∫
dsddsv

p(sd,sv)

(sd + sv)d2

∣∣∣∣∣df
−1
i

dA

∣∣∣∣∣χi(A), (25)

where the characteristic function χi(A) is one if A is in the
support of f −1

i and zero otherwise. Note that χi(A) depends
implicitly on s, as supp f −1

i is a subset of the (sv,sd)-dependent
image f ([x0 − svd2,x0 + sdd2]).

To determine the distribution p(sd,sv) is again a purely
geometrical, though complex, problem, which is further
complicated by the fact that, for a two-dimensional cut through
a three-dimensional packing, sd and sv are not independent
of each other. Here, we thus propose a rather simplistic
approach that can be easily used to derive a number of results.
Testing them against experiments, computer simulations, and
(in particular) the full 3D model introduced above eventually
allows us to assess the quality of our simplified model for
p(sd,sv). First, we neglect the correlations between sd and sv

and assume that the effect of the bed surface irregularities is
sufficiently characterized by a fixed bed grain size d2 and a
uniform void-size distribution:

p(sd,sv) ≈ δ(sd − 1)

{
1/(b − a), a < sv < b,

0, else. (26)

The complex dependence on the grain-size ratio and the impact
angle is thereby delegated to the values of a and b that serve
to parametrize the effect of the three-dimensional scattering
geometry in terms of the two-dimensional void size. In general,
the minimum void size b can take negative values but must
be larger than −1, as the target grain becomes completely
screened by its left neighbor for sv = −1. The maximum void
size b can basically take arbitrarily large values.

The precise geometry for higher impact angles is somewhat
involved. However, the comparison between the two- and
three-dimensional approaches in Fig. 3 reveals that the
rebound statistics differ qualitatively only for shallow impacts,
whereas for steeper impact angles the simple two-dimensional
framework already seems to capture the main characteristics of
the impact statistics for the three-dimensional geometry quite
well. We thus restrict the following analysis to very shallow
impacts.

1. Shallow impacts (θ1 � π/2)

For shallow impacts, the expressions for the minimum and
maximum void size take the simple form

a ∼ −1, b ∼ −1 +
√

3, (27)

respectively, independent of the grain-size ratio and impact
angle. The target bed grain is completely screened for the
minimum sv = a, while the impactor is tangent to the next
neighbor in front of the trough-forming bed grains for the
maximum sv = b.

As the inverse f −1 of f (x) consists of only a single branch,
both f and f −1 are monotonic functions and the effect of the
characteristic function χ1(A) = 1 is equivalent to the interval
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condition −svd2 < f −1(A) < sdd2, for which the rebound
distribution in Eq. (25) becomes

P (A|v1) ∼ 1

d2

∣∣∣∣df −1

dA

∣∣∣∣
∫ ∞

s0

dsd

∫ ∞

−s0

dsv
p(sd,sv)

sd + sv
(28)

with s0 ≡ f −1(A)/d2. Here we shifted the x coordinate by
x0 = cscθ1 − d2, as given in the first line of Eq. (24). The

latter requires that 2 sin θ1 < (1 + sv)d2, which is actually not
always fulfilled, because sv becomes as small as a = −1,
according to Eq. (27). For small θ1, however, we argue
that the so-introduced error is inconsequential compared to
the approximation of the void- and disk-size distributions.
Inserting the uniform void size-distribution, Eq. (26), with
the asymptotic estimates of a and b given in Eq. (27), we
can perform the sv integration to obtain the following compact
form of the rebound distribution:

P (A|v1) ∼
{ |df −1/dA|√

3d2
ln

√
3d2

d2−f −1(A) , 0 < d2−f −1(A)<
√

3d2,

0, else.
(29)

Substituting the shallow-impact scaling of the rebound angle θ ′
1 ∼ (1 + α/β)

√
2(d2 − x)θ1 − θ1, the total restitution e ∼ β −

(β2 − α2)(d2 − x)θ1/β, and the vertical restitution ez ∼ −β + (α + β)
√

2(d2 − x)/θ1 for f (x) yields the distributions

P (θ ′
1|θ1) ∼

{
β2(θ1+θ ′

1)

(α+β)2
√

3d2θ1
ln 2(α+β)2

√
3d2θ1

β2(θ1+θ ′
1)2 , 0 <

β(θ1+θ ′
1)

(α+β)
√√

3d2θ1

< 2,

0, else,
(30)

P (e|θ1) ∼
{

β

(β2−α2)
√

3d2θ1
ln (β2−α2)

√
3d2θ1

β(β−e) , 0 <
β(β−e)

(β2−α2)
√

3d2θ1
< 1,

0, else,
(31)

P (ez|θ1) ∼
{

(ez+β)θ2
1

(α+β)2
√

3d2θ1
ln 2(α+β)2

√
3d2θ1

(ez+β)2θ2
1

, 0 <
(ez+β)θ1

(α+β)
√

2
√

3d2θ1

< 1,

0, else,
(32)

respectively. The corresponding mean values

θ ′
1 ∼ (4/9)(1 + α/β)

√
2
√

3d2θ1 − θ1, (33)

e ∼ β − (β2 − α2)
√

3d2θ1/(8β), (34)

ez − β + (4/9)(α + β)
√

2
√

3d2/θ1. (35)

are of the form of the corresponding expressions for the
two-dimensional bed in Eqs. (12), (14), and (16), with a
renormalized dimensionless bed grain size d2.

Although our analytical expressions rely on quite drastic
simplifications, their agreement with the full model is good
enough for computing qualitatively reliable predictions of the
rebound statistics. As an illustration, we compare the approxi-
mate relation for the rebound angle distribution, Eq. (30), with
the numerical solution of the 3D model for three different
grain-size ratios in Fig. 3.

D. Comparison with simulations and experiments

We now test the predictions of the various versions of
our model against experiments and computer simulations.
In summary, we find that the simplest two-dimensional
approach, even without a second collision, suffices to fit the
rebound averages for monodisperse granulates, i.e., as long as
d1/d2 = 1, whereas the dependence of these averages on d1/d2

can only qualitatively be reproduced by the two-dimensional
models, while quantitative predictions actually require some
three-dimensional information about the bed packing.

We start with the collision experiments by Beladjine et al.
[11], who shot plastic beads into a bed of similar beads to
obtain the mean rebound angle θ ′

1, the total restitution e, and
the vertical restitution ez as a function of the impact angle.
As shown in Figs. 4(a)–4(c), the numerically evaluated two-
and three-dimensional model versions compare well with these
data. For each version, the values of the (effective) microscopic
restitution coefficients ε and ν, which are used as global fit
parameters, are listed in Table I.

The dependence of the splash properties on the grain-size
ratio was addressed in only very few experimental studies
so far. Willetts and Rice [3], for instance, used dune sand
that is characterized by a unimodal grain-size distribution
ranging from about 150 to 600 μm, which they split into
three fractions—fine, medium, and coarse—to investigate the
influence of the size of the impactor on the rebound. From their
data we infer the grain-size ratios d1/d2 ≈ 0.73, 1, and 1.4,
whereby we identified d1 with the mean diameter of the fine,
medium, or coarse grain fraction and d2 with the overall mean.
The authors recorded the collision process in a wind tunnel
during saltation, i.e., when the grains are driven by the wind.
Altering the bed inclination, they were able to tune the impact
angle θ1 of the fast hopping grains and thereby to investigate its
influence on the mean rebound angle θ ′

1 and the total restitution
e. Again, we globally fit these data using ε and ν as free fit
parameters. The result, shown in Figs. 4(d) and 4(e), reveals
that the influence of the varying grain size is convincingly
reproduced by both the two- and three-dimensional approach.
To improve the qualitative agreement between the data and the
3D model version, we here manually set the grain-size ratios
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FIG. 4. Comparison with literature data. [(a)–(c)] The two-dimensional model with (2D2) and without (2D) a second bed collision compared
to the full three-dimensional version (3D2) and experimental data by Beladjine et al. [11] (dots) obtained for plastic PVC beads. Each model
version is fitted to the data for the mean rebound angle θ ′

1, the total restitution e, and the vertical restitution ez as a function of the impact
angle θ1 using the microscopic restitution coefficients ε and ν as global fit parameters. [(d) and (e)] Similar model fits to the wind-tunnel data
by Willetts and Rice [3] (symbols), who discriminated among fine, medium, and coarse grain fractions of the used sand sample to analyze
their measurements. (f) Also the empirical relation v′

1z/|v1| = 0.41(1 − 10−0.2d2/d1 ) for grain-size dependence of the mean vertical rebound
velocity for fixed impact angle θ1 = 14◦, proposed by Ellwood et al. [27] to fit their collision experiments with natural sand, is qualitatively
well reproduced. Values of the microscopic restitution coefficients ε and ν for all shown fits are given in Table I.

to d1/d2 = 0.75, 1, and 1.25, which corresponds to a slightly
smaller polydispersity of the sand sample than expected form
the measured grain-size distribution.

A few years before Willetts and Rice, Ellwood et al. [27]
used sieved natural sand to measure the vertical rebound speed
v′

1z for a fixed impact angle θ1 = 14◦ and various size ratios
d2/d1. From their data, they extracted an empirical formula
v′

1z/|v1| = 0.41(1 − 10−0.2d2/d1 ) that we compare in Fig. 4(f)
with the predictions of the two- and three-dimensional versions
of our collision model. Up to minor quantitative deviations in
the limit of fine impactors, d1/d2 < 0.2, all model versions
are found to be in very good qualitative agreement with the
empirical formula, which strongly supports our choice for the

TABLE I. Values of the microscopic restitution coefficients ε and
ν employed to fit the collision experiments with plastic beads by
Beladjine et al. [11], with natural sand by Willetts and Rice [3] and
Ellwood et al. [27], and our discrete-element simulations [9,28] by
our two-dimensional model with (2D2) and without (2D) a second
bed collision and its three-dimensional extension with a second bed
collision (3D2).

Plastic [11] Sand [3] Sand [27] Simulations

ε 0.70 0.94 0.46 0.67
2D ν −0.83 −1.2 −0.86 −1.5
2D2 ε 0.58 0.84 0.53 0.53

ν −0.24 −0.98 −1.4 −1.1
3D2 ε 0.58 0.86 0.68 0.79

ν −0.24 −0.97 −1.6 −0.69

dependence of the restitution coefficients α and β on the mass
ratio d3

1/d3
2 in Eqs. (7) and (8).

As all the currently available experimental data are limited
to rather confined parameter ranges—in particular, laboratory
studies on the influence of the grain-size ratio are still
lacking—we also test our model predictions against computer
simulations that allow us to freely tune these parameters.
Details about the discrete-element method that is employed
to simulate the collision of an impacting bead with a three-
dimensional packing of beads of varying size can be found
in Refs. [9,28]. The dissipative collision between two beads
at contact are quantified in terms of a friction coefficient
and a normal restitution coefficient, which we set to 0.3 and
0.8, respectively. As we found the rebound properties to be
independent (within the statistical error bars) of the impact
speed |v1|, we average all observables over the used |v1| = 20,
30, and 40 m/s. Figure 5 shows the so-obtained mean rebound
angle θ ′

1, the total restitution e, and the vertical restitution ez as
a function of the impact angle θ1 and the impactor–bed grain-
size ratio d1/d2 and compares them with the corresponding
predictions of the two- and three-dimensional version our
collision model. Again, we used the (effective) microscopic
restitution coefficients ε and ν as global fit parameters for
each model version. Their values are listed in Table I. Besides
such average quantities, the simulations provide us with the
full rebound statistics. As an example, we compare in Fig. 6
the distribution of the rebound angle with the numerical
solution of the three-dimensional model version with a second
collision and the asymptotic relation for shallow impacts
derived form the two-dimensional effective approach with a
uniform void-size distribution, introduced in Sec. II C.
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FIG. 5. Comparison with computer simulations: averaged re-
bound characteristics as a function of the impact angle θ1 and the
grain-size ratio d1/d2, as predicted by the 2D and 3D model versions
and compared with computer simulations that describe the collision
of an impacting bead with a 3D packing using a discrete-element
method [9,28].

III. BED GRAIN EJECTION

We finally turn to the theoretical description of the actual
splash, the ejection of bed grains by the impacting particle.
High-speed videos of the collision process reveal that bed
grains are not directly knocked out of the assembly by the
impactor, but that they rather leave from a relatively large area
of the bed, shortly after the impinging grain already bounced
off (see, e.g., [11]). This suggests a partial fluidization of the
bed caused by the momentum and energy transfer through the
initially quiescent grain packing.

Valance and Crassous [14] modeled this process theo-
retically by a numerical scheme that could be extended to
binary mixtures. They further proposed an alternative energy
diffusion approach that is easier to analyze, which could
also serve as a starting point for further studies. As yet
another approach, one could consider the force propagation
along force chains in a granular bed. Thereby one can, for
example, account for the pressure dip beneath the apex of a
sand pile produced by depositing grains from a nozzle. Its
occurrence depends on the history of the granular packing
(i.e., the preparation of the pile) and can be suppressed by
strong disorder and intergrain friction [29]. This behavior can
be linked to two different mathematical descriptions of the
stress propagation in static granular media, corresponding
to hyperbolic or elliptic differential equations. The former
gives rise to a type of ray propagation along force chains
and the second to “diffusive” stress fields similar to those
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FIG. 6. Comparison with computer simulations: rebound angle
distribution from the discrete-element simulations (symbols) com-
pared to the three-dimensional collision model (3D2) of Sec. II B
and the asymptotic scaling relation Eq. (29) for shallow impacts
obtained from the effective two-dimensional model (2Dv) with a
uniform void-size distribution.

in homogeneous elastica (see, e.g., the lecture notes by
Bouchaud [30] for an overview). One can actually derive
these macroscopic relations from simple force balances on
the grain contact level. However, this is only possible for a
static packing under the influence of gravity, where the weight
is transferred downwards from one grain layer to the other. For
momentum propagation the situation is far more complex: The
grains move and may therefore change the contact network,
and one has to account for momentum changes of all collision
partners. A possible starting point might be the force chain
splitting approach by Bouchaud and coworkers [30–32], who
proposed simple rules to create scattering paths through a
quenched random packing. Originally interpreted as static
force chains, the very same paths might tentatively be used
to model momentum propagation, which is highly suggested
by the experiments by Clark and colleagues, who analyzed
the force distribution [33,34] and the flow field [35] in a
granular bed hit by a large intruder. Particularly striking are
the videos of these experiments, see also Ref. [36] for an
example and a brief review of this work. The quasistatic
modeling approach by Bouchaud et al. was criticized, e.g., by
Wyart [37], for its lack of floppy modes, which turn out to be
essential for a proper understanding of the response of granular
packings to weak forces, in particular, for the characteristic
power-law distribution of small forces in the network. In our
case, however, we may tentatively argue that the force exerted
by the fast impacting grain is large and the tail of the weak
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contact forces is inconsequential for the splash, for which
gravity has to be overcome.

The approach we want to pursue here is mainly inspired by
the above-described picture of the branching force chains. We
follow Ho et al. [24], who estimated the velocity distribution
of the ejected particles by mapping the cascade of collisions in
the packing to a fragmentation process. As they were interested
in the generic shape of this distribution, they assumed that in
each collision, the kinetic energy is equally distributed among
two target grains without any losses. The energy transferred
to a particle at the end of a chain of k collisions is thus given
by the fraction (1/2)k of the energy transferred to the bed. The
latter could be estimated by (1 − e2)E1, where e denotes the
mean total restitution, as introduced in the previous section,
and E1 = (m2/2)v2

1 is the kinetic energy of the impactor.
The collisions in the packing can easily be made dissipative
by replacing the energy-splitting factor 1/2 by a smaller
effective restitution coefficient, but this would not affect the
structure of the final result. Ho et al. argued that the following
fragmentation process can be used to describe the collision
cascade: The energy is split into two fractions of equal size.
Next, one of the resulting fractions is selected randomly and
again split into two. Then, one of the three fractions is selected
and split, and so on. It is well known that the energy fractions
created through such a procedure are Poisson distributed with
a parameter λ determined by the total number of splitting
events. For the splash process, this number is given by the total
input energy divided by the minimum ejection energy, i.e.,
(1 − e2)E1/(m2gd2). For typical impact speeds (>10

√
gd1)

and not-too-small grain-size ratios (d1/d2 > 0.5), λ is large
enough so the Poisson distribution can be approximated by
a normal distribution. This eventually yields a log-normal
distribution

P (E2|E1) = 1√
2πσE2

exp

[
− (ln E2 − μ)2

2σ 2

]
(36)

for the energy E2 of the ejected particles, where

σ =
√

λ ln 2,

μ = ln[(1 − e2)E1] − λ ln 2,

λ = 2 ln[(1 − e2)E1/Ed2 ],

(37)

and Ed2 ≡ m2gd2 is the minimum transferred energy for a bed
particle to be counted as ejecta. It was shown in Ref. [24]
that Eq. (36), rewritten in terms of the ejection velocity
|v′

2| = √
2E2/m2, is in excellent agreement with simulations

of a discrete collision model and even with wind-tunnel
measurements of saltating particles. Both the simulations
and the experiments were performed with unimodal sand,
i.e., d1/d2 = 1, and with values for the parameter λ varying
between 8 and 17. However, even for grain-size ratios below
0.5, corresponding to λ on the order of 1, the minor quantitative
errors incurred by the log-normal approximation would not
appreciably affect the following qualitative predictions.

We here test Eq. (36), together with Eq. (37), against the
laboratory data by Beladjine et al. [11]. From these relations,
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FIG. 7. Comparison with experimental literature data: The mea-
sured key characteristics of the ejected particles in the splash caused
by an impacting grain can be reproduced by the fragmentation model
by Ho et al. [24] if combined with our collision model from Sec. II.
To compare the mean ejection velocity |v′

2|, Eq. (38), and the number
N of ejected grains, Eq. (39), over a wide range of impact angles
θ1 and impact speeds |v1| with the experiments by Beladjine et al.
[11] (symbols), we inserted the values of the microscopic restitution
coefficients ε and ν listed in Table I. The fraction γ of the impact
energy lost in the bed was used as fit parameter, which yields
γ = 0.049, 0.055, and 0.062 for the 2D, 2D2, and 3D2 versions
of the collision model, respectively.

we can calculate the mean ejection velocity

|v′
2| =

∫ ∞

Ed2

dE2

√
2E2/m2P (E2|E1)

/∫ ∞

Ed2

dE2P (E2|E1)

= erfc[(ln Ed2 − μ − σ 2/2)/(
√

2σ )]

erfc[(ln Ed2 − μ)/(
√

2)]

√
2eμ/2+σ 2/8,

(38)

from the reduced ensemble of mobilized grains with energy
E2 � Ed2 . We thereby obtain its dependence on the impact
angle and the impact speed, which we compare with the
experimental data in Fig. 7. Recalling that the shown curves
are not fitted to the data, as there is no free parameter left in
Eq. (38), we find the agreement very satisfactory—only for
the highest impact speeds the theory seems to underestimate
the measured ejection velocities. Moreover, the plot reveals
that |v′

2| depends only very weakly on the choice of the
model version used to compute the total restitution e, which
underscores that the fragmentation approach indeed robustly
captures the underlying physics.

The fragmentation model as such does not provide us with a
prediction for the total number N of ejected particles, which is
an important coarse-grained measure of the splash function and
frequently used in transport models to parametrize the splash.
But, following the same lines as for the mean ejection speed,
we may combine it with the rebound properties obtained in
Sec. II to estimate N and its dependence on impact speed,
impact angle, and grain-size ratio. Subsuming the energy
losses in the bed packing into the numerical prefactor γ , the
energy that goes into the mobilized (not necessarily ejected)
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grains can be written as γ (1 − e2)E1. Divided by the average
energy E2 of one mobilized grain it yields the total number of
mobilized grains, from which we obtain the number

N ≈ γ
(1 − e2)E1

E2

∫ ∞

Ed2

dE2P (E2|E1)

= γ
(1 − e2)E1

2E2
erfc

(
ln Ed2 − μ√

2σ

)
, (39)

of ejected grains. In the second step, we used the log-normal
energy distribution, Eq. (36), from which we also estimate the
average energy

E2 = eμ+σ 2/2

= Ed2 [(1 − e2)E1/Ed2 ]1−(2−ln 2) ln 2, (40)

of a mobilized grain. The small exponent 1 − (2 − ln 2) ln 2 ≈
0.1 implies that the mean ejection energy is actually on the
same order as its minimum value Ed2 .

In Ref. [14], γ was estimated from an energy-diffusion
model, which allows us to trace back the large energy losses
in the bed to a simple geometrical effect: Only a very
small fraction of the downward propagating impact energy
is scattered back towards the bed surface by collisions in the
bed packing. This means that, even for elastically colliding bed
grains, typical values of γ are expected to be on the order of a
few percentages. In fact, the values predicted by the diffusion
model without energy dissipation varied between 0.05 and 0.2
for small to large impact velocities. In the lower panels of
Fig. 7, Eq. (39) is tested against the plastic-bead experiments
by Beladjine et al., where the total restitution e is taken from
the collision models presented in Sec. II and γ is used as fit
parameter. Depending on the model version, γ varies between
0.052 and 0.071, which is on the same order as estimated in
Ref. [14] for moderate impact speeds.

IV. A READY-TO-USE ANALYTICAL SPLASH
PARAMETRIZATION

In this section, we propose an exemplary list of relations that
can be used to compute all needed splash properties for shallow
impacts, as it is, for example, required in coarse-grained
simulations of aeolian particle transport. From Sec. II C and
Figs. 3 and 6, we conclude that the bumpiness of the bed
surface yields only minute fluctuations in the total restitution
coefficient, whereas the rebound angle varies significantly and
may therefore be held responsible for the stochastic nature of
the particle trajectories. We therefore fix the total restitution
coefficient to its mean e, as given by the shallow-impact
asymptotics in Eq. (14), and use Eq. (30) for the rebound-angle
distribution P (θ ′

1|θ1). For both expressions, we employ the
same values for the microscopic restitution coefficients ε and
ν, taken from, say, the fits for the 2D model version as given
in Table I. (To unify the various modeling approaches, the
bed grain size d2 Eq. (30) may be replaced by 9d2/(4

√
3), so it

yields the same asymptotic relation for the mean rebound angle
as the 2D model version. This has only marginal consequences
for the shape of the rebound-angle distribution.)

An interesting measure that is typically required as input
for coarse-grained particle transport simulations [17,38,39] is

the rebound probability Preb(v1). Within our approach, it can
be defined as the probability that the vertical rebound speed
of the impacting grain is larger than

√
2gd1. With Eqs. (14)

and (30) it becomes

Preb(v1) =
∫

dθ ′
1P (θ ′

1|θ1) (e|v1| sin θ ′
1 −

√
2gd1)

= 1 − 1 + ln ξ

ξ
, (41)

with

ξ ≡ 2
√

2(α + β)2d2θ1

β2(θ1 + √
2gd1/|v1|)2

, (42)

which is indeed in good qualitative agreement with the
parametrization Preb(v1) ∝ 1 − exp (−|v1|/vc) proposed by
Anderson and Haff [17] based on their grain-scale computer
simulations of the splash process. However, the magnitude of
Preb predicted by Eq. (41) is slightly smaller than expected,
because our single-collision approximation for P (θ ′

1|θ1),
Eq. (30), yields a significant fraction of negative rebound
angles. Comparing this analytical estimate with the numerical
solution that accounts for a second bed collision (i.e., version
3D2) in Fig. 6 reveals that one should shift the analytical
rebound-angle distribution to strictly positive values, namely
as θ ′

1 → θ ′
1 + θ1, to account for this effect in a simple way.

The full splash parametrization is completed by Eq. (39), with
γ = 0.06, and Eq. (36), which determine the number of ejected
particles and their velocity distribution, respectively.

V. SUMMARY

In this contribution, we aimed at a manageable parametriza-
tion of the splash function, which rests on basic physical prin-
ciples, like momentum conservation and energy dissipation
through inelastic pair collisions of the grains. To this end,
we started from a geometrical description of the collision
of a spherical grain with a regular granular packing. We
introduced semiphenomenological expressions for the gain-
size-dependent normal and tangential restitution coefficient
for such a grain-bed collision. These two coefficients depend
on two microscopic restitution coefficients ε and ν, for the
normal and tangential velocity losses during the inelastic
grain-grain collisions, which serve as fit parameters in the
model. This approach eventually yields the rebound velocity
of an impacting grain as a function of the impact velocity
and the impactor-bed grain-size ratio. We completed our
parametrization of the splash function by combining this
framework for the rebound with the energy-splitting model
by Ho et al. [24], which predicts how the impact energy is
distributed among the bed grains. It thereby gives access to the
velocity distribution of the ejected bed grains and allows us
to estimate how their total number scales with impact angle,
impact speed, and grain-size ratio.

We have shown that the proposed two- and three-
dimensional versions of our collision model yield very
similar predictions for typical observables of interest, like the
mean rebound angle, the mean total, and the mean vertical
restitution. In general, we found that each model version can
be convincingly fitted to various experiments and computer
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simulations if we use ε and ν as free fit parameters. Excellent
agreement is obtained, in particular, for the two-dimensional
model that accounts for secondary collisions with the bed. This
is an important observation as this model version is simple
and computationally relatively cheap, which makes it suitable
for practical applications. Moreover, the two-dimensional
approach allows for analytical asymptotic relations for shallow
impacts, as shown in Sec. II A 1. This limit is of particular
relevance, because the trajectories of wind-blown hopping
grains are characterized by very small impact angles on the
order of 10◦ [1]. Hence, the simple asymptotics might be used,
for instance, in coarse-grained aeolian transport simulations
that cannot afford to resolve the granular structure of the
sand bed. The three- and two-dimensional models yield almost
the same dependence on the impact angle and the grain size
ratio for the analyzed averages. Only their distributions can
differ qualitatively, the three-dimensional approach yielding
smoother shapes for shallow impacts, as illustrated in Fig. 3.
We showed that this shortcoming of the two-dimensional
models can be overcome by an extension with a uniform
distribution of void spaces between neighboring surface grains.
Thereby good agreement with the full three-dimensional
model and with our discrete-element simulations could be
achieved, as shown for the rebound-angle distribution in
Fig. 6. Combined with the energy-fragmentation model by
Ho et al. [24] for the statistics of the ejected bed particles,
the simple two-dimensional impact model yields a ready-
to-use parametrization for the splash. It therefore provides
an excellent starting point for modeling aeolian structure
formation. This, however, requires some extensions of our
parametrization, including the drag and lift forces due to the
driving turbulent flow. Moreover, the inclusion of additional
model ingredients, like the disaggregation of dust agglomer-
ates due to collisions [40] or cohesive, hydrodynamic, and
electrostatic interactions [41,42], could give rise to a much
richer phenomenology. They are of particular relevance for
understanding exterrestrial granular structures, as observed on
Mars [40] or, most recently, on a Jupiter comet [43]. Dedicated
theoretical approaches and experimental work [44], might help
to extend our model to such phenomena in the future.
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APPENDIX A: INELASTIC BINARY COLLISIONS

We briefly outline the usual parametrization of an inelastic
collision of two spheres in terms of the normal and tangential
restitution coefficients ε and ν, which account for dissipation

of kinetic energy during the grain contact. The energy
loss by relative motion in normal direction originates from
grain deformations, and the tangential loss characterizes the
reduction of the relative velocity of the grain surfaces at the
contact point due to friction. The exact value of ν, which
characterizes the tangential slip on particle contact, is hard
to estimate, and we might, for simplicity, assume that the
colliding spheres roll past each other, corresponding to ν = 0.
However, comparing the model predictions obtained with
experimental data in Sec. II D, we find that ν has to be negative
to fit the data, which means that the relative surface velocity
(or the spin of the impactor) has formally to be reversed.
Exact results for the normal restitution ε of perfect spheres are
reviewed, e.g., in Ref. [26]. For viscoelastic Hertzian beads,
one obtains that ε decreases with the impact speed and the size
of the colliding grains. Corresponding marginal quantitative
corrections to our discussion would not change the overall
qualitative picture.

The surface velocities of the colliding grains are determined
by the relative velocity of the centers of two colliding spheres
and their rotational velocities. The full calculation can be found
in classical textbooks (see, e.g., the book by Brilliantov and
Pöschel [26]), so we only give the result for the velocity v′

1 of
the first grain after the collision,

v′
1 = v1 − M

m1
(1 + ε)(n̂ · v12)n̂ − M

m1

1 − ν

1 + q
(1− n̂n̂) · v12

+ 1

2

M

m1

1 − ν

1 + q
n̂ × (d1ω1 + d2ω2). (A1)

Here d1,2 are the diameters of the two spherical grains, m1,2

their masses, and v1,2 their velocities before the collision,
which define v12 ≡ v1 − v2. The unit vector n̂ is parallel to
the line that connects the centers of the spheres at contact. The
effective mass is M ≡ m1m2/(m1 + m2) and the parameter
q ≡ (M/4)(d2

1/I1 + d2
2/I2) depends on the moments of inertia

I1,2 of the two grains. For spheres, I1,2 = m1,2d
2
1,2/10 and thus

q = 5/2.
Assuming that the colliding grains do not rotate and that the

second grain is at rest before the collision, ω1,2 = 0 and v2 = 0,
as is the case when an impactor hits the granular packing,
Eq. (A1) reduces to

v′
1 =

[
1 − M

m1
(1 + ε)

]
n̂n̂ · v1

+
[

1 − M

m1

1 − ν

1 + q

]
(1− n̂n̂) · v1. (A2)

For grains of similar size, d1 ≈ d2, M ≈ m1/2, and thus

v′
1 ≈

[
1 − ε

2
n̂n̂ + 1 + 2q + ν

2 + 2q
(1− n̂n̂)

]
· v1. (A3)

For small impactors, m1 � m2, we may approximate M ∼ m1,
which yields

v′
1 ∼

[
εn̂n̂ + ν + q

1 + q
(1− n̂n̂)

]
· v1. (A4)
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APPENDIX B: 2D COLLISION MODEL: STEEP IMPACTS

For steep impact, the impact position x0 is given by the
second line of Eq. (5) and the integral in Eq. (1) simplifies
to P (A|v1) ∼ (1/d2)|df −1/dA| if the rebound condition
−d2 < 2f −1(A) −√

4−d2
2 cot θ1<d2 is fulfilled and P (A|v1) ∼ 0

otherwise. We start with the rebound angle f (x) = θ ′
1, which

we expand in the impact angle θ1 around θ1 = π/2,

θ ′
1 ∼ tan−1

[
α − (α + β)x2

(α + β)x
√

1 − x2

]
− (θ1 − π/2)

+ αβ + α2 + (β2 − α2)x2

2α2 + 2(β2 − α2)x2

√
4 − d2

2

1 − x2
(θ1 − π/2). (B1)

For convenience, we here substituted the shifted impact
position x +

√
1 − (d2/2)2 cot θ1 for the argument of f (x),

so x takes values between −d2/2 and d2/2. Integrating over
this impact interval, we obtain Eq. (17) of the main text for
the mean rebound angle θ ′

1. Although Eq. (B1) cannot be
solved for x, as required for the rebound angle distribution
a closer look at Eq. (B1) reveals that it can be approximated
by its first-order x expansion θ ′

1 ∼ π/2 − (1 + β/α)x − [1 −
(1 + β/α)

√
1 − (d2/2)2](θ1 − π/2). This, in turn allows us to

(roughly) estimate its inverse f −1(θ ′
1) and thus the asymptotic

distribution of the impact angle. Within this crude approxima-
tion, the latter evaluates to a uniform distribution,

P (θ ′
1|θ1) ∼

{
α

(α+β)d2
, −d2 <

2α(θ1+θ ′
1−π)

α+β
+

√
4 − d2

2 (θ1 − π/2) < d2,

0, else.
(B2)

Note that the mean rebound angle θ ′
1 ∼ π/2 − [1 − (1 + β/α)

√
4 − d2

2 ](θ1 − π/2) obtained from this approximate distribution
differs from the correct asymptotic scaling relation given in Eq. (17).

Following the same idea, we obtain the x dependence

e ∼
√

α2 + (β2 − α2)x2 − (β2 − α2)x

√
1 − (d2/2)2

α2 + (β2 − α2)x2
(θ1 − π/2) (B3)

of the total restitution coefficient. Integrated over the impact position x, it yields the result for e given in Eq. (18) of the main
text. Again, the distribution of e can analytically only be estimated from an approximate form of Eq. (B3), e.g., from the parabola
e ∼ α + (α/2)(β2/α2 − 1)[x2 − x

√
4−d2

2 (θ1−π/2)], which yields

P (e|θ1) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
d2

√
2α

(β2−α2)(e−α) , 0 < 8α(e−α)
β2−α2 < d2

2 −
√

4 − d2
2 (θ1 − π/2),

1
d2

√
α/2

(β2−α2)(e−α) , −1 <
8α(e−α)/(β2−α2)−d2

2√
4−d2

2 (θ1−π/2)
< 1,

0, else,

(B4)

up to linear order in θ1 − π/2. The first line represents the impact range −d2/2 < x <
√

1 − (d2/2)2(θ1 − π/2) where the inverse
of e(x) has two branches; the second line corresponds to the single-branch region

√
1 − (d2/2)2(θ1 − π/2) < x < d2/2.

Finally, we consider the steep-impact limit for the vertical restitution coefficient

ez ∼ α − (α + β)x2 + (α + β)x
(√

4 − d2
2 −

√
1 − x2

)
(θ1 − π/2). (B5)

Integrating over the impact positions x, we obtain its mean e, given in Eq. (19). Again, Eq. (B5) can be approximated by its
second-order x expansion ez ∼ α − (α + β)x2 + (α + β)x(

√
4−d2

2 −√
1−x2)(θ1−π/2), from which we derive the estimate

P (ez|θ1) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2d2

√
(α+β)(ez−α)

, − 1 <
d2

2 /2+2(ez−α)/(α+β)(
1−

√
4−d2

2

)
(θ1−π/2)

< 1,

1
d2

√
(α+β)(ez−α)

,
d2

2 /2+2(ez−α)/(α+β)(
1−

√
4−d2

2

)
(θ1−π/2)

> 1 and ez < α,

0, else

(B6)

for the distribution of ez.
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CHAPTER 3
Aeolian sand transport

This chapter focuses on the theoretical approaches to aeolian sand transport. It starts with a short
discussion of the mesoscopic length scales that determine its physics. In Secs. 3.2–3.4, various
modeling attempts are reviewed—from hydrodynamic mean-field approaches, over computer
simulations that resolve the individual grains, to more recent models that aim at capturing the
statistical nature of the transport process. Section 3.5 provides some supplementary information,
mainly summarizing the text-book knowledge of the physics of aeolian transport. My own
contributions to these attempts are attached at the end of this chapter.

3.1 Characteristic length scales

Aeolian sand transport is characterized by a hierarchy of emergent mesoscales. Clearly, the
splash process, analyzed in the previous chapter, is an inherent grain-scale process, as it crucially
depends on the collision geometry and the local packing structure of the bed grains. Yet, it was
shown to give a robust universal mesostructure in the grain hopping. Namely, for monodisperse
granulates of (mean) diameter a, one finds from theoretical estimates [140, 186] the typical
ejection height to be on the order of 10a, and only weakly dependent on the impact energy,
in good agreement with experiments [136, 166, 167] . This ejection height can be taken as the
characteristic height of a small surface layer, densely crowded with splashed grains. Due to
their large number, they take up a significant part of the wind’s momentum, thereby drastically
reducing the wind speed in this lower region of the transport layer. This phenomenon was first
observed by Bagnold, who found from his wind-tunnel measurements that the wind speed at
a certain height zf took nearly the same value, independent of the externally imposed wind
strength (determined by, say, the fan frequency for the wind tunnel). Typical values of the height
zf of this focus, as Bagnold called it, are on the order of 10a to 40a [40, 191], indeed roughly
coinciding with the mean hop height of the splashed bed grains. This height might thus be
considered a first pertinent emerging mesoscopic length scale of the transport process. The
average trajectory height of all moving grains is in fact on the very same order of magnitude as
zf, corresponding to an average trajectory length ⟨l⟩ ≈ 10zf ≈ 102a [23, 52, 73, 191, 192], because
the large population of the low-energy ejecta dominates this mean value. A comprehensive
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statistical discussion [52] however reveals a somewhat richer picture, with longer trajectories
being exponentially suppressed at a independent characteristic height H of the transport layer.
The latter is again found to be weakly dependent on the wind strength, but with typical values
on the order of H ≈ 102a, roughly corresponding to a grain trajectory of length on the order of
L ≈ (σ−1)a, where the linear scaling in the buoyancy-reduced sand–air density ratio σ−1 ≈ 2·103
is expected from the drag–gravity force balance [52] (see Sec. 3.5.3, below). A more accurate
characterization of the aeolian transport layer therefore involves two emergent mesoscales, the
focus height and the overall characteristic height of the transport layer. The first arises from the
splash geometry alone, as described in the previous section. The can be traced back to the finite
lifetime of the hopping grains or to the limiting momentum balance between the driving wind
and the driven sand grains.

As already announced in Sec. 1.1, yet another emergent mesoscale is responsible for the
size selection in the ensuing structure formation: the saturation transients through which the
system relaxes to stationary transport. The minimum size of a dune—which is actually a smooth
heap—is determined by the so-called saturation length ℓsat, which is the typical relaxation length
of the transport process [83, 193] (see Sec. 4.1, for an explanation). It takes typical values on
the order of a few meters. The saturation transients however crucially depend on the sand’s
polydispersity: Compared to the long transients for the nearly monodisperse dune sand, the
coarse grain fraction of a strongly polydisperse sand exhibits a much shorter saturation length,
on the order of a few millimeters. The reason is that these big grains are transported by so-called
“reptation” (or creep) that is driven by impacts of “saltating” (i.e., hopping) fine grains. Compared
with normal sand dunes, the minimum size of megaripples that are made from poly-/bidisperse
sand is thus strongly reduced by about two orders of magnitude (see Ref. [67], appended to the
present chapter).

The central notion of saturation transients was originally introduced by Sauermann et al. [82].
These authors predicted ℓsat to decay with increasing wind strength τ , whereas later studies
argued that it might either be independent [32, 194] of τ or even grow monotonically [195,
196] in τ . Based on coarse-grained computer simulations of the transport process, we were
recently able to resolve the apparent conflict between these diverse proposals [52] (attached at
the end of the present chapter). Our theory predicts ℓsat to be almost constant and to follow the
characteristic length of the grain trajectories for almost all wind strengths. Physically, mobile
grains are abundant and their acceleration to the stationary speed limits the adaptation to an
increase in wind strength (“drag regime”). Only for wind strengths τ very close to the threshold
value τt, where the transport is increasingly limited by the number of splashed bed grains [82]
(“impact regime”), ℓsat indeed features a singularity of the form ℓsat ∝ 1/(τ − τt). The divergence
seems indeed to be confirmed in recent wind-tunnel experiments by Selmani et al. [197]. In their
analysis, these authors split the saturation process into two subprocesses, representing the initial
aerodynamic grain mobilization and the subsequent transport relaxation. The wind-strength
dependence of the total saturation length, obtained as the sum of the response lengths associated
with the two subprocesses, seems to be close to our prediction in Ref. [52]. Out in the field,
the situation is more complicated, due to the pervasive turbulent wind-speed fluctuations. The
“bare” saturation length is thus renormalized by the intermittent wind fluctuations. They smear
out the singularity at τ = τt and bring the observed “dressed” saturation length close to the
wind-dependent minimum dune length measured in the field [194]

The relation of the various length scales—the average hop length ⟨l⟩, the characteristic
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trajectory length L, as obtained from the overall height of the aeolian transport layer, and the
saturation length ℓsat—to the only elementary scale, the grain size a, can be summarized as

⟨l⟩ ≈ 102a, L ≈ (σ − 1)a, ℓsat ≈ Lf (τ/τt − 1) . (3.1)

In the last relation we introduced a scaling function f that depends on the ratio between the
wind shear stress τ and the threshold shear stress τt needed to sustain the transport. It fulfills the
asymptotic scaling relations f (x ≪ 1) ∼ 1/x and f (x ≫ 1) ≈ const.

Equation (3.1) illustrates that the transport process itself is characterized by a hierarchy of
length scales extending over more than three orders of magnitude. This is the reason why the
very process of the wind-blown grain hopping can dictate the size of such large objects like sand
dunes. Any reliable model for aeolian sand transport has to account for this hierarchy. To what
extend depends of course on the practical problems it should be applied to. Aeolian sand dunes,
for instance, feature a strong scale separation between the emerging structure and the underlying
grain-scale processes, whereas sand ripples and megaripples, with typical sizes comparable to
the length of an average grain trajectory, are mesoscale structures that crucially depend on the
mesoscale physics. Numerous field and laboratory studies and extensive grain-scale computer
simulations performed over the last decades supply us with lots of high-resolution data that
provide a great playground for developing and testing refined models that resolve the mesoscale
structure of the transport process to various degrees. It thus comes as little surprise that many
theoretical approaches to aeolian sand transport have been proposed in the literature, with an
increasing tendency over the last recent years towards resolving more of its complex mesoscale
structure. These models are concisely outlined and discussed in the standard text books and the
recent review articles listed in Sec. 1.2 of Chap. 1; an extensive review, can, for example, be found
in the book by Pye and Tsoar [42]. Here, I would like to briefly retrace the development over
the past decades from the early mean-field approaches to the recent attempts that aim at the
transport statistics.

3.2 Hydrodynamic mean-field approaches

Since the seemingly erratic grain hopping is a complex many-body problem, all analytical
approaches to aeolian sand transport share some mean-field character, in the sense that they
idealize the broad distribution by some manageable tamed ensemble [52, 91, 92, 195, 198–203]
or, in the simplest, true mean-field case, by a single representative trajectory [40, 82, 204–210].
The idea to map the complex grain hopping onto one “characteristic path” of the saltating grains
goes, once again, back to Bagnold [40], who estimated its shape assuming that the representative
grain starts vertically from the sand bed and reaches a height given by the focus height that
he observed from the wind-speed profiles. Combined with the shape of the measured wind
profiles, he computed the length of this characteristic path. From the marked focus in these wind
profiles, in turn, Bagnold already knew that the blown grains extract momentum from the air,
which is partly dissipated during the bed collisions, but he had not yet the mathematical tools to
explicitly account for such a feedback in a model. It took a few more years, till Kawamura [204]
and Owen [205] translated Bagnold’s insights into comprehensive mathematical models for
stationary and (in Kawamura’s case) transient aeolian sand transport. Using the concept of the
representative trajectory together with the local (i.e., height-dependent) grain–air momentum
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balance, Owen was able to estimate the wind speed above and inside the transport layer. He
therefor hypothesized that stationary transport requires the turbulent shear stress exerted on
the bed grains to be pinned to the critical value at which these bed grains are mobilized by the
wind, an assumption widely used in analytical transport models [82, 92, 211]. Indeed, recent
numerical studies support this hypothesis at low-wind conditions, while the exact value of the
air-borne shear stress slightly decreases with increasing wind strength, when the impact-driven
splash becomes more and more efficient [57]. To obtain the shape of the representative trajectory
from the equations of motion, Owen followed Bagnold and set the horizontal component of the
initial velocity to zero and estimated its vertical component from a global (i.e., height-integrated)
grain–air energy balance. That the latter holds, is a consequence of the stationary-transport
assumption that the excess energy gained by the average grain during one hop is completely lost
to the bed during its rebound.

Later on, wind-tunnel studies revealed that the average saltating grain does not leave the bed
vertically, but under an angle below 90°, suggesting that more elaborate transport models should
somehow account for the complex splash process. Sørensen [199, 200] and Sauermann et al. [82]
proposed particularly successful examples for such analytical models that resolve the grain scale
physics using (semi-)empirical splash parametrizations. Besides the accurate agreement for the
stationary transport properties, like the wind-dependent sand mass flux, these improved models,
in particular the one by Sauermann et al., also make predictions for the transient behavior, i.e., the
time- and space-dependent flux with its characteristic saturation time and length, introduced in
Sec. 3.1, above. In fact, Sauermann et al.’s simple continuummodel has provided very accurate and
non-trivial predictions for various features of sand dunes, such as their non-universal shapes and
their (dynamic) shape transition, their minimum size as a function of the atmospheric conditions,
their growth and migration dynamics, etc. [43, 83–88, 120, 142, 193, 212] But these mean-field
approaches do, of course, not provide any information about the heterogeneous nature of the
transport layer, as reflected by the statistics of the hop-heights, hop-lengths, and velocities of the
blown grains, which is the information needed to explain the structure formation on the very
scale of the grain trajectories.

3.3 Grain-scale and coarse-grained computer simulations

Such limitations can be easily overcome in numerical approaches. Besides the broad distribution
of trajectories they can resolve, they also allow for extended and more accurate descriptions of
the grain–air interactions and the bed collisions. As computational approaches to the collision
process are significantly challenged by its erratic nature, various attempts have been proposed to
equip the transport models with a computationally cheap splash parametrization, either derived
from theoretical arguments [65, 98] or taken from experiments [161, 210, 213] and computer
simulations [66, 169]. For the latter, the simulation data for collisions of an impacting grain with
a quiescent granular packing is fitted by a splash parametrization that is then used in the aeolian-
transport simulations, thus (often) neglecting the influence of the wind drag on the splash process.
Only rather recently, the available computer performance allowed for simulating the saltation
process with grain-resolved impactor-bed collisions [24, 214], which revealed detailed insight into
the formation of sand ripples [90], the influence of midair collisions on the transport rate [215],
the transport transients [196], and the hysteresis for transport initiation and cessation [132]
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and the related hydrodynamic and collisional bed grain mobilization [216]. However, such full-
fledged discrete-element methods are still extremely time-consuming and thus not suitable to
systematically test a broad range of model parameters. For this reason, coarse-grained numerical
approaches that do not explicitly resolve the bed grains have been extensively used over the
last decades to investigate the influence of electrostatic interactions [93], distributed sand-grain
sizes [98, 131], (local) wind-speed fluctuations [98, 131], and varying wind strengths [129] on
aeolian sand transport. They have further proven helpful in studying the transport layer’s grain-
scale structure [23, 217, 218] and stochastic character [203], its transient properties and dynamic
fluctuations [219, 220], the difference between a rigid and an erodible sand bed [210], and how
the grain paths depend on ambient conditions [141, 213, 221]. The latter provides a particularly
relevant contribution to explain the wind-driven structure formation on extraterrestrial bodies,
like Mars, Venus, Saturn’s moon Titan (see, e.g., Ref. [47, 48] and references given there), or, very
recently, Jupiter’s comet 67P/Churyumov-Gerasimenko [51].

3.4 Transport statistics

Besides the full-fledged grain-scale and the reduced coarse-grained computer simulations, recent
analytical models have also aimed at going beyond the drastically reduced mean-field models.
A particularly useful improvement into this direction rests on the insight we discussed in the
previous chapter, namely that the splash process is comprised of two major sub-processes: the
rebound of the impacting grain and ejection of bed grains caused by this impact. With this
two-fold structure in mind, so-called two-species models have been developed to describe the
transport statistics [91, 92, 199] and the structure formation on the grain scale [198, 222]. They
divide the distribution of trajectories into two transport modes usually named saltation and
reptation, which represent fast continuously rebounding grains and slow ejected bed grains,
respectively. Although this classification was already introduced by Bagnold, the numerous
numerical studies on the splash process and on aeolian transport (see, e.g., [65, 66]) together
with its application to aeolian sand ripples [89] made it very popular at the end of the 1980s
and the early 1990s. At this time, Sørensen [199] made a first attempt to introduce the two
populations into an analytically tractable transport model. As shown in Ref. [200] for a reduced
single-trajectory version, its overall structure allows to accurately fit various wind-tunnel data
for the sand transport rate, but to the cost of using three independent fit parameters instead of
a sound parametrization of the splash process. A slightly different approach was proposed by
Andreotti [91], who started from a full-fledged n-generations model to derive a reduced two-
species framework, for which he took the wind-dependent characteristics (hop time and length) of
the saltating grain fraction from the numerically solved full model. From these two contributions
by Sørensen and Andreotti we found that an analytically tractable two-species formalism with a
reduced number of physically meaningful fit parameters was still missing in the literature and
we thus presented our own version [92], attached at the end of the present chapter. It further
stands out form the earlier attempts due to its strong influence by the continuum saltation model
by Sauermann et al. [82], from which we borrowed the hydrodynamic approach to the transport
physics. Combined with the recent empirical insights into the splash process, we were able to
formulate a simple analytical and thus computationally cheap model that is, at the same time,
in excellent agreement with various wind-tunnel data. Alternative approaches to overcome
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the limitations of the mean-field approaches have been proposed by Jenkins et al. [201], who
used kinetic gas theory to derive analytical expressions for various height-dependent transport
quantities, and by Pähtz and coworkers [195, 211, 223], who traced the mesostructure back to
model coefficients that relate various averages and correlations to each other, reminiscent of
macroscopic hydrodynamic laws.

Notwithstanding this considerable progress, most of the mentioned approaches have focused
on averaged quantities, while the investigation of the full distribution of trajectories in the
transport layer was initiated only very recently. This goes along with the limited number of
experimental data on the transport statistics. Based on their high-resolution data gained in wind-
tunnel experiments, Ho et al. [186] showed that the velocity distribution of the hopping grains
largely reflects the splash statistics. Taking up this insight, we used our splash model, introduced
in the previous chapter, to develop a transport model that accounts for the full distribution
of the grain trajectories [52] (attached at the end of the present chapter). It allows to derive
various height-resolved mesoscale properties, like the sand mass concentration and flux, the
grain and air velocity, the grain-velocity distributions, etc., which are in in excellent agreement
with coarse-grained computer simulations and field and wind-tunnel observations. On the basis
of this model, we were able to reconcile the long-standing debate on the wind dependence of the
saturation length ℓsat, as outlined in Sec. 3.1.

3.5 The physics of aeolian sand transport

In the remainder of this chapter, I would like to briefly introduce some of the salient features
of the physics of aeolian sediment transport. In most publications, they are assumed familiar
to the reader, and everybody who wants to enter this field might hopefully benefit from the
following short overview. The remarks on the theoretical description of the (atmospheric) wind,
the discrimination between dust and sand, the various transport modes and threshold conditions
for mono- and bidisperse sand transport are rather general and not restricted to the aeolian
transport on Earth. Instead, connections will be drawn to the sediment transport under water
and on extraterrestrial surfaces whenever possible.

3.5.1 The atmospheric turbulent boundary layer

Atmospheric wind is a turbulent boundary layer flow. It is characterized by a very large Reynolds
number Re = Hu/ν ≫ 1, where H is the typical height of the boundary layer, u the characteristic
wind speed, and ν the kinematic viscosity of the flowing fluid, which is in our case air. For
the order-of-magnitude estimates H ≈ 1 km, u ≈ 1m/s, ν ≈ 10−5m2/s, we find Re to be in the
order 108 under atmospheric conditions (in a wind tunnel of height H = 1m, we get Re ≈ 105).
On atmospheric scales, viscous effects are thus completely irrelevant for the space- and time
dependent wind velocity u(r , t). The usual starting point to estimate u(r , t) is then the purely
turbulent Reynolds-averaged Navier-Stokes (RANS) equations

∂tu + (u · ∇)u =
1
ϱ
(∇ · τ − ∇p + f ) , (3.2)
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for the time-averaged fluid velocity,

u(r , t) =
1
T

∫ T

0
dt̃ u(r , t + t̃) (3.3)

with some coarse-graining time interval T , for which the time derivative of the “slow variable” u
in Eq. (3.2) is defined as the difference ∂tu(r , t) = [u(r , t +T ) −u(r , t)]/T . The terms on the right
hand side of Eq. (3.2) represent the total force exerted on a fluid parcel, where ϱ is the fluid’s mass
density, τ = −ϱδuδu the Reynolds stress tensor arising from the velocity fluctuations δu = u −u,
p the pressure, and f a body force.

We now consider a boundary layer flow in x-direction over a surface given by the plane
z = 0. In the absence of external forces (f = 0) and under stationary (∂t = 0), homogeneous
(∂x = ∂y = 0) conditions, the RANS equations (3.2) reduce to dτxz/dz = dτyz/dz = 0 and
dτzz/dz = dp/dz. As the wind-driven sand transport takes place in the thin surface layer, whose
height is much smaller than the total height H of the system, but still large enough that viscous
effects can be ignored, we can neglect the pressure’s z-dependence and get

dτ/dz = 0 or τ = const. (3.4)

Combined with Prandtl’s mixing length closure

τxz = ϱ(κz)2(du/dz)2 , (3.5)

it yields the famous logarithmic law of the wall,

u(z) =
u∗
κ

ln(z/z0) , (3.6)

with κ ≈ 0.4 being the von Kármán constant and z0 the roughness length. For a quiescent sand
bed of grains of diameter a, z0 takes phenomenological values on the order of a/10. In Eq. (3.6),
we introduced the shear velocity u∗, defined through

τxz = ϱu2∗ . (3.7)

It thus provides a direct measure for the strength of the turbulent fluctuations of the fluid velocity,
u∗ ≈ |δu |. As a consequence of Eq. (3.4), the strength of the turbulent boundary flow is completely
characterized by a single quantity, namely the value of τxy or u∗.

In the literature, the wind strength is usually quantified in terms of u∗. To get an idea
how its values are translated into the phenomenological wind force, Table 3.1 gathers values
corresponding to the widely used Beaufort scale, together with the typical size of the grains that
can be transported by such winds.

3.5.2 Intermittency

In Eq. (3.5) of the previous section, we introduced a mixing-length closure to the boundary layer
problem. It rests on the assumption that the turbulent velocity field is self-similar, thus exhibiting
no particular length scale over which the flow speed, say, increases as a function of the wall
distance. Instead, one expects that the distance from the wall itself determines this characteristic
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Wind Description u(10m) u∗ a Specifications
force [km/h] [m/s] [µm]

0 Calm 0 0.00 — Smoke rises vertically.
1 Light Air 1 0.01 — Direction shown by smoke drift but not

by wind vanes.
2 Light Breeze 6 0.05 — Wind felt on face; leaves rustle; wind

vane moved by wind.
3 Gentle Breeze 12 0.1 70 Leaves and small twigs in constant mo-

tion; light flags extended.
4 Moderate Breeze 20 0.17 130 Raises dust and loose paper; small

branches moved.
5 Fresh Breeze 29 0.25 270 Small trees in leaf begin to sway;

crested wavelets form on inland waters.
6 Strong Breeze 38 0.32 470 Large branches in motion; whistling

heard in telegraph wires; umbrellas
used with difficulty.

7 Near Gale 50 0.42 810 Whole trees in motion; inconvenience
felt when walking against the wind.

8 Gale 62 0.52 1300 Twigs break off trees; generally im-
pedes progress.

9 Strong Gale 75 0.64 1800 Slight structural damage (chimney pots
and slates removed).

10 Storm 89 0.75 2600 Seldom experienced inland; trees up-
rooted; considerable structural damage

11 Violent Storm 103 0.87 3500 Very rarely experienced; accompanied
by widespread damage.

12 Hurricane 118 1.00 4500 Devastation.

Table 3.1: Wind strengths categorized according to the Beaufort scale [224]. The wind force is
defined via the wind velocity u(10m) at 10m height; given is the minimum level of u(10m) for
each wind force. For the corresponding value of the shear velocity u∗, computed from Eq. (3.6)
with z0 = 20 µm, sand of maximum grain size a can be transported, as predicted by the threshold
estimate u2∗ ≈ 0.01(σ − 1)дa (see Sec. 3.5.5), with σ ≈ 2.2 · 103 being the grain-air density ratio
and д ≈ 10m/s2 the gravitational acceleration. (Specifications are taken from Ref. [224].)
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length, given by κz in Eq. (3.5), the underlying picture being that the local flow properties at
height z are determined by eddies of size z (because they are of highest energy density compared
to other eddies rolling over the wall). However, turbulence is in fact not self-similar at all scales,
but intermittent [225], which means that the flow is characterized by alternating phases of
gust-like activity and intermediate calm (stationary wind). While the wind speed fluctuates
markedly over long times, a temporary calm leads to a completely flat wind-speed protocol on
short times. This scale-dependent structure manifests the broken self-similarity of the flow field.
The associated gust and waiting times are found to follow power-law statistics [226, 227]. This
phenomenology is reminiscent of self-organized criticality [228], dressed with some minimum
“detection” threshold [229]. The analogy describes the gust events as avalanches triggered by
some permanent active driving, where the heterogeneous nature of the system determines the
avalanches statistics. Further, intermittency yields nontrivial statistics for the velocity increments
δu(ℓ) over a distance ℓ (or corresponding time intervals). They exhibit nonuniversal exponents
of their moments that emanate from distributions with fat exponential (or stretched exponential)
tails [230]. The shape of these distributions of δu(ℓ) can be quantified in terms of so-called
superstastics [231], namely as a superposition of (infinitely many) normal distributions with
variances that, in turn, follow a log-normal distribution [232, 233]. For large ℓ, comparable to the
system size, the intermittent features vanish and the statistics becomes ultimately Gaussian [234].
Assuming that the lateral components ux and uy of the wind velocity are normally distributed,
their absolute valuew ≡ (u2x +u

2
y )

1/2 then follows a Rayleigh distribution, which is a special form
of the Weibull distribution

P(w) = (k/µ)(w/µ)k−1e−(w/µ)k , (3.8)

namely for the shape parameter k = 2 [235]. Long-term wind data are thus often fitted to a
Weibull distribution, where typical values for k range from 1.2 to 2, but can become as large as
8.7 [234, 236].

Intermittency, and the turbulent wind-speed statistics in general, has a direct impact on the
transport statistics and, thus, also on the structure formation in the field [57, 70] (see Sec. 1.2).
It becomes particularly notable in the vicinity of the threshold wind strength of grain motion
discussed in the following.

3.5.3 Forces on wind-blown grains

Apart from the microscopic details of the splash, which depend on the material properties of the
colliding grains, the transport physics is dominated by gravity and the turbulent drag between
the fluid (in our case, air) and the grains. In general, the drag force FD on a spherical grain of
diameter a immersed in a fluid of density ϱ and kinematic viscosity ν , is related to the relative
fluid–grain velocity ∆v = u −v as

FD(∆v) =
1
2ϱCD(Re)

π

4 a
2 |∆v |∆v . (3.9)

Viscous contributions enter via the drag coefficient CD(Re) that depends on the (grain-scale)
Reynolds number Re = |∆v |a/ν . It obeys the two asymptotic scaling relations

CD(Re) ∼

{
Rec/Re (Re ≪ Rec)

C∞
D = const. , (Re ≫ Rec)

(3.10)
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Reference α φ

Dallavalle [238] 1 0
Cheng 1997 [239] 3/2 0
Ferguson & Church 2004 [240] 2 0
Jimènez & Madsen 2003 [241] 2 1/2

Table 3.2: Literature values for the parameters α and φ of the phenomenological drag coefficient
in Eq. (3.12).

where Rec = 24 denotes the critical Reynolds number above which a region of closed streamlines
forms behind a sphere [237]. As Re increases, the scaling of FD in ∆v thus changes from linear,
for purely viscous Stokes friction (Re ≪ Rec), to quadratic, for purely turbulent Newton friction
(Re ≫ Rec). Balancing the gravitational force (π/6)(ϱg − ϱ)дa3 on a grain of density ϱg with the
drag given in Eq. (3.9) for a quiescent fluid (u = 0), yields the settling velocity

v∞ =

√
4(σ − 1)дa
3CD(Re)

∼

{
(σ − 1)дa2/(18ν ) (Re ≪ Rec)√
(σ − 1)дa , (Re ≫ Rec)

(3.11)

where we inserted the asymptotic relations from Eq. (3.10) with Rec = 24 and used the empirical
observation 3C∞

D /4 ≈ 1.
With the typical order-of-magnitude estimates |∆v | ≈ |u | ≈ 1m/s for the wind speed,

a ≈ 10−4m for sand, and ν ≈ 10−5m2/s for air, we obtain Re ≈ 10, which is on the order of Rec.
We thus have to resort to a phenomenological law for CD(Re) that interpolates between the two
limits in Eq. (3.10). Various such attempts can be found in the literature, many of them of the
common form

CD(Re) =
[
(1 − φ)1/α (C∞

D )
1/α + (φC∞

D + Rec/Re)
1/α

]α
. (3.12)

The values for the exponent α and the coefficient φ ∈ [0, 1] used in models for aeolian sand
transport are usually taken from one of the references listed in Table 3.2. Phenomenological
corrections due to the irregular shape of the sand grains are also incorporated in CD. While
the general drag relations that follow from Eq. (3.12) can be easily used in numerically solved
models, analytical approaches and estimates often use the purely viscous linear [200, 204, 205] or
turbulent quadratic [82, 92, 209] velocity–drag relation.

As already noted in Chap. 1, electrostatic interactions [57, 77, 111, 112] may have a significant
impact on the wind-blown transport, in particular for fine dust grains [57, 71], while the other
secondary hydrodynamic forces, like Archimedes, added-mass, Basset, Magnus, Saffman, are
much smaller and often neglected in transport models [70]. The Archimedes force is the total
force exerted by the fluid (i.e., the air) on a grain if it were of the same density as the fluid. For a
resting fluid, it reduces to the buoyancy force, and in this form it is taken into account in most
transport models. The added-mass force originates from the acceleration of the fluid around
a moving particle (in contrast to drag force that assumes a stationary flow), the Basset force
accounts for a lagging response between the change of the particle velocity and the change of
the drag (i.e., a non-trivial memory kernel), the Magnus force describes the influence of the grain
spin, and the Saffman force the lift due to a velocity gradient. With magnitudes on the order of
1 % [57], only the Magnus force seems to play a role for the shape of some trajectories [242, 243].
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3.5.4 Transport modes

Depending on the grain size, sediment is transported by typical atmospheric winds in terms
of three transport modes: suspension, saltation, and reptation. This classification goes back to
Bagnold [40] (he used the notion creep instead of reptation) and is widely used in the literature. I
here give a quick overview of the phenomenology of these regimes, before I outline the main
physical mechanisms responsible for them, below.

Suspension. Once mobilized, fine dust grains of size below 70 µm go directly into suspension.
For typical atmospheric conditions on Erath, one usually discriminates between long-term (several
days) and short-term (several hours) suspension for grain sizes below 20 µm and in the range 20
to 70 µm, respectively [56].

Saltation. Medium sized sand grains in the size range from about 70 µm to a millimeter are
efficiently transported by typical winds. This mode is called saltation, referring to the seemingly
erratic grain hopping. The physics of this transport mode is crucially determined by the splash
process, when the hopping grains collide with the bed. At stationary transport, the momentum
transmitted from the wind onto the grains has to be balanced by the momentum loss during
these dissipative collisions and ejected bed grains have to compensate for the loss of moving
grains that are trapped in the bed.

Reptation and the role of polydispersity. As the grains get larger in size, sand becomes
less and less susceptible to aeolian transport. Under typical atmospheric conditions on Earth,
grains bigger than about one millimeter are hardly transported by saltation at all, because this
requires petty strong winds (see Table 3.1). However, such big grains can nevertheless move
downwind due to short intermittent gusts and/or by the help of impacting smaller grains.

3.5.5 The thresholds of grain motion

The physics responsible for the emergence of the observed transport modes can be best un-
derstood in terms of various thresholds of the grain motion. In the following, I first introduce
some dimensionless quantities that are instrumental to the formulation of the relevant transport
conditions. These are (i) the criterion for turbulent particle suspension, (ii) the fluid and (iii) im-
pact thresholds for bed-grain mobilization, and (iv) the reptation threshold for bidisperse-sand
transport.

Based on the two fundamental forces acting on the blown sand grains, fluid drag and gravity,
we can describe our system using six physical quantities: the gravitational acceleration д, the
diameter a and mass density ϱg of the grains, and the mass density ϱ, kinematic viscosity ν , and
shear stress τ of the fluid. Since we have only three fundamental units (e.g., mass, length, and
time), we may select three quantities and construct three dimensionless ones. A common choice1

1Some authors [213] prefer to use the unit system a, ϱg, and (1− ϱ/ϱg)д, emphasizing the properties of the grains,
not the fluid. It yields some trivial, yet sometimes confusing, differences in the definitions of the drag coefficient and
the particle Reynolds number. The latter, for examples, is then

√
(1 − 1/σ )дa3/ν , while the combination in Eq. (3.1) is

interpreted as a Stokes number St , according to the general relation St = σRe .
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Earth Venus Mars Titan Water

д [kgm/s2] 9.8 8.9 3.7 1.4 9.8
σ 2.2 · 103 4.5 · 101 1.5 · 105 1.9 · 102 2.7
ν [m2/s] 1.5 · 10−5 2.5 · 10−7 6.5 · 10−4 1.2 · 10−6 10−6

am [µm] 75 75 120 330 95
Reg(am) 6 50 1 80 4

Table 3.3: Properties of planetary environments. Typical values for the gravitational acceleration
д, the fluid–grain density ratio σ , the atmosphere’s kinematic viscosity ν on Earth, Venus, Mars,
and Titan taken from Ref. [78] and under water from Ref. [85]. The optimum grain size am and
particle Reynolds number Reg(am) of sand that is most easily mobilized by a turbulent flow is
estimated from Eqs. (3.16), with the reference value am = 75 µm for sand on Earth, and (3.13),
respectively.

is to use a, ϱ, and д as units, and to introduce the grain–air mass density ratio σ , the particle
Reynolds number Reg (sometimes, also called Galileo number Ga) and the Shields number S :

σ = ϱg/ϱ , Reg =
√
(σ − 1)дa3/ν , S =

τ

(ϱg − ϱ)дa
=

u2∗
(σ − 1)дa , (3.13)

where we used Eq. (3.7) to replace the shear stress τ by the shear velocity u∗ in the last relation.
Note that (σ − 1)д is the buoyancy-reduced gravitational constant.

The value ofReg provides an estimate that indicates whether the typical flow–grain interaction
is of viscous or turbulent character. For a spherical particle, the onset of turbulence manifests
itself in the closed streamlines that are formed behind the sphere, when the Reynolds number is
on the order of the critical Reynolds number Rec ≈ 24 [237]. Typical values of Reg for aeolian
sand transport on Earth, Venus, Mars, Titan, and for aqueous transport on Earth are listed in
Table 3.3. They all fall into the intermediate regime, where Reg is on the same order as Rec, which
means that both viscous an turbulent effects contribute to the fluid–grain interaction, as we
already noticed below Eq. (3.10).

Dust’s susceptibility to wind. Dust is often defined through its grain size, namely smaller
than 70 µm. Physically, this limit refers to the fact that such fine grains are transported in
suspension. Suspension requires the turbulent vertical velocity fluctuations of the wind to be
larger than the grains’ settling velocity v∞, i.e., the so-called Rouse number v∞/(κu∗) has to
be much smaller than unity [56]. Here, κu∗ is the strength of the Lagrangian vertical velocity
fluctuations [244], with κ = 0.4 the van Kármán constant, introduced in Sec. 3.5.1. Using Eq. (3.11)
for the settling velocity and the asymptotic scaling in Eq. (3.10) for CD(Reg), this criterion yields
a suspension threshold

Ss = 4κ2/[3CD(Reg)] ≈ κ2Reg/Rec . (Reg ≪ Rec) (3.14)

Here, some caution is in order: instead of a well-defined threshold, Ss rather marks a crossover
region, as also reflected by the notions of long-term and short-term suspension. For values
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of Reg on the order of Rec ≈ 24 and larger, Ss becomes so large that these grains are never
suspended—they are not dust, but sand grains.

Sand’s susceptibility towind: the fluid threshold. Besides the potential of being suspended
in air, dust can equally well be defined by the wind’s ability to mobilize it from the ground, which
makes its discrimination from sand more explicit. With a typical size of about 100 µm, sand grains
are very susceptible to being mobilized and transported by the wind—much larger granules and
pebbles are simply too heavy, smaller dust particles are prone to cohesive inter-particle forces
(e.g., van der Walls, Coulomb, capillary, and chemical binding forces [56]) and trapped in the
viscous sublayer [85, 245]. To put this reasoning into a predictive quantitative model, various
approaches have been proposed in the literature. They all share a similar starting point: the
force balance between the fluid drag exerted on the bed grain, the weight of this grain, and some
cohesive inter-particle forces. Following these lines, Iversen and coworkers [1, 246, 247] were
the fist to formulate a semi-empirical model, which, however, suffers from a number of ad-hoc
assumptions and fudge expressions they introduced in order to match experimental data. Later
on, Shao and Lu [248] proposed a much simpler formulation, for which they showed that it fits
the data equally well. A physically well-founded—and therefore the most convincing—approach
was brought up by Claudin and Andreotti [85], who allowed for both viscous and turbulent
contributions to the drag and estimated the strength of the cohesive forces from a surface tension
arising at the grain–grain contact area.

The minimum flow strength needed to mobilize the bed grains is quantified by the threshold
(or critical) Shields number Stf, with the subscript “tf” referring to the threshold of motion driven
by the fluid. It corresponds to the threshold shear stress τtf via Eq. (3.13). A often used heuristic
and empirically motivated approximation the cohesive inter-particle forces to depend linearly [56]
(or, based on a surface-tension argument, only slightly stronger [85]) on the grain size and to be
independent of the ambient conditions, for which the force balance takes the form [85]

Stf(Reg,a/am) = S0tf(Reg)

(
1 +

a2m
3a2

)
. (3.15)

The first term S0tf(Reg) on the right is the threshold Shields number in the absence of cohesive
forces. It arises from the force balance between the turbulent drag and gravity of the pivoting bed
grain—recall that the Shields number is defined as the ratio between drag and grain weight [245],
Eq. (3.13). As both viscous and turbulent contributions to the total drag determine the numerical
value of S0tf, it is a function of the Reynolds number Reg, with the two asymptotic values S0tf(Reg ≪
Rec) ≈ 0.14 and S0tf(Reg ≫ Rec) ≈ 0.04 in the purely viscous and turbulent limits, respectively [70],
and a weak minimum around Reg ≈ Rec [245]. The bracketed term in Eq. (3.15) represents the
cohesive inter-particle forces, where

am ∝ 1/
√
ϱg − ϱ)д (3.16)

is the grain size, for which the threshold shear stress τtf ≡ (σ − 1)дaStf attains a minimum. Grains
of size am are thus most easily mobilized by the flow.

Inserting literature data for ϱg, ϱ, and д, together with the empirically observed grain size
am ≈ 75 µm for sand on Earth [1, 85, 249], Eq. (3.16) yields values for am on Venus, Mars, Titan,
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and for aqueous transport on Earth, which are listed in Table 3.3. From these numbers, we
may conclude that typical aeolian sand on Mars and Titan is slightly coarser than on Earth.
Indeed, images taken by exploration rovers show that typical grain sizes at the Martian surface
vary between 90 and 300 µm [85, 144] (for further references, see [57]). Recent experiments
that simulate the threshold conditions on Titan in a high-pressure wind tunnel also suggest a
relatively large value for am on the order of 200 µm [249], yet a bit below our rough estimate in
Table 3.3.

Note that the force-balance argument applied in Eq. (3.15) to estimate the conditions for bed
grain mobilization is of inherent mean-field nature. In particular, only the average wind drag
was considered. One might, however, wonder whether the intermittent turbulent fluctuations of
the driving fluid (see Sec. 3.5.2) would alter the drawn picture of the mobilization process and
thereby lead to significant quantitative corrections. Indeed, recent flume studies by Valyrakis and
coworkers [250–253] showed that the strength and duration of the gust events, during which
the drag force exceeds a critical value, determine the bed-grain dislodgement by a turbulent
flow. These authors formulated criteria for the initiation of the grain movement in terms of
the fluctuating drag force [250, 251] and the fluctuating flow power [253] integrated over the
duration of a gust. This suggests that the grain mobilization is determine by the momentum
(time-integrated force or “impulse”) or the energy (time-integrated power) that is transferred
to the grain, instead of the average force (shear stress) exerted on it. As a consequence, the
intermittent wind-strength fluctuations crucially determine the transport near the threshold
conditions [114], making it itself intermittent [124, 131, 132, 254]. The gust-energy distribution,
for instance, is then expected to exhibit power-law statistics, facilitating burst-like transport even
when the mean wind strength is well below the mobilization threshold [132].

Kicked bed grains: the impact threshold. Besides the described direct aeoro-/hydrodynamic
entrainment, bed grains can also be mobilized by the impacts of other hopping grains. This leads
to the so-called impact or dynamic threshold. It corresponds to the wind strength that is needed
to sustain the transport, as opposed to the above introduced fluid or static threshold, which
characterizes the wind strength needed to initialize the transport. We quantify the wind strength
at the impact threshold by the Shields number St (corresponding to the threshold shear stress τt),
which is always below the fluid threshold2, St ≤ Stf. For thin atmospheres, like on Earth or Mars,
the hopping grains efficiently transmit momentum from the fluid to the sand bed, whereby they
concentrate it spatially around their impact location. This leads to a large local grain-borne shear
stress (i.e., a large momentum per area is transmitted to the bed grains). As a consequence, these
impacts help to sustain the transport and there is a significant gap between the two thresholds
values St and Stf. It yields a marked hysteresis of the transport around these threshold values, as
thoroughly analyzed in recent wind-tunnel experiments [132], field measurements [255], and
numerical simulations of coarse-grained transport models [256, 257]. For very dense atmospheres,
where the drag dominates the grain’s inertial force, the momentum transport due to the grains is
very inefficient and the direct fluid entrainment becomes more efficient than the grain collisions,
St ≈ Stf [57, 85]. The hysteresis then diminishes.

2The opposite, St > Stf, cannot hold, because, at the impact threshold St, the total stress acting on the bed grains
comprises both fluid and grain contributions, so the impacting grains can only provide an additional effect. This is of
course not the case if one compares the pure fluid entrainment with the mobilization due to grain impacts only, i.e.,
without the fluid contribution, as done in Ref. [85].
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The observed phenomenology can be rationalized as follows. The weight of the bed grains
is effectively reduced by flow-induced lift and drag forces. At the fluid threshold (S = Stf), this
reduced weight has to vanish, so the bed grains start to move. Following Bagnold (Chap. 7 of
Ref. [40]), the force balance for a bed grain exposed to the shearing flow of strength S yields

effective weight ∝ (ϱg − ϱ)дa3(1 − S/Stf) . (3.17)

It is this remaining weight (viz., the corresponding potential energy) that prevents the bed grains
from becoming mobile—and the grain impacts have to compensate for it in order to sustain the
transport. As argued by Duran and Andreotti [70], the number of ejected grains per impact is
constrained to a fixed value to sustain the transport at the impact threshold (S = St). This number
of ejected grains is proportional to

impact energy
a · (effective weight) ∝

σS

1 − S/Stf
. (3.18)

Here, we plugged in Eq. (3.17) and used that the kinetic impact energy scales as ϱpu2, with u the
typical wind speed, which, in turn, is proportional to the shear velocity, u ∝ u∗ ≡

√
S(σ − 1)дa,

according to Eq. (3.13). For S = St, the right hand side of Eq. (3.18), is equal to the constant scaled
number nt of ejected grains, which incorporates all suppressed factors of proportionality and the
relative energy loss during the collisions. This yields [70]

St =
Stf

1 + (σ/nt)Stf
∼

{
Stf (σStf ≪ nt)

nt/σ (σStf ≫ nt)
(3.19)

Empirically, one finds for aeolian transport on Earth Stf ≈ 0.01 and Stf/St ≈ 1.5 [57, 85], thus
nt ≈ 40. For aqueous transport on Earth (σ ≈ 2.6) and aeolian transport on Venus (σ ≈ 40) we
thus expect the fluid and impact threshold to essentially coincide, whereas aeolian transport on
Earth (σ ≈ 2.2 · 103) and Mars (σ ≈ 2.2 · 105) is characterized by a marked hysteresis [216, 221].
The large wind-strength ratio between fluid and impact entrainment on Mars has been argued to
be responsible for the numerous currently active aeolian features, from ripples over so-called
TARs (transverse aeolian ridges) to large dunes that cover large parts of the Martian surface,
despite the average wind is expected to be below the fluid threshold [115–118]. However, one
should also note that both the sand’s polydispersity and the pertinent wind fluctuations may lead
to a non-zero sand transport even though the average wind is below the transport threshold of
the average sand grain (see also Chap. 5). Such subthreshold conditions are moreover required to
form megaripples from bidisperse sand, where the coarse-grain fraction is transported through
reptation [67]. This regime is considered in the next paragraph.

Bi- and polydisperse sand: the reptation threshold. From the above discussion, we learned
that the combination of grain weight and cohesive forces leads to a window of grain sizes that are
susceptible to being mobilized by typical atmospheric winds. For bidisperse sand, this grain-size
range can become significantly wider, because the bombardment of fine saltating grains can
drive bigger bed grains into reptation. As in Eq. (3.18), we determine the minimal wind strength
needed to eject a coarse bed grain of diameter ac by a fine impactor of diameter af from the
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energy balance

(reduced mass) · (fine-grain impact energy)
ac · (coarse-grain effective weight) ∝

(af/ac)
7σStfτ/τ

f
tf

1 − τ/τ ctf
, (af ≪ ac) (3.20)

which is pinned to a constant numerical value, reflecting the relative energy loss during the splash.
The reduced mass on the left hand side accounts for the momentum and energy balance for
collisions of two grains of unequal size; for af ≪ ac, it reduces to (af/ac)

3, inserted here. Instead
of the Shields number S , we expressed the wind strength in terms of the shear stress τ , because
the unit (ϱg − ϱ)дa underlying the definition of S depends on a particular choice of the grain size
a, which would make the formulas for polydisperse sand unnecessarily complicated. We also
introduced the threshold stress values τ ftf, τ

c
tf for the fine and coarse grain fraction, respectively.

Denoting the constant value of Eq. (3.20) at the coarse grains’ reptation threshold τ = τ cr by nr
and using τ ftf = (af/ac)τ

c
tf, we obtain

τ cr =
τ ctf

1 + (af/ac)6(σ/nr)Stf
. (3.21)

Note that nt, introduced in Eq. (3.19), represents the number of splashed bed grains needed to
sustain the stationary saltation transport, whereas the value of nr is not bounded by such a
constraint. The coarse reptating grains do not contribute to the maintenance of the saltation
process, so we expect nr ≪ nt. As a consequence, there exists a distinguished reptation regime,
τ cr < τ ctf, where the fine-grain bombardment drives the big-grain movement. Figure 3.1a shows
this wind-strength regime as a function of the grain-size ratio af/ac.

Equation (3.21) is only valid for bidisperse sand, i.e., for two distinct grain sizes. Natural sand
is however polydisperse, characterized by a continuum distribution. This means that the size of
the saltating fine grains af is determined by the actual wind strength τ , namely as the size of the
biggest grains transported in terms of saltation, i.e., τ ft = τ or

af/ac = τ/τ
c
t . (3.22)

Combining Eq. (3.21) and (3.22), we can draw the following conclusion: for a given wind strength
τ , grains of maximum size af are transported by saltation, coarser ones reptate, whereby the
maximum size of the latter is determined by Eq. (3.21) with τ cr = τ , yielding af/ac = const. The
size range of such reptating grains is illustrated in Fig. 3.1b.

When comparing this prediction with field data, one should keep the following complication
inmind. Since the saturation length and the associated saturation time increase with the grain size,
the intermittent turbulent wind gusts might be too short to transport big grains efficiently, even
though the average wind strength might exceed their threshold value τ ct . Instead of performing
high jumps, these big grains will be transported by reptation, during the short gusts. In the
field, the grain-size range of the reptating coarse-grain fraction can thus be significantly broader
than estimated in Fig. 3.1. Very recently, Martin and Kok [105] reported a similar effect for
grain-size-resolved field measurements. They observed that even very coarse grains (up to about
0.6 . . . 1.0mm, almost insensitive to the prevailing average wind strength) were transported,
but with much shorter trajectories than observed for the fine grains. Indeed, they argued that
a significant contribution to this trend comes from the longer response time and the fact that
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Figure 3.1: Sand polydispersity and the reptation transport. (a) For a given fine–coarse grain-size
ratio af/ac, the reptation regime (shaded area) extends over a range of wind strengths τ . It is
bounded by the saltation thresholds τ f,ct of the fine and coarse grains (dashed and dotted lines,
respectively) and the reptation threshold τ cr of the coarse grains (solid line). Namely, fine grains
saltate (τ > τ ft ), while coarse grains reptate (τ cr < τ < τ ct ). The grain-size dependence of τ cr , given
in Eq. (3.21), is determined by the momentum and energy balance for a binary collision between a
saltating fine grain and a coarse bed grain. With typical conditions for wind-blown sand in mind,
we here used (σ/nr)Stf = 5000, in agreement with the estimate proposed in Ref. [67] (appended to
Chap. 4). The upper bound of the window may be shifted from the impact threshold τ ct towards
the fluid threshold τ ctf ≈ 1.5τ ct (dash-dotted line) when the coarse grains do not self-sustain their
once initiated transport, meaning that they do not saltate despite τ > τ ct . (b) For a continuum
grain-size distribution and a given wind strength τ , the size af of the biggest saltating grains
is determined by τ ft = τ . Bigger grains can be transporter by reptation (shaded area) if their
reptation threshold is below the wind strength (τ > τ cr ). Via Eq. (3.13), this upper bound is given
by ac ∝ af, with a numerical prefactor on the order of 2.1 . . . 3.9, as estimated in Ref. [67]. In panel
(a), the reptation regime for a continuum grain-size distribution collapses onto the dark thick
line, as can be readily seen from af/ac = τ/τ

c
t , which follows from τ ft = τ and, again, Eq. (3.13).

the “probability of promotion to saltator status decreases dramatically with increasing particle
size”. A systematic theoretical investigation of this complicated interplay between the grain-size-
dependent dynamic transport physics and the wind-speed fluctuations is still lacking, but seems
to be a promising project for future studies.
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1. Introduction

Wind-driven sand transport is the most noticeable process shaping the morphology of arid
regions on the Earth, Mars and elsewhere. It is responsible for the spontaneous creation of
a whole hierarchy of self-organized dynamic structures from ripples over isolated dunes to
devastating fields of shifting sands. It also contributes considerably to dust proliferation, which
is a major determinant of our global climate. There is thus an urgent need for mathematical
models that can efficiently and accurately predict aeolian sand fluxes. However, the task is very
much complicated by the complex turbulent flow of the driving medium (e.g. streaming air)
and the erratic nature of the grain hopping it excites [1]. Yet, it is by now well understood that
this hopping of grains accelerated by the wind has some characteristic structure [2]. Highly
energetic ‘saltating’ grains make a dominant contribution to the overall mass transport. When
impacting on the sand bed, they dissipate some of their energy in a complex process called
splash, ejecting a cloud of ‘reptating’ grains [3, 4]. A snapshot of this splash would show a
whole ensemble of trajectories corresponding to a distribution of jump lengths from short, over
intermediate, to large hops. However, grain-scale studies and theoretical considerations have
indicated that a reduced description in terms of only two idealized populations (sometimes
called saltons and reptons) should indeed be able to provide a faithful parametrization of the
complex aeolian sand transport process and the ensuing structure formation [2, 5]. A rule
of thumb to say which grains in a real splash pertain to idealized population of saltating or
reptating grains is whether or not their jump height exceeds a threshold of about a few grain
diameters.
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A drawback of the two-species description has been that it is still conceptually and
computationally quite demanding. For reasons of simplicity and computational efficiency, many
theoretical studies have therefore chosen to reduce the mathematical description even further,
to mean-field-type ‘single-trajectory’ models [6]. This may be justified for certain purposes,
e.g. for the mathematical modelling of aeolian sand dunes, which are orders of magnitude larger
than the characteristic length scales involved in the saltation process and thus not expected to
be very sensitive to the details on the grain scale. Their formation and migration is thought to
predominantly depend on large-scale features of the wind field and of the saltation flux, chiefly
the symmetry breaking of the turbulent flow over the dune and the delayed reaction of the sand
transport to the wind [7]. Moreover, the reptating grains, although they are many, are generally
thought to contribute less to the overall sand transport, because they have short trajectories
and quickly get trapped in the bed again. Therefore, it seems admissible to concentrate on the
saltating particles. On this basis, numerically efficient models for one effective grain species that
can largely be identified with the saltating grain fraction have been constructed. The Sauermann
model [8] is a popular and widely used example of such mean-field continuum models. One-
species models have become a very successful means of gaining analytical insight into [9–14]
and to conduct efficient large-scale numerical simulations of [15–19] the complex structure
formation processes caused by aeolian transport. The reduction to a single representative
trajectory makes the one-species models analytically tractable and computationally efficient.
However, it is also responsible for some weaknesses concerning both the way in which the two
species are subsumed into one [5] and how they feed back onto the wind [12]. These entail
imperfections in the model predictions, most noticeably a systematic overestimation of the
stationary flux at high wind speed (see figure 5). Therefore, the one-species models have been
criticized for their lack of numerical accuracy and internal consistency [5, 20]. There is also a
number of interesting phenomena that cannot be quantitatively modelled within a one-species
model, because they specifically depend on one of the two species, or on their interaction, or
because the two species are not merely conceptually but also physically different.

As three important representatives of such phenomena, we name dust emission from
the desert, ripples and megaripples. Dust is created, exposed to the wind and emitted by
aeolian sand transport, and saltating and reptating particles play quite different roles in these
processes [1, 21]. For example, fragmentation processes might be driven by the bombardment
of high-energy saltating grains [22], but not by the slower reptating grains. In contrast, the
emission of dust hidden from the wind underneath the top layer of grains in a sand bed could
arguably be linked to the absolute number of reptating grains dislodged from the bed. The
reptating grain fraction and its sensitivity to the local slope of the sand bed are, moreover, held
responsible for the spontaneous evolution of aeolian ripples [1, 2, 4, 23–29]. But the number
of reptating particles depends on the strength of the splash caused by the saltating grains. This
interdependence of the reptating and saltating species becomes even more transparent when the
two species correspond to visibly different types of grains. This is the case for megaripples,
which have wavelengths in the metre range and form on strongly polydisperse sand beds in a
process accompanied by a pronounced grain sorting [30–32]. The mechanism underlying their
formation and evolution is still not entirely understood, but it seems that the highly energetic
bombardment of small saltating grains drives the creep of the larger grains armouring the ripple
crests. The mentioned grain-sorting emerges due to the grain-size-dependent hop lengths.
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The demand for more faithful descriptions of aeolian sand transport has recently spurred
notable efforts to eliminate the deficiencies of the one-species models [11, 12, 33] or to develop
a numerically efficient two-species model [5]. It also motivated the development of the model
described in detail below, as we felt that the problem has not yet been cured at its root. In our
opinion, many of the amendments proposed so far have targeted the symptoms rather than the
disease by invoking some ad hoc assumptions. It was our aim to modify the sand transport
equations from bottom-up, based on a careful analysis of the physics on the grain scale and
including the feedback of the two dissimilar grain populations on the turbulent flow. In this
way, we derived a conceptually simple, analytically tractable and numerically efficient two-
species model with only two phenomenological fit parameters. They serve to parametrize the
complicated splash process and take very reasonable values if the predicted flux law is fitted to
measured data. Compared with the time when the first continuum sand transport models were
formulated, we could build on more detailed experimental and theoretical knowledge of the
grain-scale physics [5, 34–39] and rely on more comprehensive empirical information about the
wind shear stress and sand transport to test our predictions [40–43].

The plan of the paper is as follows. We first summarize some of the pertinent basic notions
of turbulent flows and aeolian sand transport and introduce the two-species formalism. Then
we implement the two-species physics on the level of the sand flux in section 3.1 and on the
level of the turbulent closure for the wind in section 3.2. In sections 3.3 and 3.4, we address the
most interesting observables, namely the speed and the average number of hopping grains, and
the saturated sand flux. We finally compare our results with other models and experiments in
section 4, before concluding in section 5.

2. Basic notions of aeolian sand transport and the two-species parametrization

Our analysis of the two-phase flow of air and sand is similar, in spirit, to the Sauermann
model [8]. The Sauermann model is a continuum or hydrodynamic model. Rather than with
the positions and velocities of individual grains it deals with spatio-temporal fields of these
quantities, namely the local mass density %(Ex, t) and sand transport velocity Ev(Ex, t). It is
of mean-field type since it reduces both fields to the mean quantities ρ(x, t), v(x, t) for a
single representative trajectory, characterizing the conditions along the wind direction (the x-
direction), with the distribution of airborne grains in the vertical direction (the z-direction)
integrated out. Note that ρ therefore is an area density, obtained by integrating the volume
density . over z. (The vertical grain distribution is a crucial element of the modified turbulent
closure, however, which accounts for the feedback of the sand onto the wind.) In this paper, we
deal exclusively with the saturated sand flux, i.e. the sand flux along the wind direction over a
flat sand bed and under stationary wind conditions. What we call the flux q = ρv is actually a
vertically integrated flux, or a sand transport rate [8]. The central aim is to derive a constitutive
relation q(τ ), giving the stationary flux at a given shear stress τ .

In the following, the strong mean-field approximation of the one-species models is
somewhat relaxed, and reptating, and saltating particles with densities ρrep, ρsal and transport
velocities vrep, vsal are treated separately. The flux is split up accordingly

q = q rep + qsal
= ρsalvsal + ρrepvrep. (1)

Introducing the dimensionless mass fraction ϕ ∈ [0, 1] of saltating grains relative to the total
number of mobile grains, the (integrated) densities of the mobile grains can be written in the

New Journal of Physics 14 (2012) 093037 (http://www.njp.org/)



5

form

ρsal
= ϕρ and ρrep

= (1 − ϕ)ρ. (2)

Accordingly, the flux balance and the relative contribution of reptating and saltating grains to
the flux read as

q = ρv = ρ
[
ϕvsal + (1 − ϕ)vrep

]
and q rep/qsal

= (ϕ−1
− 1)vrep/vsal. (3)

The fluxes depend on the wind velocity field, which, in turn, depends on the grain–wind
feedback. To make progress in this respect, the (steady) shear stress τ in the saltation layer is
split into two components carried by the airborne grains (‘g’) and the air (‘a’) itself, respectively,

τ = τg(z) + τa(z) = const. (4)

This idea, introduced by Owen [44], which amounts to an effective two-fluid representation of
the wind and the airborne sand, was used in many analytical models [5, 8, 11, 45] and confirmed
by numerical simulations [6, 37–39, 46]. In the two-species model, we moreover keep track of
the two species of mobile grains in (4). Similar to the flux division introduced in (1), we further
split the grain-borne shear stress

τg(z) = τ rep
g (z) + τ sal

g (z). (5)

Concerning the feedback of the grains on the wind, it turns out that the wind velocity profile
u(z) is predominantly determined by the reptating grain fraction and thus by the functional
form of τ

rep
g (z), while the number and trajectories of the saltating grains hardly affect the wind

profile at all. Physically, this makes sense, since the saltating particles form a very disperse gas
compared with the dense reptating layer. Also note that the reptating grains, which lose all their
momentum upon impact, are responsible for the momentum loss of the flow field. The wind
profile may thus be computed in a reduced one-species scheme, as explained in section 3.2 and
appendix B.

Under steady conditions, a common simplifying assumption is that the airborne stress near
the ground (z = 0) can be identified with the threshold shear stress τt required to mobilize grains
from the ground [44],

τa(0) ≈ τt. (6)

If it were larger or smaller, an increasing or decreasing number of grains would be mobilized,
respectively, resulting in an unsteady flow. This idea is indeed supported by empirical
observations, which find that the number of ejected grains increases (almost linearly) with the
impact speed, not their ejection velocity or jump height [34, 35, 47, 48]. The feedback of the
grains on the wind thus essentially fixes the air shear stress at the ground (and, if τ ≈ τt, also
above) to the threshold value τt. To be precise, τt is called the impact threshold, to emphasize
that it is easier to lift grains from the splash cloud than to lift completely immobile grains from
the ground [1]. But, for the sake of simplicity, we do not bother to make this distinction here,
nor do we speculate about possible small deviations of τa(0) from τt under steady conditions
[12, 33]. Combining (4) and (6), we may express the shear stress contributed by the grains near
the ground as

τg(0) = τ rep
g (0) + τ sal

g (0) = τ − τt. (7)

Both stress contributions are defined as the product of the vertical sand flux φi and the
horizontal velocity difference vi

− vi
0 upon impact, τ i

g(0) = (vi
− vi

0)φ
i . The vertical sand flux
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Figure 1. The two-species picture of aeolian sand transport maps the ensemble of
mobile grains onto two representative species. High-energy (‘saltating’) grains
accelerated by the wind (arrows in the wind-speed profile indicating the wind
velocity) rebound upon impact and eject some low-energy (‘reptating’) grains
in a splash. Sand transport is quantified in terms of the transport velocities, vsal

and vrep, and mean densities, ρsal and ρrep, of the two species. The momentum
balance of the splash process (inset, see section 3.1) is effectively encoded in the
impact velocity vsal, the horizontal and vertical rebound velocities of the saltating
grain, vsal

0 and vsal
z0 , respectively, and the number N and velocity v

rep
z0 = v

rep
0 of the

ejected reptating grains (neglecting a small horizontal velocity component, for
simplicity).

φi is given by the horizontal (height integrated) flux q i divided by the grains’ mean hop length,
φi

∝ q i
= ρivi . Here, i represents the species indices ‘rep’ or ‘sal’. Following Sauermann

et al [8], we assume parabolic grain trajectories with initial horizontal and vertical velocity
components vi

0 and vi
z0, respectively, and obtain

φi
= gρi/(2vi

z0), τ i
g(0) = gρi(vi

− vi
0)/(2vi

z0), i = rep, sal. (8)

Since the average ejection angle of the reptating particles is known to be about 80◦ [34], vrep
0 ≈ 0

and we identify the total ejection speed of the reptating grains with its vertical component v
rep
z0 .

The impact angle of saltating grains is known to be almost independent of the wind strength
and to take typical mean values of about 10◦ [49], so that we can identify the total impact speed
with the horizontal speed vsal of the impacting particle, see figure 1.

In order to derive the sought-after constitutive equation, we have to understand the balance
of the two species of mobile grains. If one considers the vertical fluxes φsal and φrep rather than
the horizontal fluxes qsal and q rep, one has

φrep
= Nφsal, (9)

with the average number N of reptating grains ejected by an impacting saltating grain. Together
with the first relation in (8), we then have

ϕ−1
= 1 + Nv

rep
z0 /vsal

z0 . (10)

Using also the second relation in (8) and remembering that we dismissed the horizontal
component of the ejection velocity, we can thus write the overall density of mobile grains in
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Table 1. Scaling functions f (U ) for stationary aeolian sand transport relations
of the form Q(U ) = (1 − U−2) f (U ). Note that the coefficients of the various
models cannot be identified even if represented by the same symbol. Explicit
analytical expressions for the coefficients α0, β0, γ0, a and b of the two-species
model can be found in appendix D.

This work
α0U + β0 − γ0U−1

aU − b

This work, one-species limit a − bU−1 (b < 0)

Sauermann et al [8] a
√

1 + α0U−2 + bU−1

Sørensen [11] a + bU−1 + cU−2

Durán and Herrmann [12] a − bU−1 (a, b < 0)

Pähtz et al [33] −a + bU−1 + cU−2

the form

ρ =
2%air

g

u2
∗
− u2

∗t

ϕ(vsal − vsal
0 )/vsal

z0 + (1 − ϕ)vrep/v
rep
z0

. (11)

As often found in the literature, we have employed the notion of the shear velocity or friction
velocity u∗, defined by s ≡ .airu2

∗
, as a more intuitive measure of the shear stress τ here. The

velocity ratios in the denominator of (11) are supposedly only very weakly dependent on the
wind strength. The first one is recognized as an effective restitution coefficient

α ≡ vsal
z0 /(vsal

− vsal
0 ) (12)

of the saltating grains [8]. Because of the complexity of the splash process, which makes
first-principle quantitative estimates of α forbiddingly complex, we suggest treating it as a
phenomenological fit parameter. We do, however, provide a reasonable theoretical estimate of
the ratio vrep/v

rep
z0 , based on the trajectory of a vertically ejected grain driven by the wind, in

section 3.3 and appendix C. Anticipating the result vrep/v
rep
z0 = 0.7(σνairg)1/3/u∗t, we can rewrite

the density of the transported sand in the more explicit form

ρ =
2%air

g

u2
∗
− u2

∗t

ϕ/α + 0.7(1 − ϕ)(σνairg)1/3/u∗t
. (13)

Here νair denotes the kinematic viscosity of air, and since the grain–air density ratio σ � 1
under terrestrial conditions, we do not bother to distinguish between σ and σ − 1 here and in
the following. Note that on top of the explicit wind strength dependence of ρ via the numerator,
there is an implicit, yet undetermined one via ϕ.

In the following, we develop the sought-after ‘second generation’ transport law
q(u∗), based on the grain-scale physics. Some empirical input is employed to fix certain
phenomenological coefficients summarized in table D.1. Our result (see table 1) accounts
for essential elements of the aeolian sand transport process beyond the single-trajectory
approximation and turns out to be in remarkable agreement with wind tunnel measurements.
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3. Implementing the two-species framework

The two-species framework is implemented in three steps. First, we deal with the mass balance
between the species, then with their feedback onto the wind and their resulting transport
velocities, before we finally arrive at an improved stationary transport law q(u∗).

3.1. Sand density: two-species mass balance

We first estimate the partition of the grain population into a saltating and a reptating fraction
from several evident assumptions for the splash process, based on fundamental physical
principles. In our formalism, a saltating grain always rebounds upon impact and ejects N
reptating grains, while a certain fraction of its kinetic energy and momentum is dissipated in
the sand bed. We further assume that every reptating grain performs only a single hop after
which it remains trapped in the sand bed. These mild approximations for the stationary sand
transport reduce the number of free parameters of our model compared with more elaborate
descriptions [5].

As argued, e.g., by Kok and Renno [37], the relevant constraint limiting the number N of
ejected grains per impact is given by the conservation of the grain-borne momentum rather
than the energy. In writing the momentum balance, we make a physically plausible linear-
response approximation, namely that all terms scale linearly in the velocity vsal of the impacting
grain. This amounts to assuming a wind-strength-independent scattering geometry, so that
we can add z- and x-components up to constant geometric factors that are later absorbed in
phenomenological coefficients. Including also the bed losses proportional to vbed in this vein,
we have

vsal
= vsal

0 + vsal
z0 + Nv

rep
z0 + vbed. (14)

For the first two terms on the right-hand side of (14), the proportionality to vsal is already implicit
in the definition (12) of the restitution coefficient α. There is an important subtlety concerning
the last two terms, however. Namely, the ejected grains have to gain enough momentum to
jump over neighbouring grains in the bed in order to be counted as mobile grains. But they
also should not themselves eject other grains upon impact; otherwise we would have to count
them among the saltating fraction. Hence, the impact velocity vrep and the ejection velocity v

rep
z0

of the reptating grains are tightly constrained and cannot, by definition, be strongly dependent
on the impact velocity of the saltating grain or the wind strength. Within experimental errors,
observations of the collision process of saltating grains by Rice et al [49] are indeed in
reasonable agreement with a constant v

rep
z0 of the order of u∗t. In fact, they found the horizontal

component of the ejection velocity to be independent of vsal, and only a slight increase of
the vertical component with vsal. A compelling confirmation of this observation was recently
obtained by better controlled laboratory experiments, in which PVC beads were injected at
an impact angle of 10◦ onto a quiescent bed of such beads [34, 35]. There are two important
consequences of the constraints on v

rep
z0 . Firstly, N should grow linearly with vsal. Secondly,

since the momentum of the impacting grain is only partially transferred to the ejected grains,
a critical impact velocity vsal

= vsal
c � v

rep
z0 has to be overcome to mobilize any grains at all. It

can be interpreted as a constant offset in vbed, which does not scale with vsal. According to the
collision experiments [34, 35], one can take vsal

c ≈ 40
√

gd ≈ 9u∗t, where we used Bagnold’s
estimate u2

∗t ≈ 0.01σgd [1]. A concise summary of the empirical input entering our model is
provided in table D.1.
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Summarizing the above discussion, we can rewrite the momentum balance (14) as

Nv
rep
z0 ∝ vsal

− vsal
c , (15)

where vsal > vsal
c is tacitly assumed to hold throughout our discussion, and the omitted factor of

proportionality should be insensitive to the wind strength. Observations of saltating grains [49],
model collision experiments [34, 35, 47, 48], particle dynamics simulations [6, 50] and reduced
numerical models, such as the binary collision scheme proposed by Valance and Crassous [36],
all support this affine relation of the number of ejected grains, which is the cornerstone of our
two-species mass balance. To fix the omitted factor in (15) and make contact with (10), we
write

Nv
rep
z0 = (η/α)(1 − vsal

c /vsal)vsal
z0 . (16)

The constant η, which serves as the second free fit parameter of our model, determines together
with vsal

c how the momentum lost by a rebounding grain is distributed between the bed and
the ejected particles. (Details of the phenomenological values of α and η obtained by fitting
the complete model to the experimental flux data are given below.) Comparison with (10) now
yields an explicit expression of the mass fraction

ϕ−1
= 1 + (1 − vsal

c /vsal)η/α (17)

in terms of vsal alone. Thereby, the problem of specifying the stationary mass balance between
saltating and reptating grains has been completely reduced to the task of finding the stationary
transport velocity vsal of the saltating particles as a function of the wind strength.

3.2. Wind velocity field: two-species turbulent closure

Before we can work out the transport velocities of the two species of grains, we need to know the
height-dependent wind speed u(z) and how it is affected by the presence of the airborne grains.
Unfortunately, this leads us back to the question of the grain densities that we just delegated to
the calculation of the grain velocities. In the past, an elaborate self-consistent calculation has
been avoided by anticipating the resulting form of the wind profile on the basis of empirical
observations. In the Sauermann model, for instance, an exponential vertical decay of the grain-
borne shear stress is imposed,

τg(z) = τg(0) exp(−z/zm), (18)

in good agreement with grain-scale simulations [6, 37, 38, 46]. Since the airborne stress τa(z)
follows from this via (4), it reduces the task to the problem of finding the mean saltation height
zm. In appendix B, we present a refined version of this approach, adapted to the two-species
approach. It accounts for the contributions of the different species to the grain-borne shear
stress, separately, and also for their considerably different trajectories. However, as we detail in
the appendix, the whole exercise yields essentially identical results as (18), which can in fact be
interpreted as the pre-averaged two-species expression. This lends further support to the general
form of (18), recommending it as a suitable basis for our further discussion of the two-species
model.

From (18), we obtain, via (4), the wind speed profile u(z) by integrating Prandtl’s
turbulence closure

τa(z) = %airκ
2z2[∂zu(z)]2. (19)
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Figure 2. The wind speed u at height z. Theory, equation (21) (curves),
compared with the measured data (symbols) for grains of diameter d = 242 µm
(solid curves, circles) and d = 320 µm (dashed curves, boxes) and various
shear velocities (u∗ = 0.27, 0.39, 0.56, 0.69 m s−1 and u∗ = 0.27, 0.47, 0.74,
0.87 m s−1 from bottom to top for d = 242 µm [42] and d = 320 µm [41],
respectively); as global fit parameters we used the roughness length (z0 = d/20),
the threshold shear velocity (u∗t = 0.19 m s−1, 0.20 m s−1 for the finer/coarser
sand) and the mean saltation height zm, which is compared with (23) in the inset.

To proceed analytically, we use a modified secant approximation similar to what was proposed
by Sørensen [11]. As shown in appendix A, the closure equation then becomes

∂zu ≈
u∗

κz

[
1 − (1 − u∗t/u∗)e

−z/zm
]
. (20)

Upon integration from the roughness length z0 � zm, defined by u(z0) = 0, this yields the
explicit result [11, 12]

u(z) =
u∗

κ
ln(z/z0) −

u∗ − u∗t

κ
[E1(z0/zm) − E1(z/zm)], (21)

with the integral exponential E1(z) ≡
∫

∞

z dx e−x/x . For small wind speeds u∗ → u∗t (u∗ > u∗t),
the usual logarithmic velocity profile is recovered. Inside the saltation layer, a universal
asymptotic wind velocity field

u(z) ∼
u∗t

κ
ln(z/z0) (z0 . z � zm) (22)

emerges, which is independent of the wind strength outside the saltation layer. This rationalizes
the convergence of the wind profiles for different wind strengths, found in wind tunnel
measurements, without the ad hoc assumption [12] of a debatable focal point [51], which
resulted in the prediction of an unphysical negative flux q(u∗) at high wind speeds [12].
A direct comparison of our above prediction for u(z) with wind tunnel data from [41, 42] can
be found in figure 2. From these data (available for two grain sizes d) we determine the mean
saltation height zm. Past attempts to relate zm to d invoked a new undetermined length scale
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depending solely on atmospheric properties [52]. However, the results of our fit rather support
the simpler (and more natural) linear relation

zm ≈ 25d (23)

(right panel of figure 2). This is in line with recent analytical and numerical work [33], albeit
possibly with a somewhat different numerical factor dependent on specific model assumptions.

3.3. Transport kinetics: two-species transport velocities

With the wind speed profile u(z) at hand, we can now determine the characteristic stationary
transport velocity vsal of the saltating sand fraction from a standard force-balance argument. We
evaluate the wind speed at a characteristic height zsal, at which the fluid drag on the grains is
then balanced with the effective bed friction, in the usual way (for a detailed derivation and
discussion, see [8, 12]). Namely, the drag force on a volume element of the saltation cloud (the
force per mass acting on a single saltating grain times the density ρsal of the saltation cloud) is
balanced with τ sal

g (0). This yields the transport velocity of the saltating sand fraction

vsal
= u(zsal) − vsal

∞
, (24)

with the estimate [12, 53]

vsal
∞

≈

√
σ dg/α

1.3 + 41 νair/
√

σd3 g/α
(25)

for the terminal steady-state relative velocity u − vsal. Formally, vsal
∞

is equal to the settling
velocity asymptotically reached by a grain freely falling in air (of kinematic viscosity νair and
with grain–air density ratio σ ), with a rescaled gravitational acceleration g 7→ g/(2α).

We fix the u∗-independent parameter zsal by the plausible assumption that the splash at
the (impact) threshold wind speed u∗t dies out, corresponding to vsal(u∗ = u∗t) = vsal

c . The
underlying physical picture is that it is the splash that keeps the saltation process going, even
below the aerodynamic entrainment threshold, because the reptating particles compensate for
rebound failures [5]. Accordingly, using (24) with the logarithmic wind field, equation (22), we
find that

zsal
= z0 exp

(
κ

vsal
c + vsal

∞

u∗t

)
. (26)

In appendix C, we use a similar argument to derive the mean reptation velocity, which turns out
to be almost independent of the grain size d. It can thus be approximated by the constant

vrep
≈ 0.7(σνairg)1/3, (27)

for most practical purposes. This relation corresponds to a u∗-independent reptation
length 2vrepv

rep
z0 /g = 0.14[σ 5ν2

aird
3/g]1/6 in the centimetre range, while the saltation length

2vsalvsal
z0 /g ∝ u2

∗
/g is quadratic in the shear velocity u∗ (see figure 3) and of the order of

decimetres [1, 54, 55].
In figure 3, the transport velocities vsal and vrep for the two species and the mean velocity

v = ϕvsal + (1 − ϕ)vrep are plotted over the shear velocity u∗. An important result is that the
species-averaged transport velocity v is nearly constant over a broad range of wind strengths.
This is consistent with the fundamental assumption on which the model is based, namely that the
number of mobilized grains is sensitive to the wind strength, but their overall transport kinetics
is not.
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Figure 3. The transport velocities of the saltating (dashed) and reptating (dotted)
sand fraction versus the rescaled shear velocity U ≡ u∗/u∗t, as predicted by (24)
and (27), respectively. The solid line represents the average transport velocity in
a reduced effective single-trajectory description.

3.4. Stationary sand flux: the two-species transport law

The stationary flux law is now obtained by collecting the above results for the saturated density
ρ from (11), the saltation fraction ϕ from (10), the transport velocities (24) with the wind
velocity (21), and inserting them into (3). We introduce reduced variables, measuring the shear
velocity u∗ in terms of the impact threshold u∗t and the saturated flux q in units of .airu3

∗
/g,

U ≡ u∗/u∗t, Q ≡ qg/(%airu
3
∗
). (28)

The result for our two-species stationary flux relation then takes the form

Q = (1 − U−2)
α0U + β0 − γ0U−1

aU − b
, (29)

with the coefficients α0, β0, γ0, a and b depending on the two free parameters α and η, as
summarized in appendix D. It goes without saying that this result pertains to U > 1 and that
Q(U < 1) ≡ 0. Except for b, which becomes negative for small η, and in particular for η = 0,
all coefficients are positive. But since γ0 < α0 + β0 and b < a, the flux always remains positive.

The positivity of the flux in (29) guarantees physically reasonable results, even under
transient wind conditions, as occurring, for example, in sand dune simulations. The extension
of the present discussion to non-stationary conditions is a major task for future investigations,
in particular with regard to the saturation length, i.e. the characteristic length scale over which
the system relaxes towards the steady state [8]. Its derivation within our two-species approach is
of conceptual interest, since the wind strength dependence of the saturation length has recently
been the subject of debates (see, e.g., [20]).

4. Discussion

Before we determine the free parameters α and η by comparing (29) with experimental data,
we first discuss the effect of our two-species parametrization on the two related transport
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Figure 4. The rescaled fluxes Qsal
≡ qsalg/(%airu3

∗
) and Qrep

≡ q repg/(%airu3
∗
) of

the saltating and reptating grains, respectively, versus the rescaled shear velocity
U ≡ u∗/u∗t (parameters: α = 0.65, η = 9, as determined in section 4.3; grain size
d = 250 µm). Left: direct comparison of Qsal (solid line) and Qrep (dashed line).
Right: the flux ratio Qrep/Qsal

= q rep/qsal (solid line) compared with the mass
fraction 1 − ϕ of reptating grains (dashed line).

modes—saltation and reptation—and present two different single trajectory reductions of
the two-species model. Subsequently, we compare these reduced schemes to single-species
transport laws that have previously been proposed in the literature.

4.1. The two-species flux balance

Our derivation of the overall sand flux Q, given in (29), also yields the partial fluxes Qsal
≡

qsalg/(%airu3
∗
) and Qrep

≡ q repg/(%airu3
∗
) of the saltating and reptating species, respectively. Their

dependence on the wind velocity is illustrated in figure 4. It is frequently argued in the literature
that the saltating grains dominate the sand transport, for they perform large jumps, while the
reptating sand fraction might be negligible in terms of mass transport. Our model basically
confirms this view for moderate winds, not too far above the impact threshold. However, it
predicts that both species contribute almost equally to the total flux, under strong winds. The
shift in the mass balance ϕ towards reptation (figure 4, right plot) reflects the dependence
of the number of ejected grains on the wind strength, which follows from the splash-impact
relation (15) if one inserts the transport velocities of the individual species, as given in figure 3.
The variable contribution of the two species to the overall sand flux is a result that cannot be
obtained from the conventional single-species models, but should be of interest for some of the
more advanced applications mentioned in the introduction.

4.2. One-species limits

It is interesting to see how the conventional one-species descriptions emerge from the two-
species model upon contraction to a single effective grain species. This contraction is clearly
not unique but may be performed in different ways. On the basis of the two-species flux
balance, discussed in the preceding section, two natural contractions suggest themselves: one
for moderate wind speeds where the flux is dominated by saltation, and one for strong winds,
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Figure 5. The stationary sand-flux laws. Predictions from the two-species model,
equation (29) (solid line) with its natural one-species limits (30) and (31) (lower
and upper dotted lines), are compared with transport laws from conventional one-
species models: Sauermann et al [8] (upper dashed), Durán and Herrmann [12]
(lower dashed) and Pähtz et al [33] (middle dashed). All curves have been
obtained for a grain size of d = 250 µm. The values of the free parameters α

and η in (29) were determined by comparison with experiments as described
in section 4.3. The predictions of the single-trajectory limits of the two-species
model, (30) and (31), were adjusted by the parameter rescaling zsal

→ 0.18zsal

and η → 0.138η.

where the ratio of the contributions from reptating and saltating grains was found to be
roughly constant.

The first single trajectory reduction, where the reptating species is dismissed, is obtained
by setting ϕ = 1 or η = 0, which corresponds to the flux relation

Q = (1 − U−2)(a − b U−1), (30)

with a negative coefficient b < 0 (appendix D). Since this equation accounts only for high-
energy saltating grains, the resulting absolute flux is too large compared with the original two-
species description. This can be corrected by reducing the effective trajectory height or, in our
formalism, by rescaling the effective height zsal at which the fluid drag is balanced with the
effective bed friction. The lower dotted line in figure 5 was obtained in this way.

The second single trajectory reduction is motivated by the weak dependence of the mass
fraction ϕ on u∗ for strong winds u∗ � u∗t, which suggests replacing ϕ by its u∗-independent
limit 1/(1 + η/α). This yields

Q = (1 − U−2)(α̃0 + β̃0 U−1), (31)

with

α̃0 =
α0

a
and β̃0 =

β0

2a
+

η̃

1 + η̃

v
rep
z0

u∗t
, (32)

and the abbreviation η̃ ≡ ηvrep/v
rep
z0 . If one interprets the (now constant) species mass balance

as a free phenomenological parameter, it may be adjusted by fine-tuning η, so that the absolute
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Figure 6. The rescaled saturated flux Q = qg/(%airu3
∗
) for various grain sizes

(d = 125, 170, 242, 320 and 242 µm from bottom to top): data from wind tunnel
measurements using particle tracking methods [43] (stars) and sand traps [40]
(other symbols) are compared with the prediction by the two-species model,
equation (29) (solid curves). The restitution coefficient α served as a global but
grain-size-dependent fit parameter (see figure 7), while η = 9 and η = 3.8 was
fixed for the sand trap and the particle tracking data, respectively. (The open
symbols represent several rescaled data sets, obtained for a variety of bed slopes.)

value of the sand flux predicted by this formula agrees better with experimental observations.
This is how we obtained the upper dotted line in figure 5.

Both (30) and (31) have the functional form of the transport law proposed by Durán
and Herrmann [12] based on the focal point assumption. Note that the effective height zsal is
small compared with the saltation height, where the wind speed obtained from the focal point
assumption is very weak. As a consequence, the mean drag force is reduced, which results in
a negative parameter a < 0 in (30) and a negative sand transport rate Q < 0 for large shear
velocities U > |a/b|. Table 1 and figure 5 provide a summary of various stationary aeolian sand
transport laws that have been proposed in the literature, in comparison with the prediction of
our two-species model and its above single-trajectory contractions.

4.3. Comparison with experiments

We now fit our two-species flux relation Q(U ) from (29) to the empirical data from various
wind tunnel measurements [40, 43], using η and α as free fit parameters. As demonstrated in
figure 6, we obtain excellent agreement with the experimental data for a grain-size-independent
splash efficiency η and an effective coefficient of restitution α that increases with increasing
grain size d. The transport rates for four different grain sizes collected in [40] were obtained
using sand traps; the data in [43] were obtained by particle tracking techniques for a single grain
size only. The different methods yield different absolute values for the sand flux, which might
be due to systematic differences in the detection efficiency. In the model, these differences are
reflected in the (apparently) different efficiencies with which saltating grains generate reptating
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Figure 7. The restitution coefficient α (left) and the threshold shear velocity u∗t

(right) versus the grain size d. Parameter values deduced from model fits to flux
data in figure 6. The solid lines represent the scaling (d/d0)

−1 according to (33)
for 1 − α and the classical estimate u∗t = 0.1

√
σgd , respectively.

grains, i.e. different values of the parameter η. We find that η = 3.8 for the data obtained by
particle tracking and η = 9 for the sand trap data, independently of the grain size. But both data
sets were consistent with the same formula for the bed restitution coefficient

α = 1 − d0/d, (33)

with d > d0 = 88 µm (left panel of figure 7). The rebound becomes increasingly elastic for
larger grains, while α vanishes for smaller grains at a critical grain diameter d = d0, which
is in accord with the observation that saltation only occurs for sand grains larger than about
70 µm [56]. The dependence of the restitution coefficient α on the grain size is phyically
plausible, for the collision of smaller grains is increasingly influenced by hydrodynamic
interactions (and also by cohesive and electrostatic forces). In other words, d0 is a characteristic
grain size marking the transition from a phenomenology typical of sand to one typical of dust.

Moreover, while we also fine-tune the threshold u∗t for each grain size by hand when
fitting the experimental data, the values used turn out to be in very good agreement with the
expectation u∗t ≈ 0.1

√
σgd , as demonstrated by the inset of figure 6. Altogether, the stationary

sand transport rate observed in experiments is thus convincingly reproduced by the two-
species result, equation (29), over a wide parameter range, with very plausible and physically
meaningful values for the model parameters.

The observed value of d0 can be rationalized by a hydrodynamic order of magnitude
estimate. Commonly, one relates the crossover from sand-like to dust-like behaviour to the
difference in transport modes of these two classes of grains. While sand is transported by
grain hopping dust remains suspended in the air for a while. Balancing the settling velocity
of the grains by the typical (upward) eddy currents, which are of the order of u∗t, one obtains
a minimal sand grain size of about 1.5(ν2/σg)1/3

≈ 30 µm [1]. To match d0 = 88 µm, the eddy
velocity would have to be 4.5u∗t. Two further estimates of d0 may be obtained as follows. The
first assumes that the crossover marked by d0 is concomitant with the crossover from a more
elastic to a more viscous collision between individual grains. In this case, the relevant quantity
is the Stokes number, which characterizes the particle inertia relative to the viscous forces.
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Using the observations of the collision experiments by Gondret et al [57] for the critical Stokes
number St, below which the impacting particles do not rebound from a rigid wall, one gets
a critical grain size of about 20 St2/3ν2/3/σ/g1/3

≈ 20 µm. To match d0 = 88 µm, the critical
Stokes number would have to be of the order of 190, i.e. ten times larger than the value obtained
in [57], for which experimental differences might possibly be blamed. Note, however, that the
most pertinent argument should be the one that gives the largest value of d0, as it provides
a lower bound for the grain size contributing to saltation. A larger estimate of d0 is indeed
obtained by observing that sand grains collide with the bed, and they are lifted from the bed by
turbulent fluctuations in the wind velocity. In contrast, suspended and resting dust particles
are protected from bed collisions and turbulent lift, respectively, by the laminar boundary
layer that coats any solid (no slip) boundary. The characteristic length scale of this laminar
coating is related to the so-called Kolmogorov dissipation scale (ν3

air/ε)
1/4 [58], where ε is the

dissipation per unit mass of the driving medium (in our case air under normal conditions). For
the logarithmic wind profile near the ground, equation (22), the scale-dependent dissipation
takes the form ε(z) = u3

∗t/κz [59]. A self-consistency argument requiring that the Kolmogorov
dissipation scale at height z above the ground equals z (if no externally imposed roughness scale
is available) yields z ' [ν3

air/ε(d0)]1/4. Extrapolating the logarithmic profile with u∗t = 0.1
√

σgd
down to the scale z, we obtain z = 4.6(ν2

air/σg)1/3
≈ 102 µm. We find this estimate to be in

excellent agreement with the data in the left panel of figure 7, which suggests

d0 ≈ 4(ν2
air/σg)1/3. (34)

5. Conclusions

We have developed a ‘second generation’ continuum description of aeolian sand transport,
relaxing the strong mean-field approximation inherent in the classical single-trajectory models
such as [8] and introducing a two-species framework, as advocated in [5]. We started from
the physics on the grain scale and corroborated our explicit analytical expressions by a
comprehensive comparison with empirical data for the splash, the wind velocity field and the
sand flux, covering a broad range of ambient conditions and grain sizes. While the usefulness
of our general approach of contracting the complicated splash and saltation process into a
drastically reduced two-species picture was strongly suggested by empirical and theoretical
work, it necessarily involved some free phenomenological coefficients. For our two-species
model, these are, apart from a few minor numerical coefficients listed in table D.1, the effective
bed restitution coefficient α(d) for the saltating grains of diameter d and the parameter η

that fixes the number of reptating grains ejected by the average impacting saltating grain.
Both parameters were found to take consistent and plausible values if used as free parameters
when fitting the empirical flux data obtained in wind tunnel experiments. In particular, the
size dependence of the restitution coefficient fits perfectly to the phenomenological criteria
commonly used to distinguish dust from sand. The predicted two-species stationary flux
law (29) was found to be in excellent agreement with comprehensive data from different sources.
It should provide an excellent analytical starting point for a variety of advanced applications
calling for a more faithful description of the saltation process so far available—from
wind-driven structure formation in the desert to saltation-driven dust production and
emission.
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Appendix A. Solving the Prandtl turbulent closure

With (4) and the assumption of an exponential decay of the grain-borne shear stress with height,
equation (18), the modified Prandtl turbulence closure (19) reads as

∂zu =
u∗

κz

√
1 −

τg(0)

τ
e−z/zm . (A.1)

To make analytical progress, we follow Sørensen [11] in approximating the square root by a
secant. The right-hand side of (A.1) has the functional form

√
1 − εx , with x ≡ exp(−z/zm)

and ε ≡ τg(0)/τ , which we approximate by a secant of the form ax + b(1 − x). Matching the
points {0, 1} and {1,

√
1 − ε} yields b = 1 and a =

√
1 − ε, hence

√
1 − εx ≈ 1 − (1 −

√
1 − ε)x . (A.2)

Under stationary conditions, using (7), we have
√

1 − ε =
√

(τ − τg(0))/τ = u∗t/u∗, which
leads to (20). This avoids an artefact of Sørensen’s original approximation [11],

√
1 − εx ≈

1 − εx , which implies
√

τa(0)/τ = 1 − τg(0)/τ for the shear stress at the ground, as already
criticized by Durán and Herrmann [12].

Appendix B. The two-species approach for the wind profile

In (5) of section 2, the grain-borne shear stress was split into the contributions from
saltating and reptating particles, respectively. The ratio of the grain-borne shear stresses at the
ground,

τ
rep
g (0)

τ sal
g (0)

= α
vrep

v
rep
z0

1 − ϕ

ϕ
≡ α̃

1 − ϕ

ϕ
, (B.1)

immediately follows from (8) and (12), and from our simplifying assumption that the reptating
grains are ejected vertically. Assuming the exponential decay of the grain-borne shear stress τg

with height to hold for both components, the Prandtl turbulent closure reads as

ρairκ
2z2(∂zu)2

= τ − τ rep
g (0)e−z/zrep

m − τ sal
g (0)e−z/zsal

m . (B.2)

We exploit the strong scale separation zsal
m /zrep

m ' 102 between the characteristic jump heights
of saltating and reptating grains [1, 60], on which the two-species model is based. (The
precise value turns out to be irrelevant to our discussion.) It allows the closure to be
solved for two separate height ranges: (i) z < zrep

m � zsal
m associated with reptation, where we

may set exp(−z/zsal
m ) → 1, and (ii) z � zrep

m , associated with saltation, where we may set
exp(−z/zrep

m ) → 0. Applying the secant approximation for the square root as described in
appendix A, we can perform the integrations within both ranges and match the asymptotic
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Figure B.1. Comparison of the wind velocity profile (B.3) obtained from the
self-consistent numerical solution of (B.5) (solid lines) with the pre-averaged
profile (21) (dashed lines) for grains of diameter d = 242 µm and for various
shear velocities (U = 1.5, 2.5, 3.5 and 4.5 from bottom to top). As explained
in the main text, both approaches coincide for zm = zrep

m . In addition, we show
the results of numerical solutions of the turbulence closure (B.2) (open symbols)
to support the approximate expression (B.3). Inset: the saltation velocity vsal,
rescaled by the minimum saltation velocity vsal

c needed to eject any grains, over
the shear velocity: self-consistent numerical solution of (B.5) (symbols) and
its analytical prediction in the limit (1 − τt/τ)ϕ → 0, for which u(z) is given
by (B.6) (line).

solutions at z = zrep
m . Using (7) and (B.1) to eliminate τ sal

g (0) and τ
rep
g (0), this yields

u(z) =


Su∗

κ
ln

z

z0
−

Su∗ − u∗t

κ

[
E1

(
z0/zrep

m

)
− E1

(
z/zrep

m

)]
, z 6 zrep

m ,

u(zrep
m ) +

u∗

κ
ln

z

zrep
m

−
u∗(1 − S)

κ

[
E1

(
zrep

m /zsal
m

)
− E1

(
z/zsal

m

)]
, z > zrep

m ,

(B.3)

where we abbreviated

S =

√
1 −

(1 − τt/τ)ϕ

ϕ + (1 − ϕ)α̃
. (B.4)

Using this in the force balance, (24), we gain the implicit equation

vsal
= u(zsal, vsal) − vsal

∞
, (B.5)

where the fraction ϕ of saltating grains itself depends on the velocity vsal of the saltating grains
via (10). To solve it, we note that the fraction ϕ of saltating particles is a decreasing function of
the shear stress τ , bracketed by 1 and 0 (figure 4, right panel). Hence, the product (1 − τt/τ)ϕ

is a small number for all τ > τt. Setting it to zero in (B.3), we obtain

u(z) ∼
u∗

κ
ln

(
z

z0

)
−

u∗ − u∗t

κ
×

{
[E1(z0/zrep

m ) − E1(z/zrep
m )], z 6 zrep

m ,

[E1(z0/zrep
m ) − E1(1)], z > zrep

m .
(B.6)
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Since the exponential integral E1(z/zm) vanishes rapidly for increasing z > zm, we recover the
wind speed profile (21) successfully employed in the one-species models, with the characteristic
decay height given by zm ≡ zrep

m . Inserting (B.6) into (B.5) yields an affine increase of vsal with
u∗, in good accord with the exact numerical solution of (B.5) (figure B.1, right panel).

For the numerical solution, one has to deal with the two free parameters zrep
m and α.

While the former is directly related to the wind profile, the latter is a fit parameter of the
model, determined from a comparison of the predicted sand transport rate with empirical data
(figure 6). To make progress, we vary zrep

m and take the value of α from section 3.4, where the
sand flux is estimated by means of the pre-averaged approach for the wind profile. For a grain
diameter d = 242 µm, we obtained α ≈ 0.63 (i.e. α̃ = 1.4), which is consistent with collision
experiments, as argued in [12]. From the numerical solution of (B.5), we find good agreement
between the self-consistently gained u(z) and wind tunnel measurements [42] for zrep

m = 25d,
which is exactly the same value as obtained in section 3.2 within the pre-averaged approach.
This supports our observation that (B.3) can be approximated by taking the limit ϕ → 0 in (B.6),
which yields the pre-averaged wind profile for zm ≡ zrep

m . This result is almost independent of
the ratio zsal

m /zrep
m , for (B.6) is independent of zsal

m . Thereby, we formally confirm the intuitive
expectation that the feedback of the grains on the wind profile is predominantly due to the many
reptating particles and hardly affected by the saltating particles.

Appendix C. Reptation velocity

As to the saltating grain fraction in section 3.3, we estimate the transport velocity of the
reptating grains from the grain scale physics, i.e. from the hop-averaged horizontal velocity
of an individual grain. (Note that we do not introduce a new variable to distinguish the grain-
scale velocity from the mean transport velocity, because the context prevents confusion.) The
time-dependent velocity of a reptating grain obeys the drag relation

∂tv
rep

=
g

(v
rep
∞ )2

|u − vrep
| (u − vrep) , (C.1)

similar to that for saltating grains [8, 12]. For saltating grains, an additional friction force
(besides the drag force) would appear on the right-hand side of the equation of motion,
representing the mean loss of momentum upon rebound. But, since the reptating grains perform
only a single hop, such a friction term does not enter (C.1). We assume that the ejection is
essentially vertical with the initial velocity v

rep
z0 of the order of u∗t. A more accurate discussion

would not substantially change our findings, as confirmed by the numerical solution of (C.1).
Note that the nonlinearity of the drag law entails a time-dependent ‘terminal settling velocity’
v

rep
∞ , dependent on the actual relative grain velocity u − vrep (e.g. [53]). However, for our

purpose, and in view of the low reptation trajectories, we can safely approximate the reptation
velocity from (C.1) by inserting the wind speed u(zrep) at a given reptation height and the steady-
state terminal velocity

vrep
∞

=
√

σgd[0.95 + 20 νair/
√

σgd3]−1 (C.2)

derived from the effective drag law proposed in [53], similar to (25) (see also [8, 12]).
Neglecting moreover vertical drag forces, the maximum height of the reptation trajectory is
(v

rep
z0 )2/(2g) ≈ 10d < zm. Consequently, we may insert the ground-level wind field (22) and
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Figure C.1. The reptation velocity vrep against the grain diameter d . The dots
correspond to the numerical solution of (C.1) averaged over one trajectory,
while the solid and dashed lines represent the approximate solution (C.3)
and the representative value vrep

= 0.7(σνairg)1/3
≈ 0.5 m s−1 proposed in (27),

respectively. The latter can be understood as an average over the relevant grain
sizes (white background).

obtain the mean reptation velocity

vrep
≈

u∗t ln(zrep/z0)

κ
[
1 + κ (v

rep
∞ )

2
/
(
2v

rep
z0 u∗t ln(zrep/z0)

)] , (C.3)

where we approximated the time of flight by that for a parabolic trajectory, 2v
rep
z0 /g, as usual.

Inserting the empirical observation v
rep
z0 ≈ u∗t as well as u2

∗t = 0.01σgd and z0 = d/20, see
table D.1, results in an estimate for the reptation velocity vrep as a function of the grain
diameter d , illustrated by a solid line in figure C.1, which we may identify with the (mean
field) transport velocity of the reptating grain fraction.

The yet undetermined value of the effective reptation height zrep is expected to be of
the order of the maximum height (v

rep
z0 )2/(2g) of the trajectory. Indeed, if we compare the

approximate result given by (C.3) with the numerical solution vrep(t) of (C.1) averaged over
the whole trajectory,

vrep =
g

2v
rep
z0

∫ 2v
rep
z0 /g

0
dt vrep(t), (C.4)

we obtain a good match for large grain diameters d > 800 µm for zrep
= 0.14u2

∗t/(2g). Note,
however, that the numerical solution yields an almost d-independent reptation velocity vrep ≈

0.5 m s−1 for the relevant grain sizes d ≈ 100 µm . . . 1 mm, as illustrated in figure C.1. To find an
estimate for vrep, which still captures the dependence on other parameters appearing in (C.3), we
evaluate this equation for a representative grain diameter within the relevant range. A closer look
at (C.3) reveals that the reptation velocity at the inflection point d ≈ 6.7ν

2/3
air (σg)−1/3

≈ 150 µm
can be approximated by vrep

≈ (νairσg)1/3
= 0.68 m s−1, which provides the wanted parameter

dependence. To better match the absolute values found from the numerical solution, we insert a
factor of 0.7 by hand, thus arriving at the analytical estimate given in (27).

New Journal of Physics 14 (2012) 093037 (http://www.njp.org/)



22

Table D.1. The parameters occurring in equations (D.1)–(D.5), which are either
numerical constants or dependent on the grain diameter d, the gravitational
acceleration g = 9.81 m s−1, the sand–air density ratio σ = 2163 or the kinematic
viscosity of air, νair = 1.5 × 10−5 m2 s−1.

Parameter Value or formula

u∗t 0.1
√

σgd
κ 0.4
η 9 [40], 3.8 [43]
vsal

c 10u∗t

v
rep
z0 u∗t

z0 d/20
zm 25 d
α 1 − d0/d , d0 = 4(ν2

air/σg)1/3

vsal
∞

√
σgd/α[1.3 + 41

√
α νair/

√
σgd3]−1

vrep 0.7(σνairg)1/3

Appendix D. The coefficients of the transport law

Here we give explicit expressions for the coefficients occurring in the saturated sand flux (29):

a = 2α(1 + η̃)
vsal

c + vsal
∞

u∗t
− 2α

1 + η̃

κ
E
[

z0 exp

(
κ

vsal
c + vsal

∞

u∗t

)]
, (D.1)

b = a − 2α
vsal

c

u∗t
(D.2)

α0 =
a2

(1 + η̃)2
, (D.3)

β0 =
2η̃a

1 + η̃

(
v

rep
z0

u∗t
+

a

1 + η̃
−

b

η̃

)
, (D.4)

γ0 =
η̃v

rep
z0

u∗t

[
η̃v

rep
z0

u∗t
+ 2(a − b)

]
−

(
1 + η̃

2a
β0

)2

(D.5)

with the abbreviations

E(z) = E1(z0/zm) − E1(z/zm) (D.6)

and

η̃ ≡ η vrep/v
rep
z0 . (D.7)

All parameters occurring in these equations are listed in table D.1. As explained in the main text,
these quantities are determined as follows. From collision experiments, we obtain the numerical
values of the critical impact velocity vsal

c and the vertical ejection speed v
rep
z0 . The roughness

length z0 and the height zm (the characteristic decay height of the air-borne sand density) are
estimated by fitting experimentally observed wind velocity profiles above the saltation layer.
Finally, the parameters η, α and the threshold shear velocity u∗t are determined by fitting the
sand transport rate to wind tunnel measurements.
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Analytical mesoscale modeling of aeolian sand transport
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The mesoscale structure of aeolian sand transport determines a variety of natural phenomena studied in
planetary and Earth science. We analyze it theoretically beyond the mean-field level, based on the grain-scale
transport kinetics and splash statistics. A coarse-grained analytical model is proposed and verified by numerical
simulations resolving individual grain trajectories. The predicted height-resolved sand flux and other important
characteristics of the aeolian transport layer agree remarkably well with a comprehensive compilation of field
and wind-tunnel data, suggesting that the model robustly captures the essential mesoscale physics. By comparing
the predicted saturation length with field data for the minimum sand-dune size, we elucidate the importance of
intermittent turbulent wind fluctuations for field measurements and reconcile conflicting previous models for this
most enigmatic emergent aeolian scale.
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I. INTRODUCTION

Aeolian sand transport is the process of erratic grain
hopping occasionally observed on a windy day at the beach. It
remains perplexing how the wide variety of distinctive aeolian
sand patterns, from tiny ripples to huge dunes, emerges from
such seemingly chaotic dynamics. The current knowledge
about the grain-scale structure of aeolian transport largely rests
on laboratory and field experiments [1]. Attempts to derive
coarse-grained mathematical models that can rationalize the
observations started with Bagnold’s seminal work in the
1930s [2] and are still the subject of ongoing research
[3–11], for good conceptual and practical reasons. With
average grain trajectories exceeding the submillimeter grain
scale by orders of magnitude, aeolian transport is a typical
mesoscale phenomenon that should be amenable to such
coarse-grained modeling. Moreover, despite growing com-
putational resources, faithful grain-scale simulations remain
forbiddingly expensive, so that also numerical approaches
cannot avoid fairly drastic idealizations [12–16]. And even
a perfect simulation of aeolian transport would per se, without
a theory, not make the emergence of the various mesoscales
and ensuing sand structures less mysterious.

A radically coarse-grained mean-field model [17]
that maps the whole mobilized grain population
onto a single effective grain trajectory has been
successful in explaining desert dune formation
[18–21]. Such mean-field approaches roughly account
for the more energetic saltating grains but fail to resolve
the heterogeneity of the transport layer, which contains a
majority of grains that only perform very small hops and
do not eject other grains from the bed [22]. Their less
spectacular transport mode, conventionally referred to as bed
load, reptation, or creep, is however thought to be largely
responsible for ripple and megaripple formation [2,23–27],
which therefore eludes the mean-field approaches. Also
ecologically important processes, such as dust emission, rock
abrasion, and vegetation invasion, are sensitive to the detailed
mesostructure of aeolian transport [4,28]. Finally, an improved

*Corresponding author: klaus.kroy@uni-leipzig.de

theoretical model of the aeolian transport layer could help to
infer more information about extraterrestrial conditions from
the limited data obtained by remote sensing [29–32].

In the following, we propose a way to transcend the
usual mean-field approximations and to account, with good
precision, not only for the mean transport characteristics but
also for the substantial heterogeneity and the fluctuations
within the transport layer and in the turbulent wind. Similarly
as in earlier contributions [12,22,33–35], the ballistic kinetics
of an ensemble of wind-blown grains is coupled to the local
wind strength and to the dissipative collisions with the sand
bed. However, as one crucial novel key ingredient, we utilize a
recently proposed analytical model for the grain-bed collisions
[36] that was extensively tested against grain-scale computer
simulations and laboratory experiments. It enables us to
develop a neat analytical description for the whole distribution
of grain trajectories (Sec. II), from which explicit formulas
for various height-resolved observables, such as the grain
concentration and flux, readily follow (Sec. III). In line with
results from earlier numerical work [4,37], the wind strength
is found to affect the transport-layer physics only weakly,
as corroborated by various wind-tunnel studies [1,38–41]. It
enters primarily via “global,” height-integrated quantities and
the total height of the transport layer, which are amenable
to conventional mean-field transport models [17,42–46]. To
validate key ingredients of the analytical modeling, we put
forward dedicated coarse-grained computer simulations that
explicitly resolve the broad distribution of grain trajectories.
The latter turns out to be crucial for a proper analysis of a
large amount of field and laboratory data, as shown in Sec. IV,
where the model predictions are thoroughly tested against
literature data. The field and wind-tunnel data confirm that
the mesoscale structure of the aeolian transport layer is well
captured by the analytical model. On this basis, we can make
a strong case for a proportionality of the minimum sand-dune
size reported in field measurements to the so-called saturation
length for flux transients in heterogeneous wind. As we show,
the relation is somewhat masked by the renormalizing effect of
intermittent turbulent-wind-strength fluctuations that therefore
must explicitly be included in the data analysis. Throughout
the main text, we emphasize conceptual aspects and defer
technical details to six appendices.

2470-0045/2017/96(5)/052906(15) 052906-1 ©2017 American Physical Society
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II. ANALYTICAL MODEL

The crux of our approach is to condense the height-resolved
“mesoscale” information about the heterogeneities in the
stationary aeolian transport layer into a simple analytical form
of the hop-height distribution:

PH (h) ∝ T (h)h−νe−h/H . (1)

Here, T (h) denotes the hop time for the trajectory of height
h, H is the (wind-dependent) characteristic height of the
transport layer, and the power-law exponent ν quantifies the
energy distribution of ejected bed grains. The combination
h−νe−h/H refers to the probability to find a trajectory of
height h; weighting it with the flight time T (h) then yields
the probability that a randomly selected grain in the transport
layer follows such a trajectory. Approximating

T (h) ≈ 2
√

2h/g (2)

by the free flight time (neglecting vertical drag), with g being
the gravitational acceleration, yields

PH (h) = [H�(3/2 − ν)]−1(h/H )1/2−νe−h/H . (3)

The Euler gamma function � arises upon normalization.
We now provide physical arguments for the proposed form

of PH (h). Near the bed, the transport statistics is dominated
by the large number of ejected grains, whose energies are
log-normally distributed and very small compared to the
energy of the saltating grain ejecting them [36,47]. Their
hop-height distribution is therefore well captured by the
asymptotic power-law relation PH (h � H ) ∝ h−ν with

ν = 1 − 2/ ln(4)2 + 1/ ln(2) ≈ 1.4, (4)

as shown in Appendix E. In contrast, large hop heights
(h > H ) are only reached by the few particles that survive
many bed collisions, and are therefore expected to die out
exponentially. More precisely, the identity of the particles
need not to be conserved in the sequence of jumps, which
may comprise Newton-cradle-type collisions. What matters
is that the grain’s energy and momentum are not dispersed
to many grains and thus increase with the number of bed
collisions. We may then characterize the hop sequence by
the fixed rebound probability Preb ≈ Prep(h � a) ≈ 0.86 (for
trajectories much higher than the grain diameter a—typically
a few 100 μm) and the mean ejection height hej ≈ 11a, both
computed from our splash model [36] in Appendix E, yielding
PH (h � hej) ∝ T (h)e−h/H with

H ≈ −hej/ ln Preb ≈ 72a. (5)

We also note that an alternative explanation for the exponential
tail of PH (h) in Eq. (1) invokes an analogy with the barometer
formula for the concentration of a thermalized gas [48].

To further back up Eq. (3), we performed coarse-grained
computer simulations, as described in Appendix C. The
comparison between analytical theory and simulations in Fig. 1
shows excellent agreement if the transport layer height H

is employed as a free fit parameter that slightly increases
with increasing wind shear stress τ . Figure 1(b) compares
the extracted H (τ ) with the functional form computed in
Sec. III C. But even a simpler version of the model, which
disregards this weak wind dependence and fixes H to its

FIG. 1. (a) Coarse-grained numerical simulations (symbols) of
the hop-height distribution PH (h) compared to the analytical model,
Eq. (3) (solid lines), for various wind shear stresses τ [102τ/(�gga) =
1,1.5,2,2.5 from bottom to top]. The simulation computes the
statistics of the ejected bed grains from the analytical model of
Ref. [36], which yields a power-law distribution for low hop heights
with exponent ν = 1.4. The left inset is a log-log representation of the
same data, with logarithmic binning widths (data shifted vertically for
better readability). (b) Trajectories reaching beyond the characteristic
height H of the transport layer die out exponentially. While H

was, for each data point, used as a free fit parameter to match the
simulation data, its τ dependence is well reproduced by the more
refined calculation in Sec. III C (dashed line).

characteristic value according to Eq. (5), will suffice for many
practical purposes.

The model proposed in Eq. (3) has manifold consequences
and applications. First, note that the hop-height distribution
PH (h) together with the purely ballistic conditional probability
P (z|h) for grains on a trajectory of height h to be found at
height z make up the joint probability PH (z,h) = P (z|h)PH (h)
for grains to be at height z on a trajectory of height h. Using
Eq. (2) for the free flight time and writing � for the Heaviside
step function, P (z|h)dz = [2/T (h)]dt yields

2hP (z|h) = �(h − z)/
√

1 − z/h. (6)

The ensuing joint probability PH (z,h) then provides us with
the height-dependent profiles

�H (z) = ρH

∫
dh PH (z,h), (7a)

jH (z) = ρH

∫
dh PH (z,h)vx(z,h), (7b)

φH (z,	) = ρH

2

∫
l(h)>	

dhPH (z,h)|vz(z,h)|, (7c)

τg,H (z) = ρH

∫ ∞

z

dz̃

∫
dh PH (z̃,h)fx(z̃,h) (7d)

of the mass concentration, the horizontal and vertical fluxes,
and the stress contribution of the sand grains, respectively.
Taken together, these functions allow for a comprehensive
characterization of the height-resolved mesoscale structure of
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the transport layer, so that the underlying model assumptions
can be tested with unprecedented scrutiny. For brevity, we
have introduced some additional notation in Eqs. (7), namely
the horizontal and vertical components vx(z,h), vz(z,h) of the
mean velocity, and the horizontal component fx(z,h) of the
force (per grain mass) contributed by a trajectory of height
h to the grain-borne shear stress [22]. The common overall
scale factor ρH = ∫

dz�H (z) is the height-integrated mass
concentration in the saltation layer (in units of mass/area). The
factor 1/2 in Eq. (7c) arises because each trajectory contributes
twice to the grain density PH (z,h), namely during ascent
and descent, whereas it contributes only once to the local
vertical flux φH (z,	), either when ascending or descending.
Also note that we restricted the ensemble of trajectories
in Eq. (7c) to those with total length l(h) > 	, in order
to make contact with experiments that use horizontal sand
traps to measure the vertical flux φH (z = 0,	) through the
sand bed at a downwind distance 	 from the end of the bed
[1,41,49].

The general form∫
dh K(z,h)PH (z,h) =

∫ ∞

z

dh K(z,h)
h−1/2−νe−h/H

2
√

1 − z/h
(8)

of the integrals in Eqs. (7) already allows some general
conclusions to be drawn as to how much the distribution and
shape of the grain trajectories matter for a given mesoscale
observable. Namely, the singularity of the denominator for
h → z gives large weight to the corresponding value of the rest
of the integrand. The latter can then be taken out of the integral,
and only the characteristic height H of the transport layer
matters, unless one is specifically interested in the conditions
very near the ground (z/H � 1). The argument breaks down
if the singularity is accidentally canceled by K(z,h), which
actually happens in Eqs. (7c), (7d); the vertical flux φH (z,	)
and the grain-borne stress τg,H(z) are thus sensitive to the
precise h-dependent shape of the short trajectories with
h � H , while mass concentration and horizontal flux are
not.

To explicitly evaluate the expressions in Eqs. (7), it is useful
to make a few relatively uncritical simplifications concerning
the shape and kinematics of the grain trajectories. First, as in
Eq. (2), we again neglect the vertical drag for the individual
trajectory, using the free-flight estimate for the vertical velocity
for ascent and descent. The mean horizontal velocity then
follows if the trajectories are approximated as parabolas of
aspect ratio ε(h) = h/l(h):

v2
z (z,h) ≈ 2g(h − z), (9a)

vx(z,h) ≈ vx(h) ≈ l(h)/T (h) ≈
√

2gh/[4ε(h)]. (9b)

Marked deviations only occur for the few very long trajectories
with h � H . These “flyers” are exposed to the unscreened
wind speed that increases approximately logarithmically with
h. They therefore acquire exceptionally high forward speeds
vx(z,h) and strongly asymmetric trajectories, but have little
effect on typical observables, due to their rare occurrence.

Disregarding them for now, each hopping grain can be said
to be accelerated by the wind drag during most of its flight
time. Since it passes each height z twice, its mean horizontal

velocity vx(z,h) should thus, to a fair approximation, be z-
independent, as indeed confirmed by numerically solving the
equations of motion of a representative hopping grain (see, e.g.,
Ref. [7]). The forward speed during descent and ascent can then
be written as vx(h) ± �vx(z,h)/2, with the net wind-induced
speedup (to first order in z) given by

�vx(z,h) ≈ αvx(h)(1 − z/h). (10)

Here, the momentum loss incurred upon rebound is rep-
resented by a constant (h-independent) effective restitution
coefficient α = �vx(z = 0,h)/vx(h). The velocity increment
�vx(z,h) directly determines the force

fx(z,h) = −dvx(z,h)

dt
= −|vz(z,h)|∂�vx(z,h)

2∂z
(11)

entering the grain-borne shear stress via Eq. (7d). With
Eqs. (9b), (10), the outer integral in Eq. (7d) thus reads∫ ∞

z

dz̃P (z̃,h)fx(z̃,h) = P (0,h)vz(0,h)�vx(z,h)/2. (12)

In the above expressions for the forward velocity and
derived quantities, the aspect ratio ε(h) = h/l(h) of the trajec-
tories remains to be specified. In cases where only the shape
of the typical trajectory matters, it suffices to approximate
ε(h) ≈ ε(H ). Neglecting its weak wind-speed dependence,
we consider conditions near the transport threshold, where few
particles are mobilized and the bare logarithmic wind-speed
profile prevails. Combining it with the prediction of our splash
model for the typical rebound geometry of the hopping grains,
we then find

ε(H ) ≈ 0.1 (13)

in Appendix E. While this estimate suffices for many practical
purposes, the aspect ratios of the shortest and longest trajecto-
ries, corresponding to so-called reptating particles and flyers,
respectively, deviate from ε(H ) according to

ε(h)

ε(H )
≈

⎧⎨
⎩

(h/H )−1/2 (h � H ),
1 (h 	 H ),
0 (h � H ).

(14)

The three regimes, which are clearly discernible in the
simulations (see Fig. 9 of Appendix C), can be interpreted
in terms of three asymptotically dominant transport modes,
namely almost vertically splashed grains near the ground,
saltating grains that attain a limiting speed near the top of
the transport layer, and a few flyers above it. The power-
law stretching for the shortest trajectories follows from the
typical hop length of wind-blown ejected bed grains, as
detailed in Appendix E. With increasing height, the flight
time T (h) approaches the typical response time (“drag time”)
for relaxation to the stationary velocity, so that one might
expect the aspect ratio to evolve roughly as h/[T (H )u(h)] ∝√

h/ ln(h/z0), using the logarithmic law of the wall for the
wind speed u(h) at height h with surface roughness scale z0.
However, such an argument neglects the vertical drag that
becomes increasingly important as h increases. It limits the
vertical velocity (essentially to the terminal velocity) and
thus effectively caps the hop height of the fastest ejecta.
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The highest trajectories, beyond an intermittent regime of
approximately shape-invariant trajectories for h 	 H , will
therefore ultimately become increasingly stretched.

An exception is provided by the rare Newton-cradle-type
collisions already mentioned below Eq. (4), in which a bed
grain can gain exceptionally high vertical momentum from a
fast impactor. According to Eq. (3), all these highly energetic
trajectories are so rare that they are buried in the far exponential
tail of the hop-height distribution. They therefore have so
little impact on typical mesoscale observables that the first
two regimes in Eq. (1) suffice to derive a wealth of accurate
analytical predictions. Nevertheless, an improved scheme that
relaxes the shape invariance of the grain trajectories to also
estimate the height dependence of flyer-sensitive observables
for h > H is proposed below, in Secs. III B and III C. With
all the ingredients in place, we can finally estimate the
average value of the characteristic transport layer H from a
flux-balance argument. Under stationary transport conditions,
the vertical grain flux φH (z = 0,	 = 0) into the bed must
compensate for the outgoing (rebounding and ejected) grains,
yielding zero net erosion [37,50]. With the above notation, this
criterion reads∫ ∞

a

dh[1 − Preb(h) − N (h)]|vz(0,h)|PH (0,h) = 0, (15)

where the grain size a is used as minimum hop height to
regularize the otherwise unbounded integral. Precise relations
for the rebound probability Preb and the number N of ejected
grains per impact can be taken from our splash model
[36]. It provides them as functions of the impact energy,
approximately mgh[1 + 1/(4ε)2], which in turn depends on
the tangent of the impact angle, here rephrased as 4ε, according
to Eq. (9). Together with ε = 0.1 from Eq. (13), the implicit
equation (15) for the average transport layer height is readily
solved and yields H ≈ 70a. The quantitative agreement of
this result with Eq. (5), which only relies on the rebound
characteristics of the splash model [36], is no surprise, since
it is dominated by the high-hopping and therefore frequently
rebounding grains (rather than by the ejecta). If desired, the
neglected weak wind-strength dependence of H through N

and ε can be included in the analysis using again the extended
approach of Sec. III C.

At this point, we would like to emphasize that all system
parameters introduced above were computed from our splash
model, which was independently calibrated in Ref. [36] by
comparison with collision experiments using plastic beads.
However, to compare the various predictions derived in the
following section with laboratory and field data in Sec. IV,
below, the characteristic height H is better used as a free
fit parameter, to compensate for the differences between the
actual sand grains and said plastic beads, as well as for some
poorly controlled environmental conditions such as humidity
and temperature. Our comparison with field data also reveals
that the value of the power-law exponent ν characterizing the
splash efficiency should be adapted to the actual experimental
setup, whereas no adjustment is required for the values of
both the aspect ratio ε(H ) ≈ 0.1 of the typical trajectories
and the effective restitution coefficient α ≈ 0.6, computed in
Appendix E.

FIG. 2. Simulation data (symbols) and analytical predictions
obtained from Eqs. (3)–(10) (lines) for the (a), (b) height-resolved
mass concentration �H (z), (c), (d) flux jH (z), and (e), (f) grain-borne
shear stress τg,H (z). Normalizing the data by the height-integrated
concentration ρH and flux qH , the grain stress at the ground τg,H (0),
and the characteristic transport-layer height H , a good collapse is
achieved for various wind shear stresses τ (legend), as theoretically
predicted. The solid lines correspond to the model approximation
of shape-invariant trajectories with ε(h) = ε(H ) independent of h;
the dashed lines represent Eq. (18), which invokes ε(h) ∝ h−1/2, as
appropriate for the majority of (low) trajectories, which collectively
carry most of the momentum and therefore dominate the stress (see
the inset of Fig. 9).

III. RESULTS

A. Height-resolved transport characteristics

We now come back to the height-resolved observables
introduced in Eqs. (7). Explicit analytical expressions for
the height-resolved grain concentration and flux are given in
Appendix A. They take the asymptotic forms

�H (z)

ρH/H
∝

{
(z/H )1/2−ν (z � H ),
(z/H )−νe−z/H (z � H ),

(16)

and

jH (z)

qH /H
∝

{
(z/H )1−ν (z � H ),
(z/H )1/2−νe−z/H (z � H ),

(17)

with the height-integrated flux qH ∝ ρH vx(H ). Here and for
the plots in Fig. 2, we inserted Eq. (9b) for vx(h,z) and assumed
shape-invariant trajectories with ε(h) = ε(H ). The very good
agreement, for all z, between model and numerical data in the
upper and middle panels of Fig. 2 supports our simplifying
assumptions.

Similarly, the height-resolved grain-borne shear stress
τg,H (z) is estimated by inserting Eqs. (9) and (10) into Eq. (7d).
As anticipated above, one here needs to account for the shape

052906-4



ANALYTICAL MESOSCALE MODELING OF AEOLIAN SAND . . . PHYSICAL REVIEW E 96, 052906 (2017)

of the short trajectories ε(h � H ) ∝ (h/H )1/2, corresponding
to the first regime of Eq. (14),

τg,H (z)

τg,H (0)
≈ �(2 − ν,z/H ) − (z/H )�(1 − ν,z/H )

�(2 − ν)
, (18)

where τg,H (0) = αgρH/[8ε(H )]. Although this result rests on
the assumption h � H , it provides a very good estimate for
arbitrary values of z, because the exponential decay of the
gamma functions for z � H dominates over any polynomial
h dependence originating from ε(h). Physically speaking,
the condition h � H comprises the majority of the grain
trajectories, which account for almost the whole grain-borne
shear stress. The quality of this prediction is illustrated in the
lower two panels of Fig. 2.

Given any general relation h(l) between trajectory height
and length, the vertical grain flux at arbitrary height z

reads
φH (z,	)

qH /L
= �(1 − ν, max [{z/H,h(	)/H }])

�(3/2 − ν)
, (19)

with L = H/ε(H ) being the length of trajectories of height
H . For h � H , the incomplete gamma function decays
exponentially, so that φH (z,	) ∝ [h(	)/H ]−νe−	(h)/H (tacitly
assuming z < h). Taking the derivative of Eq. (19) with respect
to 	 at z = 0 yields the hop-length distribution

− ∂

∂	

φH (0,	)

φH (0,0)
∝ 1

H

dh(	)

d	
[h(	)/H ]−νe−h(	)/H . (20)

It is usually measured in experiments with sand traps [1,41] or
in simulations by counting every trajectory once, indepen-
dently of its length and hop time. It can also be directly
inferred from the hop-height distribution in Eq. (1), after
dropping the hop time T (h). Inserting the asymptotic scaling
ε(h � H ) ∝ (h/H )−1/2 from Eq. (14) into Eq. (20), we find
h(	)/H ≈ (	/L)2/3. From this, the power-law exponent of
the hop-length distribution follows as 1/3 + 2ν/3 ≈ 1.27. A
slightly smaller exponent 1.2 was indeed observed by Durán
et al. [27] in full-fledged grain-scale computer simulations of
the saltation process.

The model predictions in Eqs. (16)–(20) can now be used
to derive explicit expressions for further height-dependent
transport properties. Combining Eqs. (16) and (17), for
instance, immediately yields the height dependence of the
mean grain velocity

VH (z) = jH (z)/�H (z) ∝ vx(H )
√

z/H. (21)

Note, however, that the division makes the result sensitive to
the precise functional form of the singular growth and the small
tails of jH (z) and ρH (z) for very small and large z, respectively.
Therefore, it can only be trusted for intermediate heights z,
as suggested by its square-root growth consistent with the
regime of approximately shape-invariant saltation trajectories
(see Fig. 3; the next section shows how this limitation can
be overcome). In this regime, our model moreover provides
an explicit prediction for the full height-resolved velocity
distribution

PH (vx |z) = PH [z,h(z,vx)]
∣∣∂vx

h(z,vx)
∣∣ρH/�H (z), (22)

which follows from the variable transformation h =
h(z,vx) together with the general relation PH (z,vx) =

FIG. 3. Simulation data (symbols) and analytical predictions
obtained from Eqs. (3)–(10) (lines) for the height-resolved grain
velocity VH (z) for various wind shear stresses τ (legend). Solid lines
represent Eq. (21), which corresponds to the model approximation
of shape-invariant trajectories with ε(h) = ε(H ) independent of h.
Dashed lines show the long-trajectory estimate in Eq. (30) predicted
from the wind-speed profile given in Eq. (26).

PH (vx |z)�H (z)/ρH between joint and conditional distribu-
tion. Exploiting the shape invariance of the trajectories that
dominate the statistics at intermediate z, we have vx(h)2 =
(h/H )vx(H )2 and thus

PH (vx |z) = ρH [vx/vx(H )]−2νe−v2
x/vx (H )2

�(3/2 − ν)H�H (z)
√

v2
x − vx(H )2z/H

. (23)

A similar calculation yields the distribution of the vertical
grain velocity

PH (vz|z) = ρH [z/H + v2
z /(2gH )]−νez/H+v2

z /(2gH )

�(3/2 − ν)H�H (z)vz(0,H )
. (24)

Our model also allows for a reliable analytical estimate of
the wind-speed profile uH (z) within and above the transport
layer, by considering the feedback of the grain-borne momen-
tum on the logarithmic law of the wall [42]. Inserting Eq. (18)
into the modified Prandtl turbulence closure τ − τg,H (z) =
�aκ

2z2[duH (z)/dz]2, where �a is the air density and κ ≈ 0.4
the von Kármán constant, and approximating [45]

√
1 − τg,H (z)/τ ≈ 1 − [1 − √

1 − τg,H (0)/τ ]
τg,H (z)

τg,H (0)
,

(25)

we obtain the height-dependent wind velocity

uH (z) = u∗
κ

ln(z/z0) − u∗ − u∗t

κ
ω(z0/H,z/H )

∼
{

u∗t
κ

ln(z/z0) (z � H ),

u∗t
κ

ln(zf/z0) + u∗
κ

ln(z/zf) (z � H ),
(26)

with ω(ζ0,ζ1) ≡ ∫ ζ1

ζ0
dζ τg,H (ζH )/[ζ τg,H (0)], the roughness

height z0 ≈ a/10 of the (quiescent) sand bed, and the shear
velocity u∗ ≡ √

τ/�a. Following Ref. [42], we here approx-
imated the air shear stress at the ground as a wind-strength-
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FIG. 4. (a) Height-resolved wind speed for various wind shear
stresses τ [102τ/(�gga) = 1,1.5,2,2.5 from bottom to top] from
numerical simulations (symbols) and our model, Eq. (26), with
(dashed lines) and without [solid lines, with first-order corrections
shown in (b)] invoking the simplifying Owen hypothesis that the
airborne shear stress at the bed is screened precisely to the threshold
value τt for grain entrainment [42].

independent constant τ − τg,H (0) ≈ τt ≡ �au
2
∗t, which is jus-

tified near the transport threshold. As illustrated in Fig. 4, this
(“zeroth-order”) approximation is already in good qualitative
agreement with the numerical simulations, while they can
be perfectly matched when small first-order corrections in√

τ/τt − 1 [4,51] are taken into account.
The asymptotic relations in Eq. (26) follow from τg,H (z �

H ) ≈ τg,H (0) and τg,H (z � H ) ≈ 0, according to Eq. (18).
They correspond to the two limits of the screened logarithmic
wind-speed profile near the ground [45] and the “shifted”
logarithmic profile above the transport layer, which can also be
rewritten as uH (z) ∼ (u∗/κ) ln(z/zeff

0 ) with the wind-strength-
dependent effective roughness length zeff

0 = z0(zf/z0)1−u∗t/u∗ .
The crossover height

zf ≡ z0e
ω(z0/H,∞) ≈ He�′(2−ν)/�(2−ν)−1 ≈ 0.1H (27)

between the two is comparable to the average hop height∫
dh hPH (h) = (3/2 − ν)H ≈ 0.1H (28)

of a randomly chosen grain in a transport layer of height H ,
and also to the median height zm ≈ 0.2H of its flux profile,
indirectly defined through qH /2 = ∫ zm

0 dz jH (z) (Appendix
B). Recalling that H depends only weakly on the wind strength
(Fig. 1), we may interpret zf ≈ 0.1H as the so-called “focus
height” [2,50,51].

Altogether, our results corroborate theoretically that the
mesoscale structure of aeolian transport is characterized by a
very dense layer of hopping particles at the ground, which is
only a few grain diameters high (≈ 0.1H ≈ 7a). The layer is
predominantly populated by so-called reptating grains, which
have hardly gained momentum from the wind, but collectively
absorbed its excess power beyond the threshold shear stress
τt. This is a direct consequence of the power-law decay of the
hop-height distribution in Eq. (3), which in turn is strictly tied

to the splash statistics of the bed collisions [36]. In contrast,
the grains on typical saltation trajectories are accelerated by
the wind, giving them an essentially length-independent shape.
This symmetry is only broken by the longest trajectories of rare
flyers that reach heights h � H far beyond the characteristic
height H of the transport layer. It is this drastic change
between the transport modes of the hopping particles as a
function of their jump height and their unequal role in the
momentum balance with the wind which limits most severely
the application of mean-field models based on a single effective
trajectory and has motivated the development of two-species
approaches [45,50].

B. Broken shape invariance: Height-dependent grain velocity

In the previous section, we noted that the power-law
increase of the average grain velocity Vx(z) with height z, as
obtained in Eq. (21), is restricted to intermediate z, where the
shape-invariant trajectories contribute most. As we show now,
this limitation can be overcome by an alternative approach
that relates Vx(z) to the height-dependent wind speed uH (z)
from Eq. (26). We first note that the height-dependent average
grain speed VH (z) = jH (z)/�H (z) is well approximated by the
velocity vx(z,h = z) ≡ vx(z) at the apex of a representative
trajectory of overall height z. Technically, this is seen by
applying Laplace’s method to the integrals for jH (z) and
�H (z) (see Appendix A). The actual form of vx(h) can
then be estimated from the velocity gain �vx(z = 0,h) =∫ T (h)

0 dt v̇x(t) of a grain during one hop of height h:

�vx(0,h) =
√

2gh

v2∞

∫
dz̃ PH (z̃|h)[uH (z̃) − vx(z̃,h)]2. (29)

Here, the conditional probability PH (z̃|h) ∝ 1/vz(z̃,h) results
from the transformation dz̃ = vzdt of the integration variable,
as in Eq. (6), and we used a single integral as a shorthand
representation of both the ascending and descending part of
the trajectory. The remaining terms on the right-hand side rep-
resent the drag force on the grain—see Eq. (C1) of Appendix
C. We exploited the stretched shape of high trajectories, which
implies vz � vx,u, to drop the vertical velocity components,
and expressed the drag coefficient in terms of the turbulent
settling velocity v∞. For typical dune sand with an average
grain diameter a ≈ 200 μm, v∞ ≈ 27

√
ga [52]. The integral

in Eq. (29) can roughly be approximated using the fact that
PH (z̃|h) diverges for z̃ → h; again, only the value vx(h,h)
of the grain speed at the apex (z = h) matters, while the
shape of the whole trajectory is found to be irrelevant (and
can thus not be determined within this approach). Inserting
PH (z̃|h) ≈ 2δ(z̃ − h)�(h − z̃) in Eq. (29) and making contact
with Eqs. (10) and (9b), which yield �vx(0,h) ∝ √

h, we
eventually obtain

VH (z) ≈ uH (z) −
√

α/[4ε(z)]v∞ (z � H ). (30)

This is of the same form as the force-balance estimate obtained
by Sauermann et al. [17] for a representative grain that is
exposed to turbulent drag and an additional (constant) bed
friction. With the typical values for α ≈ 0.6 and ε(z ≈ H ) ≈
0.1 derived in Appendix E, the ensuing prediction for the
height-dependent grain velocity, Eq. (30), is found to be in
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very good agreement with our simulations for the whole range
z > zf, above the focus height (see Fig. 3).

C. Wind-dependent transport layer height

In Eq. (5) of Sec. II, we combined the splash-model pre-
dictions for the rebound probability and the average ejection
height to estimate the overall value of the characteristic height
H ≈ 72a of the transport layer. This estimate was supported
by our simulations, shown in Fig. 1(b), which, however, also
revealed that H increases weakly the wind strength. And,
based on the accurate prediction for the grain velocity Vx(z) in
Eq. (30), we indeed expect such a wind-strength dependence
of H . To calculate it quantitatively, it seems tempting to follow
the relation between h and vx given in Eq. (9b), namely
H ≈ 8[ε(H0)VH0 (H0)]2/g, with H0 = 72a and ε(H0) ≈ 0.1
being the wind-independent predictions of Eqs. (5) and (13),
respectively. Our simulations show that the wind dependence
of ε(H ) partly compensates for the one of VH (H ), such that
their product ε(H )VH (H ) increases relatively weakly with
the wind strength, but we could not obtain a good analytical
estimate for the combined effect. Instead, a similar approach
for the characteristic trajectory length,

L ≈ T̃ (H0)VH0 (H0) and H ≈ ε(H0)L, (31)

turned out to work well if one allows for a slight phe-
nomenological adjustment T̃ (H0) = 0.7T (H0) of the hop
time compared to Eq. (2), in order to match the theory
quantitatively to our simulation data. Note that Eq. (31) leaves
the characteristic aspect ratio H/L = ε(H0) independent of the
wind strength, but the individual trajectories’ shape invariance
is broken, as expressed by the (yet unknown) dependence ε(h).

Alternatively, the wind-strength dependence of H may be
taken from one of the mean-field transport models mentioned
in Sec. I. In Appendix B, this is illustrated for the two-species
model of Ref. [45], where the median height ≈0.2H of the
transport layer—calculated after Eq. (28)—is used to feed its
prediction into our present discussion.

D. Flux transients

Finally, we want to address what is probably the most
enigmatic and most debated mesoscale property of aeolian
sand transport, the so-called saturation length 	sat. This central
notion was originally introduced by Sauermann et al. [17] to
quantify how the aeolian sand transport adapts to changes in the
wind over uneven topographies. Flux transients on the upwind
slope of a sand dune and in the downwind wake region were
discussed as two pertinent instances giving rise to quite diverse
numerical values and parameter dependencies for 	sat. Later
work has further elaborated on this point [5,16,50,53,54]. As an
emergent mesoscale concept, 	sat is thus intrinsically context-
dependent, and attempts to promote narrower definitions of the
saturation length (such as the distance needed for a hopping
grain to be accelerated to the fluid velocity [53] or the distance
over which the sand flux saturates at the entrance of a sand bed
[54]) seem counterproductive.

Arguably the most interesting saturation transients are those
near the crest of a small dune, due to moderate local changes
in the wind speed (rather than sand coverage). They are

FIG. 5. “Bare” and “dressed” wind-strength-dependent satura-
tion lengths (linear and logarithmic axes scaling). Simulation data
for the bare saturation length 	sat (symbols) were obtained by fitting
a linear relaxation process with decay length 	sat to the response of
the height-integrated flux q(x) along the wind direction to a small
step increase of the shear stress τ (x) at x = 0 (notice the improving
agreement with the theoretical expectation upon approaching the ideal
limit of an infinitesimal step height, given in the legend). Its power-law
decay in τ (b) close to the transport threshold τt = 0.01�gga gives
way to a weak growth at larger τ , in good accord with Eqs. (31),
(32), with a numerical factor 	sat/L = 2 (solid lines). Under realistic
field conditions, the sharp singularity at τ = τt is smeared out by
intermittent wind-speed fluctuations, giving rise to the apparent
“dressed” saturation length given by the right-hand side of Eq. (33),
with a Weibull-distributed wind speed of variance 0.1〈u〉2 [60] and
the aerodynamic-impact threshold ratios τta/τt = 1.27 [obtained from
our simulations; dashed line in panel (a)] and τta/τt = 10 (expected
for wind-blown sand transport on Mars [53,62]; dotted line).

responsible for the emergence of the relevant mesoscale 	sat

with respect to which aeolian dunes may be considered large
or small, and which gives rise to a minimum dune length
Lmin [18–20,55–57]. In Ref. [17], this particular length was
predicted to decay with increasing wind strength τ , whereas
later studies argued that it might either be independent of τ

[54,58] or even grow monotonically in τ [5,16]. To resolve the
apparent conflict between these diverse proposals, we identify
the saturation length in our simulations with the response
length to a small wind-strength increment (to mimic the effect
of the speed-up along the back of a dune within our stationary
transport model).

Due to the scale separation between the minimum dune
size Lmin ≈ 105a (see Fig. 8) and the characteristic hop length
L = H/ε(H ) ≈ 7.2 × 102a, as predicted by Eqs. (5), (13),
the resulting flux gradients should not be sensitive to the
heterogeneities inside the transport layer. As a consequence,
	sat can only depend on the overall transport characteristics and
is thus expected to scale linearly in L. Indeed, our numerical
data in Fig. 5 are consistent with

	sat/L ∝ 1 + τta − τ

τ − τt
�(τta − τ ), (32)

and conform with the expectation 	sat 	 L above the direct
aerodynamic entrainment threshold (for τ > τta). Physically,
mobile grains are then abundant and their acceleration to the

052906-7



MARC LÄMMEL AND KLAUS KROY PHYSICAL REVIEW E 96, 052906 (2017)

stationary speed limits the adaptation to an increase in wind
strength. Notice that L itself slightly increases with the wind
speed, according to Eq. (31); see also Figs. 1 and 7. If the
wind speed falls below the direct entrainment threshold τta

and approaches the transport threshold τt, grains not only
need to be accelerated, but an increasing amount of energy
and momentum has to be supplied to lift grains from the
ground against gravity. The adaptation of the flux to an
increase in wind speed is then limited by the number of grains
gradually mobilized in successive bed collisions [17]. The
lift force exerted by the wind on the bed still facilitates the
splash by effectively reducing the heavy mass of the grains,
which can be understood as a precursor of direct aerodynamic
entrainment [59], as argued in Eq. (D5) of Appendix D.
Accordingly, the net erosion rate scales with the excess shear
stress τ − τt, which vanishes at the transport threshold τt,
causing a singular slowing-down of the adaptation of the flux to
wind heterogeneities. This manifests itself in the divergence of
the saturation length 	sat(τ ) at τt [17]. A similar decomposition
of the physics behind the saturation length according to two
rate-limiting processes was previously proposed by Andreotti
et al. [54] to interpret wind-tunnel measurements.

It is important to realize that a direct application of Eq. (32)
to field data is problematic, though. Field data that do not
conform with the intuitively expected scaling Lmin ∝ 	sat for
the minimum dune length Lmin do not necessarily indicate a
failure of the theory. The reason is that the sharp peak of 	sat at
τ = τt, with relative width (τta − τt)/τt ≈ 0.27, is not resolved
by typical field measurements, which inevitably average over
some intermittent wind fluctuations. The importance of a
given wind strength for the observed structure formation is
determined by the erosion or deposition caused, which are
proportional to the flux. We therefore propose that structural
field data should be interpreted as flux-weighted averages of
the corresponding “bare” theoretical predictions calculated for
a fixed wind strength. In particular, the minimum dune length
observed in the field should not scale in the bare saturation
length but in its “dressed” version, according to

Lmin ∝ 〈φ	sat〉〈τ 〉/〈φ〉〈τ 〉. (33)

The average 〈. . . 〉〈τ 〉 is understood to extend over a range of
wind-strength fluctuations around the measured average shear
stress 〈τ 〉. The bare vertical flux

φ ≡ φH (0,0) ∝ qH/L ∝ (τ − τt)�(τ − τt)/L (34)

vanishes at τ < τt, thereby effectively truncating the wind-
strength distribution. The consequences of this are illustrated
by the dashed line in Fig. 5 assuming a realistic Weibull
distribution of variance 0.05〈u〉2 (u ∝ u∗ ∝ √

τ ) for the wind-
speed fluctuations [60]. For τ � τt, the weakly wind-strength-
dependent bare saturation length 	sat is hardly affected at
all by the averaging: bare and dressed saturation length are
indistinguishable in the plot. In contrast, close to the transport
threshold τt, the saturation length gets strongly renormalized
by fluctuations. The flux-averaged or dressed saturation length
as a function of the average shear stress 〈τ 〉—the right-hand
side of Eq. (33)—has a strongly smeared-out shape compared
to the bare prediction.

We incidentally find the dressed wind-strength dependence
to be closely reminiscent of the form 	sat ∝ L/(τ/τt − 1)

originally proposed by Sauermann et al. [17]. This observation
supports the interpretation of the measured (dressed) satura-
tion length as an emergent hydrodynamic length scale and
vindicates the use of Sauermann’s formula in past analytical
and numerical studies that are at the core of our current
understanding of the physics of sand dunes [61]. Similar but
potentially more drastic renormalizations may be expected in
applications to extraterrestrial dunes, in which the gap between
the threshold shear stresses τt and τta can be much larger than
on Earth [53,62] (see Fig. 5).

IV. COMPARISON WITH LITERATURE DATA

After having established the accuracy of our analytical
model by comparison with our simulation results, we now want
to test it against a compilation of literature data. Experimental
data for the height-resolved horizontal flux jH (z) is usually
approximated, with fair accuracy, by an exponential profile
with a mean height on the order of a few centimeters that is
almost independent of the wind strength [1]. This resonates
well with our Eq. (17). However, there is apparently no clear
consensus about possible deviations from the exponential form
due to a possible deficit [39,63] or excess [1,49,64–67] of
grains near the ground, probably because of difficulties in
determining the exact number of mobile grains in the dense
lower transport region. In particular, the particle tracking and
laser scattering methods used in Refs. [39,63] seem prone to
missing some of the mobile grains close to the bed (the ejected
“reptating” grains), so that the flux in this region is most
likely underestimated. In contrast, sand trap measurements
in Refs. [49,64,66] reflect the pronounced near-bed excess
contribution to jH (z) that we expect from our model as a
direct consequence of the splash statistics. They are indeed
in remarkable agreement with the prediction of Eqs. (3)–(9a)
if ν and H are treated as free fit parameters, as illustrated in
Fig. 6. The relatively small value deduced for the best-fitting
power-law exponent ν ≈ 0.94 could partly be a consequence
of the above mentioned unavoidable systematic uncertainties
in current flux measurements near the bed. More interestingly,
it could also indicate that the splash for wind-blown sand
grains is less efficient than for the plastic beads injected onto
a quiescent bed in laboratory collision experiments [36,68],
from which one infers ν ≈ 1.4. The transport layer heights H

obtained from the wind-tunnel data are in very good agreement
with the obtained average value and the weak wind dependence
found in both our simulations and the analytical approach in
Eq. (31) [Fig. 6(b)]. The field data, in contrast, yield an almost
three times higher transport layer, which might be traced back
to the nonequilibrium undersaturated transport conditions due
to wind variations and/or due to moisture-induced stickiness
of the used beach sand. This is also supported by the overall
transport rates reported in Ref. [49] that are much smaller than
those reported for wind-tunnel experiments.

Similar conclusions can be drawn from the comparison
between literature data and the model prediction for the vertical
flux φ(z = 0,	), in Fig. 7. Again good agreement is obtained
for ν = 0.94 and using the characteristic hop length L as
a free fit parameter. The wind-tunnel data again agree well
with the theoretical expectation L = H/ε(H ) ≈ 10H based
on Eq. (31), whereas field data suggest higher values.
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FIG. 6. (a) Theory and literature data for the height-resolved hor-
izontal grain flux jH (z) (linear/logarithmic height axis; data extracted
from independent sources vertically shifted, for better visibility).
The simple analytical model with shape-invariant grain trajectories,
Eqs. (3)–(9a) (solid lines), is fitted to wind-tunnel measurements by
Rasmussen and Mikkelsen [64] (dots), Rasmussen and Sørensen [66]
(squares), and field data by Namikas [49] (triangles) for various wind
strengths τ , using ν and H as free global fit parameters. This yields
ν = 0.94 and the data for H shown in the inset (b) with the improved
model prediction from Eq. (31) (dashed line). While laboratory data
and theory agree well, field measurements (triangles) consistently
find higher trajectories.

Besides such height-resolved characteristics for the station-
ary transport, our approach also gives access to its transient
behavior, as shown in Sec. III D. There, we argued that

FIG. 7. (a) Theory and literature data for the vertical sand flux
φH (z = 0,	) through the sand bed at a downwind distance 	 from the
end of the sand bed (linear/logarithmic height axis; data extracted
from independent sources vertically shifted, for better visibility).
The simple analytical model with shape-invariant grain trajectories,
Eq. (19), is fitted to wind-tunnel measurements by Ho et al. [41] (dots)
and Rasmussen et al. [1] (squares), and to field data by Namikas [49]
(triangles) for various wind strengths τ , using the value ν = 0.94
obtained from Fig. 6. (b) The trajectory length L (the only free fit
parameter) compared to the theoretical expectation H/ε(H ) ≈ 10H

[45] (dashed line). Again, laboratory data and theory agree well, while
field measurements consistently find longer (and higher) trajectories.

FIG. 8. Field data for the minimum dune length Lmin reported by
Andreotti et al. [54] (symbols) compared to the dressed saturation
length 〈φ	sat〉/〈φ〉 from Eqs. (32), (31) (line). The expected linear
relation is recovered for Weibull-distributed intermittent wind-speed
fluctuations of variance 0.05〈u〉2 [60] and an effective threshold shear
stress τ eff

t = 0.12τt, suggesting a factor of proportionality of about 35
in Eq. (33), reasonably close to previous theoretical estimates [55,56].

the minimum dune size measured in the field should be
correlated with a “dressed” saturation length, averaged over
some intermittent wind fluctuations. This hypothesis is tested
against field data for the minimum dune length Lmin [54] in
Fig. 8. The authors quantify the wind strength by the average
〈(τ/τ eff

t − 1)�(τ − τ eff
t )〉. Here τ eff

t is an effective transport
threshold that is measured in the field under fluctuating wind
conditions. Intriguingly, this procedure yields a relatively
small value τ eff

t compared to theoretical expectations and
laboratory values for τt [53,69,70], in line with our finding
of a substantially renormalized threshold in Fig. 5. Figure 8
moreover demonstrates good agreement of the field data with
Eq. (33) for Weibull-distributed wind speeds u with variance
0.1〈u〉2 [60], τ eff

t ≈ 0.12τt. Even the ratio Lmin〈φ〉/〈φ	sat〉 ≈
35 between the minimum dune size and the dressed saturation
length, which we used as a free fit parameter in the comparison,
turns out to be reasonably close to (about 1.5 times larger
than) the value predicted by numerical solutions of two- and
three-dimensional versions of the minimal model for aeolian
sand dunes [55,56]. This further supports our interpretation
and underscores the importance of the distinction between
bare and dressed mesoscale quantities in the analysis of field
data.

For computational details and further theoretical and
experimental support for an essentially constant value of
Lmin/	sat (rather than a constant 	sat [54]), we refer the reader
to Appendix F.

V. SUMMARY AND CONCLUSIONS

We have developed an analytically tractable model for
aeolian sand transport that resolves the whole distribution of
grain trajectories. Our analytical approach was heavily based
on a recently proposed model for grain hopping on a granular
bed that admits an analytical parametrization of the splash
[36], and guided and validated by coarse-grained computer
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simulations. The core element of our model is the physically
well grounded expression for the hop-height distribution in
Eq. (3), which is complemented by the ballistic approximations
in Eqs. (2)–(7a) for the grain trajectories. This combination
allowed us to derive analytical predictions for various non-
trivial mesoscale characteristics of the aeolian transport layer,
among them the vertical and horizontal grain flux distributions
and the saturation length, which we found to be in excellent
agreement with an extensive compilation of independently
generated field and wind-tunnel data using a consistent set of
model parameters for the grain-scale physics. The comparison
revealed that it is necessary to distinguish so-called “bare”
mesoscale relations (corresponding to precisely controlled
ambient conditions) from their “dressed” counterparts that
involve an average over fluctuations. Altogether, we have thus
provided solid evidence that our approach correctly captures
the splash and transport statistics and provides a canonical
theoretical formalism for various height-resolved mesoscale
properties. It can be employed as a default in calculations
when the actual profiles are not known, or as an alternative
fit function (in place of the usual exponential) to extract
parameters, such as the mean hop height, from experimental
data. And it suggests itself as a sound and versatile starting
point for a precise and highly efficient modeling of a wealth
of applications, from aeolian structure formation over dust
emission to desertification.
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APPENDIX A: �H (z) AND jH (z) HEIGHT-DEPENDENT
GRAIN CONCENTRATION AND FLUX FOR

SHAPE-INVARIANT TRAJECTORIES

For shape-invariant trajectories, i.e., ε(h) = ε(H ) indepen-
dent of the hop height h, Eqs. (3)–(9a) yield

�H (z)

ρH /H
= �(1/2 − ν)

2�(3/2 − ν)
M(1/2,1/2 + ν,−z/H )

+
√

π�(ν − 1/2)

2�(3/2 − ν)�(ν)
(z/H )1/2−ν

× M(1 − ν,3/2 − ν,−z/H ) (A1)

and
jH (z)

qH/H
= �(1 − ν)

2�(2 − ν)
M(1/2,ν,−z/H )

+
√

π�(ν − 1)

2�(2 − ν)�(ν − 1/2)
(z/H )1−ν

× M(3/2 − ν,2 − ν,−z/H ) (A2)

for the grain mass concentration and flux, respectively. Here,

M(a,b,z) = �(b)

�(a)�(b − a)

∫ 1

0
ds ezssa−1(1 − s)b−a−1

(A3)

denotes Kummer’s confluent hypergeometric function and
qH = �(2 − ν)�(3/2 − ν)−1ρHvx(H ) is the height-integrated
grain flux. The asymptotic forms in Eqs. (16) and (17) can
be directly inferred from Eqs. (A1) and (A2), respectively.
For z � H , we may estimate the dependence of jH (z) ∝
[ε(H )/ε(z)](z/H )1/2−νe−z/H on ε(z) using Laplace’s method
to approximate the integral of the form

∫ ∞

z

dh f (h)
e−h/H

√
h − z

∼
√

πH f (z)e−z/H (A4)

after substituting h = z cosh2 θ , expanding the exponent
(h/H ) cosh2 θ around θ = 0, and integrating over all θ > 0.

APPENDIX B: MEDIAN TRANSPORT HEIGHT AND
TWO-SPECIES PREDICTION FOR HH

The median height zm of the transport layer is implicitly
defined through

1/2 =
∫ zm

0
dz jH (z)/qH

= 1/2 − M(−1/2,ν − 1,−zm/H )/2

+
√

π�(ν − 1)

4�(ν − 1/2)�(3 − ν)
(zm/H )2−ν

× M(3/2 − ν,3 − ν,−zm/H ), (B1)

where we inserted Eq. (A2) to evaluate the integral in the
second line. For ν = 1.4, as predicted from the splash model
[36] underlying Eq. (3), this relation can be solved numerically,
which yields H ≈ 5.8zm, i.e., zm ≈ 0.17H . The smaller value
ν = 0.94 that we used to fit the laboratory and field data in
Figs. 6 and 7 corresponds to a larger median height of value
zm ≈ 0.43H .

This relation can be used to make contact with the two-
species model for aeolian sand transport proposed in Ref. [45].
We therefore obtain the two-species prediction for zm assuming
that it lies above the reptation layer, where the (saltation) grain
flux decays exponentially. This yields

H ≈ 0.76 ln[2/(1 + qrep/qsal)](vsal)2/(2g), (B2)

where qrep and qsal are the reptation and saltation contributions
to the height-integrated grain flux, respectively. The numerical
prefactor that relates the saltation velocity vsal (computed in
Ref. [45]) to the vertical component vsal

z (z = 0) of the rebound
velocity of a saltating grain (required here) is determined by
fitting this relation to our simulation data for H , shown in
Fig. 1(b). The so obtained value vsal

z (z = 0)/vsal ≈ 0.13 of
this effective restitution coefficient is in accord with what we
expect from the splash model of Ref. [36].
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APPENDIX C: COMPUTER SIMULATIONS

In our computer simulations, the trajectory of each grain is
obtained by solving the equations of motion

v̇ = 3CD

4σa
|u − v|(u − v) + g. (C1)

Here, v ≡ v(t) = ṙ(t) is the velocity of the grain at time t , r(t)
its position, u ≡ u[r(t),t] the wind velocity field, g ≡ −gez

the gravitational acceleration, σ ≡ �g/�a the grain-air mass-
density ratio, and a the grain diameter. For the particle drag
coefficient, we use the accurate expression [52]

CD = 1
3 [A +

√
A2 + 16Bνair/(a|u − v|)]2 (C2)

(A ≈ 0.95 and B ≈ 5.12 for natural sand), where the viscous
contributions to the drag are quantified by the Reynolds num-
ber a|u − v|/νair, with the kinematic viscosity νair ≈ 1.5 ×
10−5 m2 s−1 for air. To compute the grain trajectories with
sufficient accuracy to resolve the short hops of the low-energy
ejecta, the equations of motion are solved using a standard
Euler forward integration scheme with a discretization time of
0.1

√
a/g (corresponding to about 0.45 ms for a grain diameter

of 200 μm).
Assuming a horizontally uniform stationary air flow in the x

direction, the only nonvanishing component of the air velocity
u is given by the height-dependent wind speed u(z) ≡ u · ex .
For constant pressure, the Reynolds-averaged Navier-Stokes
equations reduce to the relation

∂zτa(z) = Fx(z) (C3)

between the xz component τa of the Reynolds stress tensor for
the air and the body force Fx(z) exerted by the grains on the
air [22]. Without particles, Fx(z) = 0, this means that τa = τ

is independent of z and given by the overall shear stress τ .
That this holds above the transport layer for z → ∞ provides
us with the boundary condition for integrating Eq. (C3) for
Fx(z) �= 0,

τ − τa(z) =
∫ ∞

z

dz̃ Fx(z̃) ≡ τg,H (z), (C4)

which defines the grain-borne shear stress τg,H [42]. In the
simulations, the contribution of each grain to Fx is obtained as
the negative x component of the right-hand side of Eq. (C1)
times the grain mass (π/6)�ga

3. The grain stress τg,H is pre-
averaged over a short time interval

√
a/g (ten time steps), in

order to obtain smooth profiles. With Eq. (C4), the Prandtl
turbulence closure κ2�az

2[u′(z)]2 = τa(z) yields the height-
dependent wind speed

u(z) = 1

κ
√

�a

∫ z

z0

dζ

√
τ − τg,H (ζ )

ζ
. (C5)

The roughness height z0, where the wind speed nominally
vanishes, is set to a/10 by convention.

Equations (C1)–(C5) have to be complemented by a set
of boundary conditions describing the sand bed collisions.
They are taken from an extended version of the coarse-grained
splash model proposed in Ref. [36] that accounts for wind-
induced lift forces acting on the bed grains, as briefly outlined
in Appendix D. To keep the computation simple, we neglect
midair collisions. They are most frequent in the dense reptation

layer close to the bed [27,71] and therefore probably well
captured by appropriate effective bed parameters, except under
extreme wind conditions [15].

APPENDIX D: SPLASH MODEL

For convenience, we now outline the key properties of the
splash model of Ref. [36] used to quantify the sand bed
collisions in the numerical simulations (Appendix C) and
in our analytical derivation of Eq. (3) for the hop-height
distribution. Its original version was developed assuming
vacuum conditions. For our present purpose, we extend it to
effectively account for the drag and lift forces exerted on the
bed grains by the wind.

The rebound of a hopping grain from a rough immobile bed
is quantified in terms of the mean total restitution coefficient
e and rebound angle θ ′ for a given impact angle θ . Averaging
over all possible collision geometries gives

e ≡ |v′|/|v| = βs − (
1 − α2

s /β
2
s

)
βsθ/2, (D1)

where αs ≈ 0.20 and βs ≈ 0.63 were calibrated [36] with
collision experiments by Beladjine et al. [68]. The rebound
angle θ ′ is randomly drawn from the distribution

P (θ ′|θ ) = (2/γs)(1 + θ ′/θ ) ln[γsθ/(θ + θ ′)2] (D2)

defined in the interval 0 < θ ′ + θ <
√

γsθ and set to zero
outside. We multiplied the parameter γs = (9/2)(1 + αs/βs)2

by an order-unity factor 3
√

3/4 ≈ 1.3 for harmonization with
the approach underlying Eq. (D1). Note that Eq. (D2) can yield
negative rebound angles, corresponding to a grain that gets
trapped in the bed. Rebounding grains with |v′| sin θ ′ �

√
2

fail to leap over the downwind bed neighbor grain and are thus
not propagated further. To avoid discretization artifacts at the
ground, which become apparent in height-resolved quantities
like the grain concentration or the grain shear stress, we
distribute the initial height of a grain ricocheted off the bed
uniformly between z = 0 and z = δt |v′| sin θ ′, where δt is the
duration of one time step in the simulations.

To mimic the statistics of the ejecta close to the ground, we
set the ejection angle to 90◦ and draw the kinetic energy of the
ejected grains from the log-normal distribution [47]

P (E′
ej|E) = 1√

2πσE′
ej

exp

[
− (ln E′

ej − μ)2

2σ 2

]
(D3)

with the energy E = mv2/2 of the impacting grain of mass
m = (π/6)�gga3 and σ = √

λ ln 2, μ = ln[(1 − e2)E] −
λ ln 2, λ = 2 ln [(1 − e2)E/Ea], and Ea = mga. The number

N ′
2 = 0.06[(1 − e2)E/Ea]�

∫ ∞

Eeff

dE′
2 P (E′

2|E) (D4)

of ejected bed grains again follows from the same energy
balance approach underlying Eq. (D3), with the value � =
(2 − ln 2) ln 2 ≈ 0.9 of the exponent close to 1.

In Eq. (D4), we extended the original splash model of
Ref. [36] to account for drag and lift forces exerted on the
bed grains. We therefore introduced an effective minimum
energy Eeff < Ea required for a bed grain to be mobilized
during the collision. Rewriting it in terms of an effective
mass meff ≡ Eeff/(ga) of a bed grain exposed to the turbulent
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shear flow, we estimate its value following Bagnold’s classic
prediction of the shear stress value at the threshold of grain
movement [2]. Balancing the net torque due to the horizontal
drag force FD and vertical gravitational force mg acting
on a bed grain of mass m with the purely gravity-induced
torque of a grain of same size but different mass meff, one
obtains sin(βs)FD − cos(βs)m = − cos(βs)meff, for an angle
βs between the horizontal and the axis crossing the point of
support and the center of the lifted bed grain. This yields

Eeff/Ea = meff/m = 1 − τa(z = 0)/τta. (D5)

Here, we expressed the drag force FD ∝ π (a/2)2τa(z = 0) in
terms of the air shear stress at the ground and identified its
threshold value τta ∝ (2/3)b/[tan(βs)], above which bed grains
are mobilized by the flowing air (corresponding to a vanishing
effective weight, meff = 0). We set τat = 1.2 × 10−2�gga,
yielding a minimum shear stress τt ≈ 0.9 × 10−2�gga re-
quired to maintain transport (once initialized), which is
in agreement with typical values for the ratio τat/τt ≈ 0.8
observed in wind-tunnel experiments [2,72].

APPENDIX E: SPLASH PREDICTIONS FOR ν, H , ε, α

The quantitative description of the bed collisions outlined
in Appendix D allows us to estimate typical values for the
power-law exponent ν, the trajectory aspect ratio ε(H ), and
the effective restitution coefficient α introduced in Sec. II as
model parameters.

Relating the ejection energy E′
ej = mgh to the hop height,

Eq. (D3) provides us with the hop-height distribution per
impacting grain of energy E. As E � mga, i.e., μ � ln(mga),
it is expanded to ∝ h−ν , with ν given in Eq. (4). Multiplying
it with the hop time T (h), Eq. (2), it yields the hop-height
distribution PH (h � H ) ∝ h1/2−ν per time step.

Next, we estimate the characteristic height H of the
transport layer at low-wind conditions close to the transport
threshold employing the splash-model prediction for collisions
between saltating grains and the bed grains. We start with the
relation

H = −Eej(E)/(mg ln Preb) (E1)

between H and the rebound probability Preb derived in the text
below Eq. (3). Here, we expressed the mean ejection height
hej(E) = Eej(E)/(mg) for a given impact energy E in terms of
the mean ejection energy Eej(E). The latter is obtained from
the distribution in Eq. (D3) as

Eej(E) =
∫

dE′
ejP (E′

ej|E)�(E′
ej − Ea)E′

ej∫
dE′

ejP (E′
ej|E)�(E′

ej − Ea)
,

= erfc[(ln Ea − μ − σ 2)/(
√

2σ )]

erfc[(ln Ea − μ)/(
√

2σ )]
eμ+σ 2/2,

(E2)

where the integrals extend over all energies E′
ej > Ea above the

minimum ejection energy Ea = mga. As the impact energy
E is determined by the difference u(H ) − v∞ between the
wind speed at height H and the turbulent settling velocity
v∞ ≈ 27

√
ga, we may approximate it as

E ≈ (m/2)[u(H ) − v∞]2. (E3)

Making use of the low-transport conditions assumed here,
the wind-speed profile in Eq. (26) simplifies to u(z) =
(u∗t/κ) ln(z/z0), with u2

∗t/(ga) ≈ 0.01σ ≈ 20, κ = 0.4, and
z0 ≈ a/10. We can now insert this relation, together with
Eqs. (E2), (E3) and the rebound probability Preb ≈ Preb(h �
a) = ∫ ∞

0 dθ ′P (θ ′|θ ) as predicted by Eq. (D2), into Eq. (E1),
which yields H (θ ) as a monotonically decreasing function of
the impact angle θ . For reasonable values θ = 90◦ . . . 90◦, it
varies within the range H/a ≈ 190 . . . 54. To determine its
actual value, we use the relation ε(H ) ≈ tan(θ )/4 between
trajectory aspect ratio and impact angle, as inferred from
Eq. (9b), and combine it with

ε(H ) = H/L ≈ H/{T (H )[u(H ) − v∞]}, (E4)

where we approximated the hop length with the flight time
T (H ), given in Eq. (2), times the typical grain speed. Putting
all together, we obtain a transcendental equation for the impact
angle θ :

cot(θ )4H (θ )/T [H (θ )] ≈ u[H (θ )] − v∞. (E5)

With the parameters listed above, it is solved by θ ≈ 14.5◦, for
which Eqs. (5) and (13) yield H = H (θ ) ≈ 72a and ε(H ) ≈
0.1, respectively.

While trajectories of height on the order of H are crucially
influenced by the impactor-bed rebound, the shape of small
trajectories of height h � H is mainly dictated by the
characteristics of the ejecta created during these bed collisions.
To estimate the height dependence ε(h) of their aspect ratio,
we simplify the equations of motion, Eq. (C1), as follows.
Since vz � u, vertical and horizontal motion decouple, and
thus

v̇x ≈ L−1
D [u(h) − vx]2, (E6)

with the constant drag length LD = 4σa/(3C∞
D ), where C∞

D ≈
1.2 is the strong-turbulence limit of the drag coefficient
computed from Eq. (C2) for vanishing air viscosity νair = 0,
i.e., Reg → ∞. We further replaced the height-dependent wind
speed u(z) in the drag relation by the constant value u(h) taken
at the height of the trajectory. It is computed using the above
relation for threshold conditions [which also holds for τ >

τt, as u(z < H ) exhibits the universal τ -independent shape
obtained in Eq. (26)]. For the initial condition vx(t = 0) = 0
and the total flight time T (h), the time integral of the solution
vx(t) = u(h)2t/[LD + u(h)t] of Eq. (E6) readily yields the hop
length

h/ε(h) ≈ T (h)u(h) − LD ln[1 + T (h)u(h)/LD] (E7)

for h � H . While the overall value of ε(h) obtained from
this estimate is found to be a bit too large (by a factor of
1/0.65 ≈ 1.5), its qualitative form is indeed in very good
agreement with our simulations (even for intermediate heights
h 	 H ), as illustrated in Fig. 9. Inserting Eq. (2) for T (h)
together with the scaling relations u(h) ∼ √

σga ln(h/z0) and
LD ∼ σa, and expanding the right-hand side of Eq. (E7) for
h � σa [equivalent to T (h)u(h) � LD], it becomes ε(h) ∝
ln(h/z0)−2. For h � z0, the h dependence is (locally) very
close to a power law with an exponent of value −2/ ln(h/z0)
that varies only weakly as h gets larger. Substituting the typical
ejection height 〈h〉H ≈ 7a obtained in Eq. (28) [or hejH ≈ 10a

from (E2)] for h, this exponent takes the value 0.47 ≈ 1/2,
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FIG. 9. Trajectory aspect ratio ε ≡ h/l for various wind
strengths, as obtained from our simulations. For most mesoscale
measures, its dependence on the hop height h is negligible (a), as
is the weak dependence on the wind shear stress τ , as illustrated for
the aspect ratio ε(H ) of the characteristic trajectory (b). However, the
height-resolved grain stress, Eq. (18), crucially depends on the power-
law decay for h � H , which is better resolved on the logarithmic
scale in the left inset (same data logarithmically binned), solid and
dashed lines representing Eq. (E7) (scaled by an empirical prefactor
0.65) and the power law ε ∝ h−1/2, respectively.

which gives rise to the first line of Eq. (14). The applicability
of this power-law approximation for h � H is supported by
the comparison with our simulations in Fig. 9.

We eventually derive a splash-model prediction for the
effective restitution coefficient α, introduced in Eq. (10).
Identifying vx(h) with the average of the horizontal impact
and rebound velocities, it is related to the total restitution e

and the impact and rebound angle θ , θ ′ via

α = 2(cos θ − e cos θ ′)/(cos θ + e cos θ ′). (E8)

With Eqs. (D1), (D2), α takes values between 0.45 (for θ = 0)
and 0.64 (at θ ≈ 90◦). For the typical impact angle θ ≈ 90◦
obtained from Eq. (E5), we get α ≈ 0.6.

APPENDIX F: MINIMUM DUNE SIZE

We provide a theoretical estimate for the minimum dune
length Lmin, for which literature field data are shown in Fig. 5.
To this end, we employ a slightly improved version of the
linear stability analysis proposed in Refs. [20,57]. It identifies
Lmin with the wavelength of the (initially) fastest growing
mode of a weakly perturbed flat sand bed. The starting point is
the out-of-phase response of shear stress and sand transport to
weak perturbations of a flat bed [18,19]. In Ref. [57], Andreotti
and coworkers used the generic formula qsat ∝ τχ (τ − τt) for
the saturated flux, which is indirectly slope-dependent via
the variation of the local shear stress τ and the threshold
value τt. However, they neglected the direct slope dependence,
which obtains even for fixed wind parameters, and should be
accounted for, to first order in h′, according to

qsat ∝ τχ (τ − τt)(1 − h′ cot θf), (F1)

where θf is the friction angle. This direct slope dependence
of qsat was first predicted by Bagnold and later validated by
Iversen and Rasmussen [73], who obtained θf ≈ 40◦ for typical
dune sand (with grain diameter a � 170 μm). Equation (F1)
can also be derived from the continuum saltation model by
Sauermann et al. [17] if we extend its kinematics to sloped
beds. Accounting for the gravitational force −gh′ in the
momentum balance, Eq. (33) in Ref. [17], we obtain

qsat ∝ (v0/g)(τ − τt)(1 − h′αv∞/v0). (F2)

Here, the turbulent settling velocity v∞ accounts for the bed
friction and is equal to the difference between the wind
speed and the steady-state transport velocity v0 over the
unperturbed bed. For moderate wind strengths, i.e., τ ≈ τt,
v0 is independent of τ , corresponding to χ = 0, and the
coefficient αv∞/v0 takes values on the order of 0.5 for typical
dune sand, which corresponds to θf ≈ 60◦ in Eq. (F1), in
reasonable agreement with the phenomenological law.

For the stability analysis, we follow Fourriére et al. [57]
and expand the perturbation δqsat = qsat − qsat0 of the saturated
flux from its flat bed value qsat0 to first order in the perturbation
δh of the bed profile. From Eq. (F1), we obtain its Fourier trans-
form δq̂sat = ∫

dx δqsat e
−ikx ∝ τ

1+χ

0 (Aq + iBq)k δĥ with

Aq = Aτ + χAτ (1 − τt0/τ0),

Bq = Bτ + χBτ (1 − τt0/τ0) − cot θf,
(F3)

where we used the shear stress perturbation δτ̂ = τ0(Aτ +
iBτ )kδĥ (for k � 0) and the slope-dependent threshold δτ̂t =
ikδĥ cot θf. Following the convention, we denote the unper-
turbed shear stress over a flat ground far away from the obstacle
by τ0 (the subscript was suppressed in the main text). Only the
τ0-independent term cot θf in the expression for b differs from
the result (τt/τ0) cot θf by Fourriére et al., who neglected the
direct slope dependence of qsat. While this may seem to be a
minor change of the original argument, it yields a qualitatively
different result. Combining the linearized differential equation
for the flux evolution with mass conservation ∂th ∝ −∂xq for
the sand bed profile h, the ratio Lmin/	sat of the wavelength
of the fastest growing mode to the saturation length follows
as a function of the ratio Aq/Bq . For Lmin/	sat � 1, it
scales as

Lmin/	sat ∼ 3πAq/Bq. (F4)

Substituting Aq and Bq from Eq. (F3), we see that Lmin/	sat

decreases with increasing τ0 as long as χ > 0. This is
qualitatively similar to what was obtained by Fourriére et al.
neglecting the experimentally well established and theoret-
ically derived rightmost factor in Eq. (F1). However, for the
theoretically expected and generally accepted value χ = 0, the
ratio Aq/Bq = Aτ/(Bτ − cot θf) becomes independent of τ0,
and so doesLmin/	sat. Evidently, the direct slope dependence of
the flux, represented by the friction angle θf, can be understood
as an effective renormalization of the symmetry-breaking
part of the driving wind field perturbation, quantified by Bτ .
This correction crucially affects the absolute value of Aq/Bq ,
which diverges at Bτ → cot θf ≈ 1.2. The numerical values
of the coefficients Aτ and Bτ can be estimated as functions
of the dimensionless hydrodynamic bed roughness η0. Using
for simplicity the analytical dependencies Aτ (η0) and Bτ (η0)
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calculated by Hunt and coworkers [74] (see Fig. 2 of Ref. [19]),
the divergence of Aq/Bq is expected near η0 ≈ 1.7 × 10−5. We
can match the fit result Lmin/	sat ≈ 35 obtained from Fig. 5
for η0 ≈ 4.0 × 10−3, which lies in the estimated range 10−4

to 10−2 [57] for η0 for typical sand dunes (corresponding to
Lmin/	sat ≈ 30 . . . 140).

In summary, we showed that an improved version of the
linear stability analysis proposed by Fourriére et al. yields
a τ0-independent ratio Lmin/	sat if the experimentally and
theoretically well established form of the wind-strength-

dependent sand flux given by Eq. (F1) with χ = 0 is employed.
Together with the experimentally observed wind dependence
of the minimum dune size Lmin (see Fig. 5), this implicates
that the saturation length 	sat ∝ Lmin must strongly decrease
with increasing wind strength. It is argued in the main text
that this can be rationalized by a strong renormalization of
the effective saturation length by intermittent turbulent-wind-
strength fluctuations near the threshold rather than by a rapid
decay of Lmin/	sat with increasing τ0 and a constant saturation
length, as previously proposed [54,57].
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CHAPTER 4
Structure formation

In the previous chapters, we reviewed the various processes and mechanisms contributing to the
physics of aeolian sand transport. We are now in the position to use this insight to theoretically
describe the spontaneous formation of the whole zoo of wind-created sand structures, ranging
from decimeter-sized ripples to kilometer-long dunes. As already discussed in the previous
chapter, the size scale of the considered sand structure dictates to what level the transport model
has to resolve the transport process. While the grain-scale transport statistics can be safely
integrated out in a dune model, it dominates the physics of the more delicate ripples.

Based on the physical mechanisms responsible for their formation, aeolian sand structures
are usually categorized into ripples, megaripples, and dunes. Figure 4.1 shows all three bed-
forms colocated in close proximity. Chiefly, aeolian sand ripples are formed due to a screening
instability that yields a slope-dependent impact intensity of fast saltating grains [26, 40, 89,
90] (enhanced/reduced reptation transport uphill/downhill), whereas the dune instability is of
hydrodynamic origin, namely caused by the symmetry breaking of the turbulent flow field over
a sand heap [83, 193]. Megaripples stand out from ripples and dunes, because their formation
is accompanied by—and may even crucially require [67]—aeolian sand sorting that creates a
stabilizing armoring layer of coarse grains. For typical wind conditions, these coarse surface
grains are transported in terms of reptation only, which crucially determines the megaripples’
morphology and dynamics. To further illuminate the physical and morphological differences
between the aeolian structures we review them in more detail in the following three sections. A
succinct comparison of the different structures can be found in Table 1 of Ref. [67] (attached at
the end of this chapter). Since the most profound understanding has been accumulated over the
last decades for the conceptually simpler sand dunes, we start with these large objects, before we
come to the theoretically more challenging sand ripples and megaripples.

4.1 Dunes

Despite their intriguing morphological diversity, ranging from transverse dunes over crescentic
barchans to elongated seif dunes [42, 258, 259], the formation and evolution of sand dunes can
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Figure 4.1: Ripples, megaripples, and large sand dunes colocated in the same area. Monodis-
perse wind-blown sand creates centimeter-scale ripples (front) and decameter-scale dunes (back).
Polydisperse wind-blown sand gets sorted, the heavier grains forming decimeter-scale megarip-
ples (middle) in the otherwise forbidden wavelength gap. Closer to ripples in size, they share
their morphology and migration dynamics with dunes. Photo taken at al-Fayyum (29°9’56.17”N,
30°11’8.55”E), Egypt. (Image credit: Hezi Yizhaq)
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in fact be traced back to very few key mechanisms. This insight and our today’s understand-
ing of the general physics of these wind-shaped objects has been established only relatively
recently, notwithstanding the various past attempts reaching back to the first phenomenological
discussions by Bagnold [40]. One important door opener was the formulation and analysis of a
minimal mathematical model for aeolian sand dunes by Sauermann and coworkers in the early
2000s [82, 83, 193, 260]. It provided us with a clear understanding of the basic mechanisms that
govern the formation, shape, and migration of dunes under ideal conditions. The existence of
an unstable shape attractor, characterized by strong static and dynamic similarity rules and the
shape transition from smooth domes (or heaps) to crescentic dunes with slip face, has been
demonstrated on this basis [87, 261, 262]. A wealth of predictions could be systematically tested
in precision measurements to scrutinize the theoretical picture [31, 32, 43, 84, 88, 212, 263–267].

4.1.1 Minimum dune size

Structure formation of wind-blown sand is governed by two mechanisms that make a flat sand
bed unstable against height fluctuations on a certain length scale [193, 268]. First, a spatial
symmetry breaking leading to net deposition at the brink and thus growth of any spontaneous
height fluctuation. For dunes, this symmetry breaking emerges spontaneously from the turbulent
structure of the wind [269–271]. It is therefore scale invariant [193], and yields an infinite
spectrum of unstable wavelengths, such that every perturbation of the bed profile would grow
(the shorter their wavelength the faster their growth). This catastrophic behavior is tamed by a
second counteracting mechanism, which stabilizes short-wavelength modes, thereby introducing
a minimum length Lmin of the structures. For dunes, this stabilization is due to saturation
transients in the sand transport. The minimum size of a dune—which hast actually a flat pancake
shape—is thus determined by the saturation length [83, 193],

Lmin ∝ ℓsat (4.1)

with a numerical prefactor on the order of 20 [86, 142]. According to theory, any sand heap below
this minimum size is simply eroded by the wind, any larger one will grow indefinitely.

Combining Eq. (4.1) with Eq. (3.1) of Chap. 3, we obtain the scaling Lmin ∝ (σ − 1)a for the
minimum dune length, up to a wind-dependent prefactor, with the fluid–grain density ratio
σ and the grain size a. As a consequence, fluvial sand dunes formed under water (σ ≈ 3) are
much smaller than their aeolian cousins (σ ≈ 2 · 103). With a minimum length on the order of a
few centimeters, the subaqueous dunes thereby provide an ideal model system for laboratory
studies. And indeed, many of the striking theoretical predictions of the aforementioned dune
model by Sauermann et al. and of its later variants have not only been corroborated by field data
for aeolian dunes [31, 32, 212, 263, 264] but also in systematic studies of dunes formed in water
channels [43, 84, 88, 212, 265–267]. The dependence of the dune size on the atmospheric density
captured by Eq. (4.1) can also be applied to extraterrestrial atmospheres, like on Mars, Venus,
or Saturn’s moon Titan (see, e.g., Ref. [47, 48, 50] and references given there). Due to the more
dilute atmosphere (and the lower gravity), dunes on Mars are expected to be much larger than on
Earth [142], as confirmed by the extensive data gathered during orbiter and rover missions [49,
85, 272, 273].
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4.1.2 Shape invariance

A direct consequence of the flux saturation underlying the dune formation, together with the
scale-invariant perturbation of the turbulent flow over a heap, is the broken shape invariance [87,
142]. This can be understood as follows. A stationary dune shape requires net deposition at all
locations downwind of the brink. So, the saturation transient along its windward slope has to
end just at the brink. This means that the dune size dictates the length of this transient, which,
in turn, depends on the wind speedup along the back of the dune, regulated by the aspect ratio
of the dune. In other words, the steeper the dune the stronger the wind speedup and, thus, the
longer the saturation transient. Hence, larger (quasi-stationary) dunes are steeper. As a direct
consequence, large enough dome-shaped heaps transition into dunes with a slip face, when
their lee slope becomes so steep that avalanches take place [32, 87, 142, 193]. The growth of
the very large “megadunes” or draas (few kilometers long) is ultimately limited by the finite
height of the atmosphere [35], while the size of desert dunes is often dictated by the limited sand
availability and growth time [36]. Sand supply does not only influence the total size of the dunes,
but, more interestingly, also their overall shape. For unlimited sand supply (i.e., at saturated
sand influx), transverse dunes are formed with relatively straight crest lines perpendicular to
the wind direction and continuous asymmetric cross sections in wind direction. As the sand
availability is reduced, their crests become separated in wind direction and are likely to break up
into individual crescentic barchan dunes [262, 274].

4.1.3 Extensions and applications of the Sauermann dune model

Over the years, various extensions of the minimal dune model introduced by Sauermann and
coworkers have been proposed and applied to manifold problems. Succinct overviews can, for
example, be found in the recent review articles by Parteli and coworkers [57, 69, 72], Charru
et al. [45], and Courrech du Pont [275]. To name just a few examples: the two-dimensional
model was extended to three dimensions [260, 261, 276, 277] and to interacting dunes and whole
dune fields [38, 39, 263, 276]; the influence of a reptation transport mode [261], varying wind
strength [120] and direction [262, 278], vegetation [279, 280], and an exposed water table [281] on
the dune morphology was investigated. Particularly fruitful was the extension of the dune model
by Fourièrre et al. [44] to finite flow depths, as needed to describe the aqueous structure formation
in channels and rivers.1 The additional length scale, together with the larger viscosity that allows
for both turbulent [44, 283] and viscous [284–286] flow regimes, makes the phenomenology of
subaqueous bedforms even richer than for the aeolian case [45]. Extended to three dimensions, the
model allowed Andreotti and Claudin [283] to explain the emergence chevrons (inclined bedforms
in shallow flow), alternate bars (diagonally repeating deposits in a shallow channel, see also

1In the literature on subaqueous structure formation, the under-water analog of aeolian desert dunes is usually
called (subaqueous or current) ripples if their length is comparable to the grain size and their morphology independent
of the flow depth, whereas subaqueous dunes commonly refer to bedforms of size comparable to the flow depth.
While some authors delegate the emergence of these two structures to two different physical mechanisms related
to a hydrodynamically either smooth or rough flow regime [282], Fourrière et al. [44] found from their analysis
that large-scale dunes cannot appear due to a linear instability, because of their too slow growth rate compared to
pervasive fast-growing instablities at shorter wavelengths. These authors instead argued that small ripples should
always appear first and than coarsen to form the mature dunes, whose growth ultimately stalls due to the finite flow
depth.
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Ref. [287]), and antidunes (propagating upstream in supercritical flow, characterized by a Froude
number2 greater than unity). A good starting point to acquaint oneself with this pretty diverse
field is the review article by Charru et al. [45]. Notwithstanding the formidable progress achieved
over the very recent years, mainly by the group around Bruno Andreotti and Philippe Claudin
(see, e.g., www.pmmh.espci.fr/fr/morphodynamique), various questions regarding subaqueous
structure formation are still unanswered or only partly solved. The fundamental flow properties
in the transitional laminar–turbulent regime, which is crucial for the formation of subaqueous
structures, and the role of (secondary) turbulent structures (e.g., streaks) still remain poorly
understood [45, 72]. A systematic study of the long-time evolution and dynamic scaling of the
diverse subaqueous patterns is still lacking and requires a modeling framework that goes beyond
the linear stability analysis—e.g., along the lines of the work by Fischer et al. [87] for the aeolian
case. In contrast to the aeolian dune formation, structure formation under water is expected to
be crucially influenced by sand polydispersity and grain sorting, which is however still poorly
understood despite numerous modeling attempts in the past [288].

Another hotly debated topic concerns the dynamic stability of aeolian sand dunes. All
theoretical approaches strongly suggest that isolated dunes that are small compared to the flow
depth (i.e., the height of the atmosphere for desert dunes) are unstable [69, 263, 274], either
shrinking or growing. In contrast, field observations reveal that dunes of similar size cover
extended corridors in the desert [37–39], indicating that bedform interactions somehow stabilize
the individual dunes. Several mechanisms that might be responsible for this size selection have
been proposed in the past, from dune collisions [37, 39, 289, 290], over calving [37, 264, 291] to
remote transfer through wind-driven sand transport [36, 292–295], but a satisfying explanation
for the stationary dune-size distribution is still lacking. Tackling this large-scale problem with a
computationally expensive three-dimensional version of the original Sauermann model seems
illusive [72]. It instead calls for radically coarse-grained approaches that describe the dynamics
of an individual dune by a reduced set of simple laws, particularly promising approaches being
the “skeleton” or “migrating string” dune model developed by Nishimory and coworkers [274,
296, 297] or the reduced version of the Sauermann model proposed in the master’s thesis by Sven
Auschra [293].

4.2 Ripples, aeolian sand sorting, and megaripples

Compared to dune formation, aeolian ripple formation is more complex, because it lacks the
scale separation between the emerging structure and the underlying grain-scale processes;
which, in return, should make studies more profitable to learn about the superficially mundane
yet obstructively complex grain-scale physics, as argued in Chap. 3. Despite the considerable
experimental [26–28, 40, 298–306] and theoretical [89, 90, 198, 222, 307–319] effort over the
last decades, we do not yet have such a coherent set of systematic predictions on parameter
dependencies for ripples as for dunes, e.g., how their wavelength and amplitude change with
environmental conditions, such as wind, sand supply, and grain size distribution. Neither is it
straightforward to extract such information from existing field and wind-tunnel data, which
seem to report conflicting evidence. The main reason for this unfortunate situation, as opposed

2The Froude number Fr is defined as Fr = U /
√
дH , with U being the free stream velocity, д the gravitational

acceleration, and H the flow depth.

https://www.pmmh.espci.fr/fr/morphodynamique/
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to, say, aeolian dune formation, is that the delicate ripples in the field are highly sensitive to
intermittent turbulent wind fluctuations [79, 227], making them inherently transient. Since they
are much shorter than the saturation length, the saturation transients that follow the pervasive
wind-strength variations in the field can easily change the shape of these fragile bedforms and
moderate gusts may even flatten them out completely [26, 30, 40, 147, 300, 320]. Their ubiquitous
presence in windy arid regions on Earth (e.g., as secondary structures on sand dunes) [25, 26, 28,
40, 41, 301, 302, 305, 321] and Mars [143, 144, 322], on the other hand, implies that a flat sand
bed is highly unstable once subjected to turbulent flow. Further uncertainty and complication
comes from the inevitable wind-driven sand sorting at the surface of the ripples [25, 26, 40, 299,
321], accumulating coarse grains at their crests, while fine sand prevails in the bulk and at their
base [26, 40, 299–302, 323–327]. Contrary to the often aleatory conditions in the field, the much
better controlled laboratory experiments [27, 28, 40, 298–300, 303, 304, 306] allow to extract
functional dependencies with relatively high reliability and reproducibility, thereby paving the
way to a more quantitative benchmarking for mathematical models.

4.2.1 Screening instability and ripple wavelength

The topography–transport symmetry breaking that gives rise to the emergence of sand ripples
is thought to be due to the slope-dependent impact intensity of the saltating grains that eject
reptating bed grains: the ripple’s lee side is screened from the most energetic shallow impacts,
which are, in turn, very efficient at the stoss slope.3 As for the dune instability, such a screening
instability leads to an unbounded spectrum of unstable modes, with shorter wavelengths growing
faster. Anderson [89] therefore suggested that the disperse reptation transport, as characterized
by a distribution of reptation lengths, stabilizes the short wavelengths, which yields an estimate
for the wavelength of the fastest growing mode that is, however, much below the initial ripple
wavelength measured in wind-tunnel experiments [28, 40] (see, e.g., Ref. [315] for a review of
Anderson’s model and related approaches). In fact, Bagnold [40] already argued that the initial
ripple size is determined by the length of the characteristic (i.e., average) path of the wind-blown
grains, because such a representative grain should hop from crest to crest, thereby dictating
the ripple wavelength via a phase-locking mechanism. From his wind tunnel observations he
indeed found the average hop length to be on the same order as the ripple wavelength. Very
recently, this picture was taken up by Durán et al. [90], who argued that the short-wavelength
stabilization originates from the slope-dependent (overall) sand transport—carrying sand uphill
is less efficient than downhill. From their grain-scale simulations, theses authors identified the
characteristic initial ripple length as the ratio between the height-integrated horizontal mass flux
of the saltating grain fraction (defined by a minimum hop height of three grain diameters) and
the vertical flux through the bed surface. This ratio may be interpreted as the mean hop length
of the transported grains, which is the length of Bagnold’s characteristic path. It yields an affine
relation between ripple wavelength and wind speed, in agreement with various wind-tunnel
experiments [28, 40, 299, 300, 303]. Yet, Durán et al. did not provide a compelling explanation how
the stabilizing slope-dependent transport is related to the phase locking due to crest-to-crest grain
leaps. Without the phase locking, one would expect isolated ripples to exist similar to isolated
dunes. Note, however, that isolated normal-sand ripples would be quickly eroded, as mentioned

3Aeolian sand ripples are often called impact or ballistic ripples, in order to discriminate them from subaqueous
(current) ripples.
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above. Only markedly polydisperse sand allows for long-lived isolated bedforms: when the
coarse grain fraction is transported by reptation, megaripples can be formed, as suggested by our
repton-dune model in Sec. 4.2.4. It seems tempting to speculate that the phase locking can instead
be responsible for a finite asymptotic (long-time) ripple size. That a final ripple wavelength exists
was argued by Andreotti et al. [28] based on their wind-tunnel experiments, where they manually
prepared wavy sand bed profiles that rapidly adapted their amplitude once the wind was turned
on, whereas the ripple wavelength apparently remained at its initial value, letting these authors
conclude that the ripples “do not evolve at all and the pattern purely propagates”. However, a
closer look at the profiles shown in Ref. [28] reveals that the average wavelength increases by
about 5 % (from 9.1 cm to 9.6 cm) within about twelve minutes. This slight growth might be due
to experimental noise; but, one should be careful with interpreting the shown data as a proof
for the existence of stable ripple states. Another poorly understood property is the nontrivial
grain-size dependence of the affine law between wind speed and ripple length, namely that the
size of fine-sand ripples significantly increases with increasing wind strength, whereas the length
of coarse-sand ripples appears to be almost wind-speed independent. A possible explanation
could be the gradually enhanced influence of turbulent suspension [57, 131, 201, 328] as the
grains become smaller, making their trajectories longer. Alternatively, big-grain reptation, which
is characterized by the wind-strength independent splash statistics, can become more and more
dominant the coarser the sand is, corresponding to the repton-dune model described below.

4.2.2 Sand polydispersity and megaripples

A concomitant phenomenon of the above described impact screening is that bigger (and/or denser
and/or less spherical/round/smooth) grains that reptate or roll down the ripple’s lee face less
efficiently, as characterized by a reduced reptation length [316, 319] compared to the finer grain
fraction, always accumulate at the ripple crests [26, 40, 299–302, 323–327]. The analogy with
normal sand dunes, where the drastic drop of the wind strength at the brink yields net deposition
at its downwind side, is a major insight underlying the repton-dune approach in Sec. 4.2.4. For
both polydisperse-sand ripples and normal-sand dunes, the deposition at the brink leads to a
short steep slope around the angle of repose (≈30°) at the upper part of the lee side, which crosses
over into a long, flatter lee slope (below 20°) [26]. Reptating fine grains that are fast enough to
leap down to this lower part of the ripples’ lee slope are typically trapped there, because energetic
grain impacts are screened by the ripple crest as described in the previous section. Again, this
shadow zone is very much reminiscent of the wake zone of the turbulent wind field behind the
dune brink. It is responsible for the so-called nebka effect, referring to the fine-sand deposit at
the lee side of an obstacle—here, the ripple crest itself.

The grain-size separation at the ripple crest becomes particularly evident under erosive
conditions, i.e., for limited fine-sand supply. Then, fine-grain ripples either quickly vanish—
namely, if they are formed on plain rock or in a wind tunnel—or winnowing (i.e., fine-grain
erosion) makes the grain-size distribution at the ripple surface strongly nonuniform, typically
bimodal. As a consequence, normal sand ripples quickly turn into megaripples, characterized
by a coarse-grain armoring layer, when the sand availability is limited [1]. The big immobile
grains can prevent the underlying fine material from being eroded, making the megaripples more
resistant to wind-strength fluctuations and thus allowing them to become older and larger than
the fragile normal fine-sand ripples. Very large wavy structures can also be formed from mixed
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material where the grains differ not only in their size, but also in their density [148, 329–331],
whereby the denser material plays the same role as the coarse grain fraction for polydisperse
sand, e.g., winnowing of the lighter grains, accumulation of the denser ones at the crests etc.

Only rare strong gusts can destroy the megaripples’ armoring layer and thereby flatten
them [30, 147, 320]. This can also be rephrased in terms of the saturation transients: As the
reptation of the coarse grains is characterized by a saturation length that is shorter (on the order
of the grain size) than the megaripple length, the megaripples are not eroded by moderate wind
gusts—contrary to the normal ripples made from fine sand, for which the saturation length
is much larger than the ripple wavelength. Consequently, megaripples can become separated
and more irregular, and can eventually form individual barchan-shaped objects [26, 29, 321,
323, 324, 332, 333], quite similar to what is observed for dunes, which evidently distinguishes
the megaripples from the stripe-like normal-ripple patterns. For such separated bedforms, the
crests-to-crest distance can vary a lot [79, 334] and a much better correlation is found between
the base length of the megaripples and their length-to-height ratio (called ripple index) or their
migration speed, as we demonstrated in Ref. [67] (attached at the end of this chapter).

The above characterization suggests that the discrimination between sand ripples andmegarip-
ples is of gradual nature, as it merely originates from the saturation degree of the fine-sand
supply. An increasing sand polydispersity allows the megaripples to continuously expand into the
wavelength gap that cannot be reached by ripples and dunes that are made from monodisperse
normal sand. Indeed, from their large data set, ranging from about 2 cm to 8m in terms of the
bedforms’ crest-to-crest distance, Wilson and coworkers [27, 41] showed that properties like
ripple wavelength, height, aspect ratio, and grain sorting do not fall into two distinct groups,
but form a single continuum region in the parameter space, which is clearly distinguished from
a region representing aeolian sand dunes (see also Ref. [273]). Under ideal (fluctuation-free)
conditions, the two regions representing unlimited and limited fine-sand supply may nevertheless
become asymptotically separated in the long-time limit.

4.2.3 Martian ripple structures

The numerous field surveys and wind-tunnel studies on our own planet are complemented by
orbiter and rover missions on Mars, which allow for detailed investigations of the abundant
aeolian structures similar to terrestrial ripples and megaripples. Since the dilute atmosphere
and low gravity on Mars leads to relatively long grain trajectories [141], these bedforms are
generally larger than on Earth, as we already noticed for the sand dunes on these two planets,
below Eq. (4.1). From the discussion in Secs. 1.2 and 3.5, we know that the large gap between the
fluid and the impact threshold, together with intermittent turbulent wind fluctuations, might
explain the current activity of various aeolian features observed on Mars, despite the fact that
the average wind strength is below the fluid threshold.4 [115–118, 128, 143–146] From landing
missions we know that large coarse-grained ripples, apparently inactive today, are formed on
Mars [143, 144], which seem to be analogs of our terrestrial megaripples. Although very likely,
it is not yet clear if the very abundant light-toned so-called “transverse aeolian ridges” (TARs)
with (nearly) symmetric profiles [48] are similar to the coarse-grained megaripples [144]. This
hypothesis is however suggested by the observation that they obey the same morphometric

4Note that the idea of sustained transport initiated by a burst-like gust was recently challenged by Sullivan and
Kok [150]. See Sec. 1.2.
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scaling laws as the megaripples on Earth, as we demonstrated in Ref. [67] (attached to the present
chapter).

4.2.4 Megaripples as “reptation dunes”

Altogether, the above listed observations illustrate that the physics of such mesoscale structures
is controlled by a complex interplay between intermittent turbulent wind fluctuations, sand
transport, polydispersity, sorting, and structure formation. It gives rise to a wealth of phenomena,
many of them still waiting for a satisfying explanation in terms of the underlying physical
mechanisms. A first step towards a more comprehensive understanding of the intermingled
processes responsible for aeolian structure formation was presented in the paper [67] appended
below this section. To disentangle the various contributions to the formation and morphology of
megaripples, we approach this problem in two steps: first, the erosive sand sorting is identified
as the prerequisite for the megaripple formation, as it creates the characteristic bimodal grain-
size distribution. Second, the dynamic reptation transport is described in terms of saturation
transients, characterized by a saturation length that is given by the reptation length and thus
comparable with the grain size, which gives rise to a “reptation dune” picture for the megaripples.
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Aeolian ripples and dunes are sand waves of vastly different 
size1–3 (see Fig. 1a, Table 1 and Supplementary Figs. 1 and 2, 
for some photographs and data). Ripples are neatly periodic 

corrugations of a sand bed on a centimetre scale. They are thought 
to arise from a spontaneous synchronization of the ballistic (‘sal-
tating’) grain trajectories with the wavy topography1,4. The syn-
chronization is lost for wavelengths beyond the hop length of the 
grains, so that ripple growth stalls5,6. A similar feedback between 
transport and topography is mediated by the wind. The sensitiv-
ity of its speed and transport capacity to height modulations of 
the sand bed renders a flat bed unstable, which is the mechanism 
that creates sand dunes7,8. A spatial lag or ‘saturation transient’9 
between the wind shear stress and the sand flux breaks the scale 
invariance of the process and defines a minimum dune length of 
some ten metres for typical dune sand10,11. Bedforms of intermedi-
ate wavelengths, between the saltation length and the minimum 
dune length, are flattened out by the wind. They should thus not 
regularly be observed in the field and have indeed not generally 
been reported from natural observations2,12.

Here, we provide theoretical and empirical evidence for a nota-
ble exception. Erosive conditions can initiate a complex feedback 
between aeolian transport and structure formation, giving rise to 
the peculiar bedforms commonly characterized as (gravel or peb-
ble) ridges1, granule ripples13 or megaripples14,15. The key to their 
understanding is the sorting of the sand by aeolian transport. 
Natural sand is always (more or less) polydisperse, as it is formed 
by quite chaotic processes: breaking up crustal rock and crushing 
by weathering, erosion, abrasion, turbulent transport and so on16. 
However, since the aeolian transport efficiency depends on the 
grain size, finer grains are quickly carried away by the wind while 
coarser grains trail behind. As a consequence, aeolian sand becomes 
increasingly monodisperse further downwind (for example, in the 
middle of a large dune field17). In return, if not compensated by 
incoming sand, the winnowing of the finer grains may also cause 
rare coarse grains to accumulate at the bed surface. Below, we put 
forward a mathematical model to quantify how this process may 
gradually create a bimodal surface grain-size distribution (GSD) out 
of a unimodal bulk GSD. As a consequence, the aeolian transport 
process itself can develop a bimodal structure that further reinforces 

the sand sorting. More precisely, a window of wind strengths can be 
identified, in which the coarse grains do not themselves saltate but 
merely creep or ‘reptate’1 over the sand bed, slowly driven by the 
saltating fraction of fine grains. This wind range is delimited by the 
threshold wind shear stresses τt

c and τr
c for saltation and reptation of 

the coarse grains and thereby sensitive to the ratio ac/af of the char-
acteristic coarse and fine sand grain diameters ac and af,

τ τ∕ − ∝ ∕ ≈ …− −a a1 ( ) 10 10 (1)t
c

r
c

f c
6 4 2

with the omitted factor of proportionality ranging from 102 to 104 
(Methods). The ensuing strong scale separation between the hop 
lengths of fine and coarse grains has two important consequences. 
First, it reinforces the winnowing of fine grains and the accumula-
tion of coarse grains at the bed surface. Second, the coarse surface 
grains respond very locally to wind variations, resulting in much 
shorter saturation transients than for the fine grains9,11. The asso-
ciated minimum dune size is thus greatly diminished: from some 
ten metres for typical dune sand down to decimeters for grains of 
diameters in the millimetre range10,11. This allows the coarse grain 
fraction to form small dunes in the otherwise forbidden wavelength 
gap. We postulate that these dunes made from coarse reptating 
grains or ‘reptation dunes’ are the bedforms commonly known as 
megaripples (Supplementary Fig. 1). We also demonstrate the pre-
dictive potential of this interpretation. Namely, since dunes with 
low sand supply tend to evolve in loosely spaced ensembles, our 
model immediately explains why megaripples are much less regu-
larly spaced and aligned than ordinary ripples13,14,18–21 (Fig. 1a and 
Supplementary Figs. 2,3). Further, that the aeolian surface accu-
mulation of coarse grains is predicted to take substantially longer 
for less polydisperse sands naturally explains the rare occurrence 
of megaripples in regions with narrowly sorted sand1,13,16 and estab-
lishes the emergence of a strictly forbidden wavelength gap in the 
limit of monodisperse sand. Finally, the reptation-dune model 
quantitatively predicts key features of the morphology and migra-
tion of megaripples.

While a correlation between grain sorting and megaripple for-
mation is suggested by much observational evidence (Fig. 1 and  
refs 1,2,16,18,22–30), the responsible physical mechanism has so far eluded 
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Sand is blown across beaches and deserts by turbulent winds. This seemingly chaotic process creates two dominant bedforms: 
decametre-scale dunes and centimetre-scale ripples, but hardly anything in between. By the very same process, grains are 
constantly sorted. Smaller grains advance faster, while heavier grains trail behind. Here, we argue that, under erosive condi-
tions, sand sorting and structure formation can conspire to create distinct bedforms in the ‘forbidden wavelength gap’ between 
aeolian ripples and dunes. These so-called megaripples are shown to co-evolve with an unusual, predominantly bimodal grain-
size distribution. Combining theory and field measurements, we develop a mechanistic understanding of their formation, shape 
and migration, as well as their cyclic ageing, renewal and sedimentary memory, in terms of the intermittent wind statistics. Our 
results demonstrate that megaripples exhibit close similarities to dunes and can indeed be mechanistically characterized as a 
special type of (‘reptation’) dune.
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experimental and mathematical characterization. A main difficulty 
has been the wide scatter of field data for megaripples, which our 
analysis demonstrates is a natural consequence of the intricate 
interplay between the three processes involved in their formation: 
sand sorting, evolution of the topography and intermittent wind 
fluctuations. To elucidate their poorly understood interdependence, 
we propose a mesoscale minimal model of erosion-driven sand 
sorting. The key idea is to break down the complex evolution of the 
GSD in the sand bed to the volumetric (that is, volume-weighted) 
distributions ϕb(a, t) and ϕs(a, t) of the grain diameter a at time t 
in the bulk ‘b’ and surface ‘s’ of the sand bed, respectively (Fig. 1).  
The processes that create both GSDs in the field will typically not 
be fundamentally different. In particular, as the wind strength or 
direction changes, or new upwind sources become temporarily 
available, a developed surface layer can be covered by some sand 
deposit and thereby become part of the bulk. The crucial difference 
lies in the timescales over which they are generated. The bulk GSD 
ϕb develops over geological timescales. The surface GSD ϕs emerges 
from the bulk distribution over much shorter times, typically dur-
ing an intermittent period of weaker winds between two storms, 
over which ϕb can be taken to be stationary. In a first (mean-field 
type) approximation, we therefore model the sorting process in the 
overall surface distribution by

ϕ ϕ ϕ∂
∂

= − + +
t

a t R a a t R a J a a( , ) ( ) ( , ) [ ( ) ( )] ( ) (2)s s s b

The erosion rate R(a) determines the net removal of surface 
grains of diameter a via the first term on the right-hand side, while 
the remainder continuously replenishes the (time-dependent) 
lost volume fraction ⟨ ⟩R a( ) s from the bulk, to maintain the nor-
malization of ϕs(a, t). The optional effective deposition rate J(a) 
is included to allow some upwind sand supply to be portrayed, 
whereby J(a)ϕb(a) is understood to vanish on integration over all a.  
Dynamic averages ⟨…⟩ s,b are defined by ∫ da… ϕs,b(a, t). At the 
present stage, our minimal description deliberately neglects some 
details, such as the feedback of the developing topography on the 
grain sorting and does not discern horizontal heterogeneities and 
vertical versus horizontal sorting6,31,32, which are not critical for 
our discussion.

We now show that these ingredients are sufficient to explain 
the observation that megaripples co-localize with accumulations 
of coarse grains and emerge as long-lived transient structures 
from a unimodal bulk distribution dominated by much finer sand. 
Consider first the illustrative example of a log-normal model bulk 
GSD (Fig. 1c), as thought to arise from weathering, grinding and 
abrasion3,33, and in reasonable agreement with our field data dis-
played in Fig. 1b. As a schematic model for the erosion rate, we 
assume (see Methods and Fig. 1c)

Θ= − ∕ −τ τ τ τR a a ra a a a a( , ) (1 ) ( ) (3)
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Fig. 1 | sand sorting and megaripples. a, Megaripples in the southern Negev desert (Israel). Inset: cross-section of a typical megaripple, revealing vertical 
sand grading (coarser grains on top). b, Representative bulk and surface GSDs ϕb(a) and ϕs(a) (measured globally and at the crest). Insets: sand samples 
from the marked circular regions of panel a. (See Methods for further details.) c, Log-normal model bulk distribution ϕb(a) with standard deviation of 
about half the mean bulk grain diameter ⟨ ⟩a b, and model erosion rate R(a, aτ), decaying with grain size a up to a maximum erodible aτ dependent on the 
wind shear stress τ (here set to aτ =  3⟨ ⟩a b). A monotonically decreasing form of R(a) accounts for the fact that more small grains than big ones are carried 
away, due to their easier mobilization by the wind and their longer hop lengths and higher transport speeds.

Table 1 | Morphological and physical characteristics of ripples, megaripples and dunes

ripples Megaripples Dunes

Length scale < 30 cm (refs 1,5,13,36) > 30 cm (refs 2,13,14,18,19,22,43) > 10 m (refs 2,51,52)

Crest-line shape Straight, continuous2,13 Sinuous, irregular13,18–20,23 Transverse dunes: straight, continuous; 
isolated dunes: irregular, crescentic or 
linear1–3

Cross-section shape Contiguous (sinusoidal)1 Smooth, rarely with slip face19,53 Smooth or with slip face1,3,52

Length-to-height ratio > 20 (refs 1,513,15,24,36) (size independent5,15,36) > 4 (refs 13,43) (size dependent, 
Fig. 4)

> 8 (refs 47,51,54–56) (size dependent47)

Formation timescale Minutes5,36,57 Hours to years1,18,34 Weeks to decades58

Long-time behaviour Stationary size and shape5,6 Algebraic growth expected Algebraic growth37,58,59

Grain-size distribution Unimodal1,16; mean: 0.1–0.3 mm Bimodal13,16,18,20,22,53 (or bidisperse 
density25–27,60); coarse grains: 
0.7–4 mm

Unimodal1,16; typical mean: 0.1–0.3 mm

Physical mechanism Mesoscale structure (reptation, saltation) 
matters; screening instability1,13,61, saltation 
phase locking1,4

(Erosive) sorting, coarsening, 
coarse-grain reptation1,13,16

Only overall properties of transport 
layer matter; air-stress phase lag, 
saturation transients8,41
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where Θ denotes the Heaviside step function, r is a scale factor 
and aτ is the maximum diameter of grains that can be eroded by 
a given wind shear stress τ. During moderately windy periods, aτ 
will considerably exceed the average bulk grain size ⟨ ⟩a b. Figure 2a  
depicts a corresponding time series of the surface GSD obtained 
by direct integration of equation (2), for constant wind strength 
and vanishing influx (J ≡  0). As expected, the heavy grains from 
the tail of the bulk GSD ϕb are seen to accumulate in ϕs, so that 
an initially unimodal ϕs(a, t =  0) =  ϕb(a) gradually develops a sec-
ond peak, much the same as the surface GSDs commonly found 
in field studies of megaripples14,22,23,34. The asymptotic surface GSD 
ϕs(a, t →  ∞ ) ∝  ϕb(a)Θ(a −  aτ) takes the form of the truncated tail 
of the bulk distribution (see Methods), which physically amounts 
to an armouring layer of immobile coarse grains covering a more 
fine-grained sand bed.

This formal prediction hinges on the prescribed constant wind 
(and zero-influx) conditions, though, as they might be realized in 
dedicated wind-tunnel studies. In the field, variable ambient con-
ditions can always (partly) revert the grain sorting: either via an 
intermittent deposition of a surplus of erodible grains picked up 
elsewhere (represented by the influx J, which will usually be hard to 
quantify); or, via mixing the upper bed layers during brief gusts that 
entrain also the grains of the armouring layer into saltation35. The 
latter mechanism is illustrated in Fig. 2b, which extends the time 
series from Fig. 2a, under more windy conditions. The result clearly 
looks very reminiscent of a time reversal, except for the much 
shorter timescale displayed. Indeed, evaluating equation (2) for a 
temporally varying synthetic wind history (fabricated as described 
in Methods) may incidentally yield transient results that visually 
compare well with field measurements (Fig. 2c,d).

The aeolian grain sorting and ensuing structure formation are 
thereby plainly revealed as transient phenomena. In contrast to the 
situation for ordinary ripples and dunes, which are expected to be 
much more tolerant to wind strength variations1,524,36–38, measure-
ments of megaripples will thus always retain an anecdotal character, 
conditional on the actual wind history39,40—at best capturing some 
more or less typical (not necessarily average) behaviour. Moreover, 
waiting for an incipient structure formation process to saturate into 
a hypothetical stationary regime may be futile.

To make these qualitative conclusions more quantitative, we now 
establish the timescales governing the rapid relaxation of ϕs towards 
the bulk distribution ϕb during a storm, and the slow development 
of the armouring layer during periods of more gentle winds. During 
storms, the threshold grain size aτ of non-erodible grains lies far 
above the bulk mass of both distributions ϕs and ϕb, and the respec-
tive average grain sizes obey the inequality ⟨ ⟩ ≤ ⟨ ⟩ ≪ τa a ab s . The 

erosion rate may then be approximated by ~τ τR a a ra( , ) , and 
integrating the sorting equation (2) multiplied by a over all a gives 
(for J ≡  0)

⟨ ⟩ −⟨ ⟩ = − ⟨ ⟩ −⟨ ⟩τt
a a ra a ad

d
( ) ( ) (4)s b s b

with the fast ‘mixing’ rate τra . The slow ‘coarsening’ rate 
τ
−T 1 ≡  ⟨ ⟩τR a a( , ) s Θ⟨ − ⟩τa a( ) b

/ Θ⟨ − ⟩τa a( ) s
 for the development of 

the armouring layer Θ⟨ − ⟩τa a( ) s
 is instead obtained by integrating 

equation (2) over the declining fraction of erodible grains of diam-
eters a <  aτ. With Θ(aτ −  a) =  1 −  Θ(a −  aτ), this yields

Θ Θ⟨ − ⟩ = − ⟨ − ⟩τ τ τ
−

t
a a T a ad

d
( ) ( ) (5)s

1
s

from Θ⟨ ⟩ ≤ ⟨ − ⟩τ τ τR a a ra a a( , ) ( )s s
, we conclude that τ

−T 1 is 
diminished against τra  by a factor smaller than Θ⟨ − ⟩τa a( ) b

, 
which is itself small, by construction.

The deduced timescale separation between the formation and 
destruction of the armouring layer is corroborated by the numeri-
cal data displayed in Fig. 2. Accordingly, if we accept the notion 
of megaripples as dunes that self-assemble from reptating coarse 
grains by the conventional turbulent symmetry-breaking mecha-
nism41,42, their formation requires long periods of erosion by mod-
erate winds. First, an armouring surface layer of coarse grains 
needs to build up via winnowing, which must then be entrained 
into a considerable amount of reptation. Even brief interruptions 
by short storms can be detrimental. Namely, by entraining the 
coarse grains of the armouring layer into saltation, they quickly 
destroy the sorting and dramatically increase the coarse grains’ 
hop length and thus the minimum dune size (Methods), thereby 
rendering the evolved structures subcritical, hence unstable. 
Moreover, the erosion of dunes/heaps of subcritical length has 
been theoretically shown to be fast compared to dune growth37. 
Altogether, this suggests a slow formation and quick destruction 
of megaripples, in agreement with observations35,40,43. Importantly, 
the coarsening time Tτ is predicted to be sensitive to the width of 
the bulk GSD (and to the influx J), such that sorting and armour-
ing are substantially slower for more homogeneous bulk sand (and 
more fine-grained influx). The effect is illustrated in Fig. 3 for uni-
modal bulk GSDs of diverse widths.

To further establish the pertinence of the notion of reptation 
dunes, we conducted a thorough quantitative morphological and 
dynamic comparison of dunes and megaripples. We first consider 
their shapes along the wind direction, namely the relation between 
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Fig. 2 | Model and field data for wind-driven sand sorting. a,b Evolving surface GSD ϕs(a, t) obtained by numerical integration of the sorting equation (2) 
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2 , as in Fig. 1c. a, Constant moderate wind speeds 
(aτ =  4⟨ ⟩a b) create a bimodal distribution. b, The bimodality is quickly destroyed by a brief storm (aτ =  10⟨ ⟩a b). c, Simulating a fluctuating wind history by 
the coupled stochastic processes (16) with aτ(t) of long-time mean ⟨ ⟩a b and variance ⟨ ⟩a0.038 b

2, and an influx J(a)ϕb(a) =  0.7[R(a, aτ)ϕb(a) −  〈 R(a, aτ)〉 b], 
brings the model results visually closer to actual field data (d) taken from ref. 34 and collected from megaripple crests at Nahal Kasuy in the Negev, Israel, 
during a time period (2 October 2008–20 February 2009) with some intermittent autumn storms (⟨ ⟩a b ≈  120 μ m).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATure PHYsIcs | www.nature.com/naturephysics



Articles NaTure PHySiCS

their slopes (estimated by their height-to-length ratio H/L) and 
their size or mass (estimated by the geometric mean of H and L). 
Treating megaripples as ordinary ripples, one identifies L with 
wavelength, often estimated by the distance between crests, and 
L/H with the ripple index13,22,23,44. A failed attempt to correlate ripple 
index and ripple size is shown in Fig. 4a, using data collected from 
Kelso Dunes13 (cloud of triangles) and in Supplementary Fig. 4 for 
more recent data22. In contrast, treating individual megaripples as 
(more or less) isolated dunes requires one to identify L with their 
base length39,45. Plotting L/H against mass then unveils a striking 
correlation (squares and circles), extending over data sets from 
widely varied locations with different environmental conditions 

(wind, sand supply and grain size). Furthermore, the field data then 
nicely match the theoretical prediction37

∕ −ϵ ∝∞
− − ∕L H HL( ) (6)1 1 2

for sand dunes. The fit in Fig. 4a directly employs the theoreti-
cal value for the asymptotic height-to-length ratio at low satura-
tion, ϵ∞ =  0.46, as appropriate for erosive conditions. The only fit 
parameter is the omitted prefactor in equation (6), which is a char-
acteristic dune length37 that we find to be in good accord with the 
observations (Fig. 4c). Importantly, equation (6) attests the broken 
scale invariance of megaripples, which has to be contrasted with the 
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GSD ϕb(a, t). The initial surface GSD (blue) is set equal to the bulk GSD, ϕs(x, t =  0) =  ϕb(x), and acted on by a wind of constant strength τ, which leads to 
the growth of the coarse-grain peak at a =  aτ in the surface GSD. c, The diverse coarsening rates observed in a and b are also manifest in the evolution of 
the mean grain size 〈 a〉 s. Rescaling time by the coarsening rate ⟨ ⟩Θ≈ −τ τ τ

−T ra a a( )1
b
 estimated below equation (5) yields the data collapse in the inset.

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

10

20

30 L ( ), ‘ripples’

L ( ), ‘dunes’

H

L
/H

a

Nahal Kasuy Ktora

Wadi Rum Mars

Kelso Dunes

0 0.2 0.4 0.6
0

0.5

1.0

1.5

2.0

L ( ), ‘ripples’

L ( ), ‘dunes’

10
3  ν

/√
ga

c

b

100

101

102

L/
(√

σa
c)

c

√σac /√HL √σac /L

Fig. 4 | Dune-type versus ripple-type analysis of megaripple morphology and migration. Shape data (slope versus mass) and migration data (speed 
versus length) analysed as commonly done for ripples (L interpreted as wavelength, open symbols) and dunes (L interpreted as base length, filled 
symbols). a, Shape data: Megaripples at Kelso Dunes, California13, ac ≈  2 mm (triangles), at Nahal Kasuy, Israel14, ac ≈  0.55 mm, 0.78 mm (open circles), and 
at Ktora, Israel, ac ≈  1.12 mm (open crossed circles), all analysed as ripples and compared to the mean value 17.8 (dashed line, standard deviation 6.3) of 
the ripple index H/L that is expected to be independent of H and L for ripples. Contrast this with the Nahal-Kasuy (filled circles) and Ktora (filled crossed 
circles) data, data for megaripples at Wadi Rum, Jordan43, ac ≈  1.85 mm (squares), and so-called transverse aeolian ridges (TARs) on Mars (Ius Chasma)46, 
ac ≈  1 mm (diamonds), all analysed as dunes with grain–air density ratios σ ≈  2 ⋅  103 (Earth), 2 ×  105 (Mars)62,63 and fitted by the prediction (6) (line, with 
coefficient of determination R2 =  0.81) for dunes37,41, yielding the estimate σ a70 c for the characteristic ‘reptation dune’ base length, corresponding to 
2.5 m (Kasuy Nahal), 3.5 m (Ktora), 5.8 m (Wadi Rum) and 32 m (Mars), in good agreement with the observations in c. b, Migration data from ref. 39, 
measured at Great Sand Dunes National Park and Preserve, USA (ac ≈  1.5 mm) analysed as ripples (triangles) and dunes (pentagons): migration speed 
v also correlates better with base length than with wavelength and is well fitted by the prediction v ∝  L−1 (line) for dunes37,41, with fit factor σ

∕
ga2.6( )c

3 1 2
 

(R2 =  0.47 and 0.87 for the ripples and dunes fit, respectively). c, Sizes of terrestrial megaripples and TARs on Mars are bounded from below. The red-
shaded area represents the model prediction (7) for the minimum megaripple length in the appropriate range of wind strengths τ τ τ< <( )r

c
t
c , as delineated 

by equation (1). The larger base lengths reported for TARs on Mars could be indicative of their longer maturation, and/or of an increased wind-averaged 
saturation length11 due to the larger gap between the threshold winds for impact and aerodynamic entrainment of bed grains on Mars64,65.
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size-independent aspect ratio observed for normal sand ripples5. A 
related natural implication of the reptation-dune interpretation is 
the intriguing prediction of a minimum megaripple size

στ τ≈ ∕L a2 (7)0 t
c

c

as a function of the grain–air density ratio σ, the wind shear strength 
τ and the characteristic coarse grain diameter ac (see Methods). 
This, too, is borne out qualitatively and quantitatively by the data 
in Fig. 4c for terrestrial megaripples and for a Martian bedform 
called transverse aeolian ridges (TARs)46. Finally, the model predicts 
a reciprocal correlation between dune migration speed and dune 
length. This has successfully been tested for aeolian sand dunes and 
their subaqueous counterparts47–49, and Fig. 4b demonstrates good 
agreement with available megaripple data. In contrast, a conven-
tional interpretation, identifying L with the distance between crests, 
fails to yield convincing correlations (let alone a mechanistic expla-
nation). However, given the lack of data in the full range of megarip-
ple lengths and the natural scatter in the data, more measurements 
would clearly be highly desirable to substantiate the statistical sig-
nificance of this conclusion.

Taken together, the above results provide strong support for 
the mechanistic interpretation of megaripples as reptation dunes. 
Moreover, the close similarity of rescaled data for terrestrial  
megaripples and TARs suggests that both might represent different 
realizations of the same type of bedform. To exemplify how this new 
understanding might be employed in the interpretation of future 
field studies, we generated extensive time series from the combined 
model of sand sorting and ‘reptation-dune’ formation (Fig. 5). This 
requires suitable synthetic wind protocols that must reproduce real-
istic distributions of intermittent storms and wakes covering the 
whole hierarchy of relevant timescales from minutes (grain mix-
ing) to years (megaripple growth). To fabricate them efficiently, 
we utilize a piggyback (or ‘superstatistics’50) model coupling two 
stationary Gaussian Markov processes (Methods). The sand sort-
ing effected by such wind protocols has, for a relatively short time 
series, already been illustrated in Fig. 2c. To make the connection 
with structure formation, note that the reptation dune ‘volume’ HL 
grows proportionally to the horizontal reptation flux of the coarse 
grains, which itself is proportional to τ τ τ−( )r

c . Inserting this into 
equation (6), we predict a slow algebraic megaripple coarsening. 
For ∕ ≫ ϵ∞

−L H 1, it takes the simple form τ τ τ∕ ∝ − ∕L t Ld d ( )r
c 3. 

By virtue of the strong timescale separations between grain sort-
ing and mixing and megaripple growth and decay, respectively, an 
equally simple criterion for megaripple destruction, such as reset-
ting L to the minimum reptation-dune size whenever the fraction of 
coarse grains falls below 0.1, should suffice for our present purpose. 
In the same vein, we can simplify the sorting model and idealize the 
transient bimodal form of ϕs(a, t) by a weighted bidisperse function

ϕ δ δ≈ − − + −a t c a a c a a( , ) (1 ) ( ) ( ) (8)s s f s c

with cs(t) being the fraction of the coarse subpopulation of mean 
size ac (the position of the right peak in Fig. 2c) and af ≈  aτ being 
the size of the relevant saltating grains under the prevalent wind 
conditions of mean wind shear stress τ. Thereby, the grain sorting 
equation (2) simplifies to

̄= −τT
t

c t c c td
d

( ) ( ) (9)s s s

with favourable consequences for the computational effi-
ciency and visualization of long-time predictions. Here, 
̄ ̄≡ +τ τc c R a a J a T[ ( , ) ( )]s b f c  and ̄cb are the (wind-dependent) sta-

tionary surface and bulk fractions of coarse grains, respectively, 
and ̄≡τ τ

−T c R a a( , )1
b f  +  ̄− τc R a a(1 ) ( , )b c  is the bidisperse version 

of the wind-dependent sorting rate introduced in equation (5). 
For ̄ ≪ .c 0 1b , corresponding to fine bulk sand with a low amount 
of coarse grains, the time needed to develop some armouring is 
about ̄. ≈ . ∕τ τT c R a a0 1 0 1 [ ( , )]b f , which is sensitive to the size of 
the armouring grains. Megaripples can grow only if this time is 
shorter than the typical waiting time between two gusts of strength 
τ τ≥ ∝ at

c
c, as illustrated in Fig. 5.

In summary, we have proposed a quantitative modelling frame-
work that elucidates how megaripples form through an intricate 
coupling of sand sorting, structure formation and the intermittent 
statistics of the wind. The mechanistic interpretation of megaripples 
as reptation dunes provides a unified explanation for their evolution 
and morphology. The theory will allow one to quantitatively address 
the wind-driven sand sorting and the complicated dependence of 
megaripple growth on the prevailing sand and wind characteristics, 
and hence to estimate the likelihood of megaripple formation under 
various environmental conditions. It may also serve as a starting 
point for dealing with finer details of the sorting and structure for-
mation process, such as the mutual feedback between the evolu-
tion of the topography and the lateral grain sorting. So far, we have 
merely provided a first glimpse of the potential of the model for 
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Fig. 5 | Transient sand sorting and megaripple evolution under variable 
winds. a,b, The combined schematic model (6)–(9) predicts the relative 
surface accumulation cs(t) (solid line) of coarse grains and the megaripple 
length L(t) (dashed line), depicted here for the same influx as assumed in 
Fig. 2c. The fluctuating synthetic wind protocol (16) with rare intermittent 
gusts was simulated in a time window corresponding to some decade of 
real time in the field. The chance of megaripple formation is much higher 
with more heterogeneous (a, with ac =  3af, ̄ = −c 10b

2) than with more 
homogeneous (b, with ac =  2af, ̄ = −c 10b

3) bulk sand. It is determined by 
the characteristic coarsening rate ̄=τ τ

−T c R a a( , )1
b f  relative to the typical 

time period during which the wind strength remains in the range given 
in equation (1). The inset in a zooms in on a narrow time slice of width 

∕ r a90 b  containing some brief storms (that is, high peaks in the wind 
shear stress τ(t); grey histogram).
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interpreting long-term field and laboratory studies, using a repre-
sentative synthetic time series. The outcome already exhibits impor-
tant qualitative features that are likely to survive in more elaborate 
models: chiefly, the slow algebraic growth and fast decay of mega-
ripples, the imperfect but vital correlation of sorting and growth, 
and the encoding of a long-term memory of wind and sand-supply 
conditions in the emerging transient bedforms and GSDs. All of 
these properties set megaripples clearly apart from their smaller and 
larger cousins, ordinary ripples and dunes (Table 1), thereby estab-
lishing an important independent self-organized aeolian bedform, 
with a unique potential for inferring past climatic and environmen-
tal conditions from morphological data.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-018-0106-z.
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Methods
Reptation regime. The range of wind strengths and grain-size ratios for which 
we expect megaripples to form corresponds to the pure reptation regime for the 
coarse-grain fraction (wind shear stresses τ between the reptation and saltation 
threshold of the coarse grains): τ τ τ< <r

c
t
c. Bagnold’s classical estimate is τ σρ∝ a gt

c
c ,  

with the grain–air density ratio σ, the mass density ρ of the atmosphere and the 
gravitational acceleration g (ref. 1). Assuming reptation to be driven by kicks 
from hopping fine grains, we may roughly estimate τr

c from binary collisions that 
transfer enough energy to the bed grain to be lifted up to a height on the order of 
its own diameter ac. Following ref. 66, we use momentum and energy conservation 
for head-on collisions between fine and coarse grains of mass π ρσ= ∕m a( 6)f,c f,c

3 ,  
which yields

≈ ϵ ∕ +m ga m m v m m2 ( ) (10)c c
2

c f
2

f
2

f c
2

for the minimum required impact speed vf of the fine saltating grains. The effective 
restitution coefficient ϵ <  1 quantifies the energy dissipation during collisions. To 
account for additional drag and lift forces exerted by the unsaturated turbulent air 
flow on the bed grains, the gravitational mass mc on the left-hand side of equation 
(10) is replaced by a reduced effective mass <m mc

eff
c. It is estimated by requiring 

the net torque due to drag and gravity forces exerted on a coarse bed particle of 
mass mc to balance the purely gravity-induced torque on a grain with mass mc

eff  
(ref. 1). For an absolute value FD of the drag force (pointing into the wind direction) 
and an effective friction coefficient μ that relates FD to the grain weight64, this 
balance reads μ − = −F m g m gD c c

eff , or

τ τ∕ = − ∕m m 1 (11)c
eff

c t
c

Here, we expressed the drag force FD ∝  π (ac/2)2τ in terms of the fluid shear stress 
acting on the bed grains and identified the threshold value τ σρ μ∝ π ∕ ∕ga(2 3)t

c
c ,  

above which bed grains are mobilized by the flow (corresponding to a vanishing 
effective weight meff =  0). Replacing mc on the left-hand side of equation (10) by 
mc

eff  and inserting equation (11) gives

τ τϵ ∕ ≈ − ∕ ∕ ≪v ga m m m m2 ( ) (1 ) ( ) ( ) (12)2
f
2

c t
c

c f
2

f c

For undersaturated transport, the impact speed vf can be taken to be the 
characteristic wind velocity (at a certain height), which itself is proportional to τ ;  
that is, τ τ≈ ∕v vf f,t t

f , where vf,t is the impact speed at the transport threshold τt
f .  

At τ τ= r
c, this yields equation (1) with a factor of proportionality ϵ ∕v ga2 ( )2

f,t
2

f  
(using again τ τ∕ = ∕a at

c
t
f

c f ). Inserting typical values of vf,t yields a plausible range 
ϵvf,t(gaf/2)−1/2 ≈  10… 102.

For a continuum GSD, the characteristic size af of the saltating fine grains is 
given by the biggest grains transported by saltation at the actual wind strength τ, 
hence τ τ= t

f ; that is, τ τ∕ = ∕a at
c

f c. The maximum grain-size ratio

τ τ∕ = ∕ ≈ . … .a a 2 1 3 9 (13)c f t
c

r
c

consistent with megaripple formation is attained for wind strengths τ τ= r
c at the 

reptation threshold for the coarse particles; that is, it follows by inserting τ τ=r
c

t
f  

into equation (1). Note that, according to the foregoing discussion, af pertains to 
the fine grains that are most relevant for the reptation of the coarse grains. For 
typical bimodal GSDs as those in Fig. 2, it thus corresponds to grain sizes in the gap 
between the coarse and fine subpopulations, not to the fine-grain peak position. 
Accordingly, the maximum grain-size ratio refers to the width of the coarse-grain 
peak rather than to the peak separation.

Minimum length of a reptation dune. The response (or ‘saturation’) length ℓ of 
the flux of reptating coarse grains is approximately estimated by their hop length, 
which follows from a reasoning along the lines of the previous paragraph. As 
the energy of a splashed grain depends only weakly on the impact energy66, the 
hop height of a reptating grain is approximately independent of the actual wind 
strength and, as argued above equation (10), on the order of its diameter ac. We 
thus estimate ℓ by the product of the hop time ≈ ∕a g2 2 c  and the typical wind 
speed near the ground, τ ρ στ τℓ ∝ ∕ ≈ . ∕a g a( ) 0 1c t

c
c, with the grain–air mass 

density ratio σ and the threshold shear stress τ σρ≈ . ga0 01t
c

c (ref. 1). The omitted 
numerical prefactor is expected to be on the order of unity. With σ ≈  2 ×  103 for 
sand on Earth, we thus get ℓ ≈ a5 c at the reptation threshold, which is almost 
two orders of magnitude below the typical saltation length ≈  20τt/(ρg) ≈  400a 
at the transport threshold9,11. The minimum length L0 of a (reptation) dune is 
approximately ≈ ℓL 200  (refs 11,67–69) (that is, L0 ≈  100ac at the reptation threshold), 
which yields equation (7).

Erosion rate. The grain-size dependence of the erosion rate R(a, aτ) given in 
equation (3) follows from the approximate scaling

τ τ τ∝ ∕ ∝ − ∕τR a a q l( , ) ( ) (14)t

of the vertical mass flux q/l through the sand bed, where τ ρ τ τ∝ ∕ − ∕q g( )t  is 
the height-integrated horizontal mass flux and l ∝  τ/(σρg) is the characteristic hop 
length of the grains9 expected for under-saturated transport70,71. As above, ρ and 
σρ denote the mass density of the atmosphere and the grains, respectively, g is the 
gravitational acceleration, τ is the wind shear stress and τt is the threshold shear 
stress below which grains of diameter a cannot be transported by the wind; that is, 
q(τ <  τt) =  0. Inserting the scaling1 τt ∝  σρga into equation (14), we obtain  
equation (3).

Stationary limit of grain sorting. The right-hand side of the sorting equation (2) 
vanishes for any surface GSD of the form ϕs(a) =  φ(a)Θ(a −  aτ), which is thus a 
stationary solution. Integrating equation (2) over t, for a given a >  aτ, yields

∫φ ϕ ϕ

ϕ
Θ

Θ
ϕ

= + ⟨ ⟩

= +
⟨ − ⟩
⟨ − ⟩

τ

τ

τ

∞
a a a t R a a

a
a a

a a
a

( ) ( , 0) ( ) d ( , )

( , 0)
( )

( )
( )

(15)
s b 0 s

s
s0

b
b

In the second step, we used ∫ φ =
∞

τ
a ad ( ) 1

a
 and that ⟨ ⟩τR a a( , )

s
 does not 

depend on a. The subscript s0 refers to an average over the initial surface 
distribution ϕs(a, 0). For ϕs(a, 0) =  ϕb(a), we get φ(a) =  ϕb(a)/ Θ⟨ − ⟩τa a( )

b
, which is 

quoted in the main text after equation (3).

Fluctuating wind. The wind protocols used in Figs. 2c and 5 are obtained from 
coupled stochastic processes for the wind speed u, fluctuating around its mean U, 
and the logarithm θ σ≡ ∕ Uln( )u

2 2  of its variance50,

γ ξ

θ γ θ θ ξ

= − − +

= − − +θ θ

t
u u U

t

d
d

( )

d
d

( )
(16)

u u

0

with ξ ξ γσ δ⟨ ⟩ =t t( ) (0) 2 ( )i i i i
2  and γu =  102γθ. Within our reduced units, the minimum 

size aτ of the eroded grains at wind velocity u is given by aτ =  u2. To fix the overall 
timescale and wind strength, we set γ = r au b , U2 =  2⟨ ⟩a b

 (Fig. 2) and γ = rau f ,  
U2 =  af (Fig. 5). We chose θ0 =  − 6 and σθ =  1.5, so that the velocity increments 
u(t +  Δ t) −  u(t) per time step Δ t are log-normal distributed, in accord with 
empirical observations72,73.

Field data. The data for the bulk and crest GSD shown in Fig. 2b were obtained 
from samples taken locally from a megaripple near Ktora (Arabah valley, southern 
Negev), Israel. We first drained the sand with water to stabilize the ripple, cut it 
as shown in the inset of Fig. 2a, and took the samples using a plastic tube (about 
5 mm and 6 cm below the ripple apex for the crest and bulk sample, respectively). 
The surface GSD in Fig. 2b represents a thin surface layer (about 5 mm thick) 
taken from a square of area 1 m2 in the flat area between the megaripples at Nahal 
Kasuy (southern Negev), Israel. All GSDs were obtained using a laser diffraction 
technique (Fritsch GmbH). The two sampling methods, depth-resolved and 
surface-averaged, reflect the vertical and horizontal segregation of the GSDs, 
respectively. Crest, slope and trough GSDs contribute to the horizontally averaged 
surface GSD, which effectively corresponds to a superposition of the local bulk  
and crest GSDs.

The field data from Nahal Kasuy, Israel, and Wadi Rum, Jordan, in Fig. 4a 
were extracted from megaripple profiles shown in refs 14,43. The numerical values 
are listed in Supplementary Table 2. The data from Kelso Dunes were taken from 
Table 2 of ref. 13, and the approximate mean diameters ac =  2 mm of the coarse grain 
fraction were estimated from Table 3 and from the section entitled Granule Ripples 
in Kelso Dunes. The morphological data from Ius Chasma and Terra Sirenum on 
Mars were taken from Table 1 of ref. 46; the coarse grains’ diameter ac ≈  1 mm that 
gives the best match with the terrestrial data in Fig. 4a lies indeed in the range 
0.7… 1.8 mm observed at El Dorado74.

The size ac ≈  1.5 mm of the coarse grain fraction used to rescale the  
migration data in Fig. 4b is obtained as the mean of the range 1… 2 mm given in 
Fig. 3 of ref. 39.

Data availability. The data that support the plots within this paper and other 
findings of this study are available from the corresponding author upon request.
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CHAPTER 5
Outlook

Following the bottom-up approach proposed in Sec. 1.1, we discussed the grain-scale splash
process, the mesoscale structure of the aeolian transport, and the ensuing structure formation
in this first part of the thesis. At various occasions, I commented on some tasks that I found
particularly promising for future studies. The following concise list summarizes such open
questions that might be answered on the basis of my own work.

Criticality, turbulence, intermittency. The influence of the intermittent turbulent wind
strength fluctuations on the transport initiation/cessation has been addressed in the past by
numerous authors [114, 124, 125, 131, 132, 250–254, 256, 257, 335–339]. An analysis in the spirit
of a classical phase transition, with a critical region, diverging length/time scales, (universal?)
critical exponents, etc., has not been proposed, so far. With its two thresholds, the transport
transition exhibits a similarity with the rigidity transition of crosslinked fiber networks (see
Sec. 8.5 of Part II of the thesis). These networks become solid-like at densities above the isostatic
point; however, as soon as bending contributions (or other weak interactions or perturbations)
are switched on, this transition is (discontinuously) shifted to lower densities [340]. A different,
yet closely related, perspective, becomes apparent from the insight that the critical transport
is characterized by almost balanced rebound (survival), ejection (birth), and trapping (death)
rates of the mobilized grains. This is very much reminiscent of a predator–pray mechanism
or, (asymptotically equivalently), a directed-percolation phase transition (see, e.g., Ref. [341] for
recent experimental and computational evidence that the laminar–turbulence transition is of
second-order and falls into the directed percolation universality class). One might, for instance,
analyze the intermittent transport along the lines of the recent discussion of laminar–turbulent
transition by Shih, Hsieh, and Goldenfeld [342]. Finally, the self-sustained sand transport near
the threshold conditions might also be discussed in the context of self-organized criticality [228].

Saturation length. The above concept of a phase transition for the transport initiation/cessation
implies the existence of “macroscopic” fluctuations and a critical slowing down near the transport
threshold, as reflected by the singularity of the saturation length. Recent systematic wind-tunnel
measurements by Selmani et al. [197] show a qualitatively similar behavior as we obtained from
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our coarse-grained computer simulations [52]. These data might serve as a benchmark for the
above proposal.

Transport regimes for poly-/bidisperse sand. Sand polydispersity plays an undoubtedly
important role for various phenomena, as we illustrated for the megaripple formation [67].
There, our discussion however merely scratched the surface of the complex transport process
and therefore calls for a more detailed study. One starting point might be Fig. 3.1, which
shows the various transport regimes for bidisperse sand as a function of the grain-size ratio and
the wind strength. This could be solidified by computational data obtained from our coarse-
grained simulations [52], which can be readily extended to a bidisperse sand bed via our splash
model [140].

Saturation transients, turbulent fluctuations, polydispersity. Since the saturation length
and the associated saturation time increase with the grain size, the intermittent turbulent wind
gusts might be too short to transport big grains efficiently (even though the average wind strength
might exceed the threshold value for their transport). Instead of performing high jumps, these big
grains will undergo reptation during the short gusts [105], thereby widening the wind-strength
(and grain-size) window within which megaripples can be formed (see Fig. 3.1). Finer grains, in
contrast, are easier promoted into saltation, thus helping to sustain the transport at relatively
low wind speeds (as particularly relevant on Mars [150]).

Space-resolved sand sorting. Our mean-fieldish sorting model [67] should be extended to
allow for spatial heterogeneities of the grain-size distribution. In particular, it should resolve the
depth-dependent evolution1[319] and the influence of spatial saturation transients on the erosion
rate. Since the erosion becomes less effective further downwind of a sand bed, megaripples are
expected to be predominantly formed at its upwind end. Based on this argument, one might
also predict the spatial gradient of the megaripple age, size, shape, etc. Accounting for spatial
transients further allows to quantitatively discuss the influence of the grain-size distribution of
the sand source (located at the upwind end of the sand bed) on the megaripple formation.

Sand sorting and selected value statistics. To describe a general selection process, Smerlak
and Youssef [343] defined a selected value as a transformation StW of a non-negative random
variableW via the relation P(StW = w) ∝ wtP(W = w) between the distributions P after and
before the transformation. They showed that, for somewhat tame initial distributions (no power-
law tails),W approaches a universal family of limiting distributions (as t → ∞) that generalize

1 Following Ref. [67], the evolution of the distribution ϕ(a, z, t) of the grain size a at depth z and time t is given
by [

∂t + ⟨R(a)⟩0δz ∂z − D∂2z
]
ϕ(a, z, t) = 0 (5.1)

The (fixed) thickness δz of the considered layer should be on the order of the diameter of the biggest grains.
Equation (5.1) relates the distribution ϕ(d, z − δz, t) in the next layer to ϕ(d, z, t) by expanding ϕ(d, z − δz, t) ≃

ϕ(d, z, t) − δz∂zϕ(d, z, t). As the eroded sand volume ⟨R(d)⟩0 at each layer has to filled up by material from the next
lower layer, the net sand exchange at each layer is −⟨R(d)⟩0ϕ(d, z, t) + ⟨R(d)⟩0ϕ(d, z + δz, t) = −⟨R(d)⟩0δz∂zϕ(d, z, t),
which is the second term in the brackets. The third diffusive term accounts for additional inter-layer mixing, its
strength being characterized by the diffusion constant D that might be taken to be grains-size independent, for
simplicity.
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the log-normal distribution, with the “tail thickness” ofW determining the universality class.
Very recently, Smerlak [344] showed that selection exhibits close similarities to coarsening, with
equivalent features, like dynamic scaling and self-similarity.

Introducing a time-dependent distribution p(w, t) ofw , the above selection dynamics may
be rewritten as ∂tp(w, t) = (lnw − ⟨lnw⟩t )p(w, t) with the average ⟨. . .⟩t ≡

∫
dw . . .p(w, t).

Its general form is thus similar to the dynamics we derived for our sorting model [67], which
suggests to interpret sand sorting as a (special kind of a) selection and/or coarsening process—as
one might immediately expect due to the closely related notions of sorting and selection. It raises
the question if the asymptotic distributions and the universality classes identified by Smerlak
and Youssef should also be observed for the grain-size distributions in the field and if concepts
like dynamic scaling and self-similarity can be applied to sand sorting. In Ref. [344] Smerlak
already speculated that selection and coarsening may be unified to a general extreme values
theory; sorting would then be just another variation of it.

Dynamic scaling analysis for sand ripples. Manukyan and Prigozhin [319] proposed a
computational model for sand sorting and (mega)ripple formation. It seems promising to analyze
it along the lines of the work by Fischer et al. [87] in order to investigate the long-time dynamics
of these bedforms.

Dynamic scaling analysis for subaqueous bedforms. Over the last years, linear stability
analysis has been successfully used to gain a deep understanding of the creation of the various
three-dimensional subaqueous bedforms [45]. However, a systematic study also their long-time
evolution and their dynamic scaling, requires a different approach. Again, one may analyze these
models along the lines of Ref. [87].
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CHAPTER 6
Introduction

Stiff polymers are the fundamental structural and functional building blocks of biological mat-
ter [1–5]. They are integral constituents of the highly organized meshworks and bioscaffolds
that form both the intracellular cytoskeleton and the extracellular matrices. Since the typical
energies required to bend these stiff biopolymers are comparable to the thermal energy scale,
they constitute an intermediate class between the highly flexible synthetic polymers and perfectly
rigid rod-shaped molecules. Their intermediate rigidity gives rise to a very rich and distinct
phenomenology and makes their study interesting from a fundamental physics perspective. This
explains why they are highly attractive for both experimental and theoretical studies [6, 7].

The cytoskeleton of eukaryotic cells comprises three main types of biopolymers: quite
rigid microtubules, stiff filamentous actin (F-actin), and a whole class of more easily bendable
intermediate filaments. Together with a multitude of crosslinker, motor, and regulatory proteins,
they control the cells’ shape, mechanical stability, integrity, andmobility [4, 7]. More precisely, the
biopolymers spatially organize the cell contents, coordinate intracellular transport and physical
and biochemical connections of cells to their external environment [5]. Understanding the rich
behavior of living organisms on the basis of themicroscopicmachinery of these building blocks is a
long-standing interdisciplinary program that combines biology, chemistry, physics, and materials
science [8]. Over the last decades, great progress has beenmade by studying reduced in vitromodel
systems that mimic various macroscopic features of the far more complex natural systems [3, 9,
10]. Comprising only a few integral parts, such reconstituted cytoskeletal model systems range
from pure (entangled) solutions of identical polymers [11–19], over composites of stiff and soft
filaments [20–22], crosslinked polymers [9, 23–26], and polymer-bundle networks [9, 27–32]
to active dynamic networks made from filaments and molecular motors [22, 33–38]. Elaborate
experiments that combine bulk and microrheology measurements with optical microscopy [39],
electron microscopy, light scattering, and fluorescence-marking and particle-tracking techniques
have illuminated the interplay between the mechanical properties of these systems and their
transient architecture. Despite their apparent simplicity, the reduced model systems indeed show
various striking analogies with cells or living tissue. Most prominently, ubiquitous rheological
features, like intermittent power-law regimes for the linear mechanical spectra and nonlinear
strain softening/stiffening, are widely found for these systems (see, e.g., Refs. [7, 10, 40]).
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This second part of the thesis focuses on entangled solutions of stiff polymers. Their statistics
and microstructure are discussed in Chap. 7, their dynamics and viscoelastic rheology in Chap. 8.
Here, the term entangled refers to the fact that the polymers cannot pass through each other.
The interaction between polymers is of markedly short-range character, because the repulsive
electrostatic repulsion between the (usually) negatively charged biopolymers dissolved in a (near
to) physiological aqueous buffer is strongly screened by positively charged salt ions. This is
utilized in many models that approximate the polymer–polymer interactions by pure contact
interactions. In the absence of any chemical crosslinks, the physics of the semidilute polymer
solutions (i.e., up to concentrations well below the isotropic–nematic transition) is dominated
by the topological entanglements and their impact on the polymers’ bending fluctuations. This
insight gives rise to the tube model for semiflexible polymers, where the entanglement effects on
a test polymer are delegated to a mean-field tube-like cage that is formed by the neighboring
polymers [6, 41–43]. However, as we will discuss in Chap. 8, fast enough deformations may cause
frictional sliding between contacting filaments, letting the pure solutions respond much like a
chemically crosslinked gel [44–46]. Before we turn to entangled polymer solutions, I first outline
the fundamental physical properties of a single stiff polymer (corresponding to the dilute limit of
a solution) and the basic statistical-physics tools that are employed to analyze them theoretically.

6.1 Single-polymer physics

From a physics perspective, the notion of a polymer refers to a chain-like mesoscale object,
whose microscopic chemical details are represented on an abstract coarse-grained level. Its
mechanics is then determined by the bending rigidity that we conveniently quantify in terms
of the persistence length Lp, which is the characteristic length scale over which the polymer
direction is randomized along its contour at ambient temperature. Since the polymer is a chain
of many (identical) monomers, the value of Lp depends on how strong the relative motion of
adjacent monomers is constrained. The persistence length Lp is thus a mesoscopic length scale
that reflects the microscopic chemical binding strength on a coarse-grained level. We denote the
total length of a polymer by L and the typical monomer diameter by a, the latter being on the
order of a few nanometers. These three length scales suggest the following classification [42, 47]:

a ≈ Lp ≪ L (flexible)
a ≪ Lp,L (semiflexible)
a ≪ L ≪ Lp (stiff)

(6.1)

For flexible polymers, the (rotational) motion of adjacent monomers is weakly constrained.
Monomers of semiflexible and stiff polymers, in contrast, are more rigidly connected, so that the
enthalpic bending contribution to the overall free energy of the chain outcompetes its entropic
tendency to crumble up. The conformation of a stiff polymer thus features small thermally
driven fluctuations around a straight ground-state contour, which is the zero-temperature or
rigid-rod limit. Weak deviations from the ground state allow for systematic expansions in the
small parameter L/Lp [48, 49]. Here, L can also denote the length of a relevant subsegment of a
long polymer, in which case the calculations apply to local properties. Alternatively, one may
identify L as the wavelength of a fluctuation mode of the polymer; the broad spectrum of modes
of a long semiflexible chain (L ≫ Lp) exhibits a crossover between a range of short-wavelength
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Biopolymer diameter a persistence length Lp contour length L

Microtubule 25 nm ≈ 1–5mm 10s of µm
F-actin 7 nm 17 µm ≲ 20 µm
Intermediate filaments 9 nm 0.2–1 µm 2–10 µm
DNA 2 nm 50 nm ≲ 1m
DNA tubes ≈ 9–60 nm ≈ 1–26 µm ≲ 20 µm
Carbon nanotubes <1 nm ≈10 µm ≳ 1 µm

Table 6.1: Typical dimensions and persistence lengths for various biopolymers under physiological
conditions, (n-helix) DNA tubes, and carbon nanotubes. Taken from Ref. [7], data for DNA tubes
from Refs. [52, 53].

stiff modes and a range of long-wavelength soft modes resembling modes of a flexible chain [6,
50]. (The latter can be mapped to the modes of a freely-jointed chain of “Kuhn” length 2Lp [51]).
Typical values for a, Lp, and L for various biopolymers and synthetic carbon nanotubes are listed
in Table 6.1.

6.1.1 The wormlike chain

The standard model for a semiflexible polymer is the wormlike-chain (WLC) model [54], with an
effective free energyHWLC given by the bending energy of an elastic rod [55] of bending rigidity
κ:

HWLC ≡ HWLC[r (s)] =
κ

2

∫ L

0
ds [r ′′(s)]2 (6.2)

In this continuum version of the WLCmodel, r (s) denotes the contour of the chain with arclength
s ∈ [0,L] if the tangent vector r ′(s) ≡ dr (s)/ds is constrained to |r ′(s)| = 1; |r ′′(s)| ≡ |d2r (s)/ds2 |
is the curvature. Thermal averages are formally computed from the path integral

⟨. . .⟩ =

∫
Dr (s) . . . e−HWLC[r (s)]/kBT (6.3)

over possible contours r (s). From the discrete version of the WLC model, which corresponds to
the classic Heisenberg chain, one conveniently computes the tangent autocorrelation function,

⟨r ′(s1) · r
′(s2)⟩ = e−|s1−s2 |/Lp , Lp = κ/kBT , (6.4)

in the continuum limit [56]. Equation (6.4) gives the formal definition of the above introduced
persistence length Lp as the correlation length of the chain direction. It relates Lp to the bending
rigidity κ via the Boltzmann constant kB and the temperature T . The WLC model, defined in
Eq. (6.2), already gives rise to various interesting physical properties, like a non-trivial distribution
of the end-to-end vector r (L) − r (0) [57, 58] or the (static) force-extension relation [59, 60]

f (x) = (6kBTLp/L3)x + O(x2) , x ≡ |r (L) − r (0)| . (6.5)

Here, the non-linear contributions are not given explicitly. They, however, become large when
the chain undulations are pulled taut (i.e., as x → L), yielding a pronounced stiffening. This is
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of particular relevance for interpreting real-world phenomena of biological matter, like pulling
on DNA strands or understanding the resistance of crosslinked polymeric meshworks, like the
cytoskeleton, to mechanical load. As a side remark, it should be noted that polymers that are
straightened under tension have conformations belonging to the stiff-polymer class [48], although
the persistence length of their free conformation might by relatively small.

6.1.2 The weakly-bending rod limit

The above description of stiff polymers suggests to decompose r (s) into a longitudinal component
r ∥(s) ≡ û ·r (s) and small transverse deviations r⊥(s) ≡ (1−ûû)r (s). The mean direction û = u/|u |
of the chain is given by the mean end-to-end vector u = ⟨r (L) − r (0)⟩. In the stiff-polymer limit,
the transverse deviations vary only weakly along the contour, [r ′

⊥(s)]
2 ≪ 1, which is known as

the weakly-bending rod (WBR) limit. One may integrate the correlation function in Eq. (6.4) over
s1 and s2 to obtain the mean-square end-to-end distance

1
L2

⟨[r (L) − r (0)]2⟩ = 1 − L/3Lp + O[(L/Lp)
2] , (6.6)

from which one infers that [r ′
⊥(s)]

2 is on the order of L/Lp, while the longitudinal contributions
[r ′

∥
(s)]2 are of order (L/Lp)2. For stiff polymers, HWLC can thus be approximated (to zeroth order

in L/Lp) by the WBR hamiltonian

HWBR =
κ

2

∫ L

0
ds

[
r ′′
⊥(s)

]2
. (6.7)

Since the WBR approximation guarantees, per construction, the inextensibility |r ′(s)| = 1 to
hold (to given order), the fluctuations r⊥(s) ∈ R2 are unconstrained and calculating, say, the
distribution of the end-to-end vector and itsmoments [61] or the static force-extension relation [59,
62] fromHWBR is much easier than for the full WLC model (see, e.g., [56]).

A quantity that will be repeatedly used in the following is the average amplitude

1
L

∫ L

0
ds ⟨[r⊥(s)]2⟩ ∝ L3/Lp (6.8)

of the transverse fluctuations, which readily follows from equipartition or can easily be computed
from the sliced path integral (in Fourier space). Equation (6.8) is a direct consequence of the
diffusive variation of the tangent vector along s with characteristic diffusion length (or step size)
Lp according to the WLC hamiltonian in Eq. (6.2).

6.1.3 WBR dynamics

Neglecting excluded volume-effects and hydrodynamic interactions between the monomers (i.e.,
approximating the transverse viscous friction between polymer and solvent to be constant),
Eq. (6.7) yields the Langevin equation [48]

ζ⊥∂tr⊥(s, t) = −κ∂4sr⊥(s, t) + ξ⊥(s, t) (6.9)

for the contour fluctuations. Here, ζ⊥ is the friction coefficient per contour length and the
Gaussian white noise ξ⊥(s, t) obeys the fluctuations–dissipation theorem ⟨ξ⊥(s1, t1) ·ξ⊥(s2, t2)⟩ =
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2kBTζ⊥δ (s1 − s2)δ (t1 − t2). For a rigid rod of length L, the friction coefficient is of the form
ζ⊥ = 4πηs/ln(L/a) [50]. To account for the hydrodynamic interactions among neighboring
chains in semidilute solutions, the polymer length L in the logarithm is often replaced by a
screening length ξ⊥ that is expected to be on the order of the mesh size (i.e., the average polymer
distance) [63, 64].

Equation (6.9) describes the dynamics of a stiff polymer at low Reynolds numbers, which
exhibits the characteristic frequency ωL ∼ κ/(ζ⊥L

4), as obtained from dimensional analysis with
∂t ∼ ω, ∂s ∼ L−1. An explicit calculation for a long chain (neglecting boundary effects or using,
say, hinged ends [65]), yields the subdiffusive growth

MSD⊥(t) ≡
1
L

∫ L

0
ds ⟨[r⊥(s, t) − r⊥(s, 0)]2⟩ ∝ (L3/Lp)(ωLt)

3/4 , ωL = π 4κ/(ζ⊥L
4) , (6.10)

for the transverse mean square displacement (MSD) of the monomers averaged along the con-
tour [64, 66, 67]. The power-law exponent 3/4 is a plain manifestation of the bending rigidity
of semiflexible polymers, which has to be contrasted with that obtained for flexible polymers
(subdiffusive behavior with an exponent 1/2 for the rouse model1). It has been widely observed in
experiments of F-actin using passive tracer beads [68, 69], dynamic light scattering techniques [70,
71], or fluorescence correlation spectroscopy [72]; and it gives rise to the ω3/4 scaling of the
storage and loss moduli at high frequencies ω commonly encountered in biological materials, like
entangled solutions [18, 73–75] and crosslinked F-actin networks [76] and even cells [77]. For
affine shear flow, where tension propagation along the filament can be neglected2, one obtains
a similar scaling MSD∥(t) ∝ t3/4 for the longitudinal fluctuations of the end-to-end distance at
short enough times, before it saturates at its equilibrium value [83], such that both the bending-
and stretch-dominated regimes exhibit the ω3/4 signature [84, 85], making it a robust hallmark
for semiflexibility at high frequencies.

1Flexible polymers are usually described by random flight models like the freely-jointed-chain model with fixed
bond length a or a Gaussian-chain model with normally distributed bond lengths around a [50]. The latter, which
naturally emerges from the former via coarse graining, corresponds to a chain of harmonic springs of stiffness
≈ kBT /a2 and is described by H/kBT = (3/2a2)

∑
j (r j+1 − r j )2 ∼ (3/2a)

∫
ds[r ′(s)]2, corresponding to diffusive

motion for a contour point r (s). In the Rouse model for the dynamics of such a spring chain one neglects excluded
volume-effects and hydrodynamic interactions between the bead-like monomers, as in Eq. (6.9), yielding the Langevin
equation ζ ∂tr = (3kBT /a)∂2s r + ξ . It follows that MSD(t) ∝ aL(ωLt)

1/2 with ωL = 3π 2kBT /(ζaL2), which gives rise
to a ω1/2 scaling for the linear shear modulus.

2Due to the longitudinal friction, stretching-mode relaxation in a quiescent solvent is only possible on a local
scale and elongational deformations cannot equilibrate globally before the tension variations have propagated along
the filament [48, 78]. This leads to a quite complex response, whose exact long-time form depends on the particular
deformation protocol [49]. At very short times (t ≪ ζκ f −2 for a tension f ), the response is dominated by the
fast relaxing bending modes, whereas the built-up tension does not yet contribute, yielding the power-law scaling
MSD∥(t) ∝ t7/8 for the longitudinal fluctuations [79, 80] (corresponding to the high-frequency scaling ω7/8 of the
linear shear modulus [81]) that differs only slightly from the t3/4 scaling without friction. In the nonlinear regime, the
transverse bending modes nonaffinely couple to longitudinal stretching modes, giving rise to a nontrivial stiffening
at intermediate times, namely long enough that the tension can be built up, but short enough that the straightened
part of the polymer does not yet extend to its ends [82]. For typical actin filaments (L ≈ 20 µm, Lp ≈ 17 µm, with
f = 1 pN, η = 1mPa s, T = 300 K), this time window is roughly estimated as 10−5 . . . 1 s. The upper bound scales as
tL ∼ (L/Lp)5/2ζL2/f⊥, the transverse force as f⊥ ∼ (r⊥/Lp)9/5ζL2p/t .





CHAPTER 7
Microstructure of entangled

semiflexible-polymer solutions

The physics of semidilute solutions of stiff polymers is dominated by their entanglements [6].
They constrain the thermal motion of each constituent filament, effectively confining it to a
tube-like cage collectively formed by surrounding filaments. The packing structure and the
mechanical properties of such pure solutions of semiflexible polymers is crucially controlled
by three length scales: the polymers’ persistence length Lp, their (average) length L, and the
mesh size ξ . The latter gives the average distance between the polymers (up to some numerical
factor of order unity) and is a measure for the polymer number concentration c , namely as
ξ ≈ ρ−1/2 with the contour length density ρ ≡ Lc . In the following, I give a concise overview
of the concept of the tube for semiflexible-polymer solution and its main predictions for the
solutions’ packing structure and the typical free-energy scales. First developed in the 1980s
by Odijk [41], Doi [42], and Semenov [43], the tube model for semiflexible polymers has been
systematically established in the late 1990s by of Morse [6, 84, 86–88]. His seminal papers served
as a major source for various parts of this chapter, while some newer extensions and alternative
approaches are outlined in Sec. 7.2. The present chapter focuses on the statistics of the entangled
solutions, the associated dynamics and the underlying relaxation processes are considered in
Chap. 8.

7.1 Tube model. Scaling arguments

For dense enough solutions, the transverse fluctuations of each polymer are confined to a tube-like
cage formed by neighboring polymers. Then, only fluctuation modes of wavelengths shorter than
a characteristic interaction length scale Le can be expected to follow the statistics of an unconfined
WLC, while longer modes are impeded. The crossover wavelength Le between effectively free
and perturbed modes is called the entanglement length. Within in the classical tube model, it is
argued that, on length scales larger than Le (and at correspondingly long times), each polymer
can diffuse only in longitudinal direction, i.e., along its backbone contour, a mechanism called
reptation. Below and in Sec. 8.2, we will briefly discuss the limitations of this simplification and
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outline theoretical approaches that account for collective relaxation processes that allow for tube
renewal and thereby for slowed-down transverse long-time diffusion of the polymers.

Traditionally, the tube model has been used to describe the dynamics of the entangled polymer
solutions. The entanglements may however also skew their statistics, as they divide the system’s
phase space into topologically separated regions. A single measurement thus corresponds to a
quenched average over fluctuations within a particular topological realization of the polymer
solution, many measurements can average over many such realizations. Although one may
eventually end up with the same ensemble as without any geometrical constraints (i.e., for
“phantom” polymers), the entanglements affect the result when the quenched average does
not commute with the one over topological realizations. The most prominent example for an
observable that emerges only in the quenched state, while its full-ensemble average evaluates
to zero, is the effective tube potential [89], introduced below. This is in qualitative analogy to
a ferromagnet in the thermodynamic limit, where boundary contributions to the total energy
become irrelevant. Then, a vanishing magnetization is energetically equal to the true ground
state (all spins up or all spins down). To obtain the latter form the theory (e.g., the Ising model),
one manually breaks the system’s symmetry by an external field h and defines the ferromagnet’s
ground-state magnetization through the limit h → 0.

Both Le and the characteristic width De of the confinement tube are functions of Lp and ρ
(or ξ ). They provide important mesoscale measures to describe the dominant contributions to
the solution’s mechanical properties—in particular, its rheological response. They can be used
to discriminate between semiflexible-polymer, flexible-polymer, and rigid-rod solutions [6]. A
solution of long semiflexible polymers with L ≫ Lp, for instance, qualitatively differs from one
of flexible polymers only if Lp > Le, because only then the bending modes are impeded by the
topological entanglements while otherwise self-avoidance plays the dominant role. For stiffer
(shorter) polymers with L < Lp, in contrast, the size of the transverse contour fluctuations has
to be on the order of De, such that the transverse confinement provides a constraint on the
bending deformations, in order to qualitatively differ from a solution of rigid rods. This criterion
for the transverse fluctuations is equivalent to L > Le. It is important to notice that the whole
concept of topological entanglements and the ensuing confinement tube should break down on
(arguably long) time scales, for which the tube itself becomes a transient object due to global
collective relaxation processes. Identifying this time scale is, however, anything but trivial and
the transition from a well-defined static to a dynamic tube is rather given by a broad crossover
region that crucially depends on the entanglement density—thereby challenging the concept
of the static confinement tube [90]. In Chap. 8, we will take a closer look at the underlying
relaxation processes and the associated time scales.

7.1.1 Tube geometry

The two conditions L,Lp ≫ Le characterize the “tightly entangled” concentration regime, where
bending modes of the polymers are impeded [6]. Rough estimates for both Le and De then follow
from the concept of the tube as follows [41, 43]. The contour fluctuations of a WLC that is
confined to a cylindrical tube of width De are assumed to follow the statistics of a free WLC over
only a relatively short contour length Le, namely before it collides with the tube wall. Thus, one
identifies Le with the so-called deflection length [41], which yields D2

e ∝ L3e/Lp, according to
Eq. (6.10). In order to form such tubes at all, each cylinder of width De and length Le should be
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crossed by about one polymer, on average, which yields ρDeLe ≈ 1. Combing the two scaling
estimates, one obtains

Le ∝ ρ−2/5L1/5p , De ∝ ρ−3/5L−1/5p , (tightly entangled) (7.1)

with numerical prefactors on the order of one [19, 88]. Inserting the relation for Le into the length-
scale separations Lp,L ≫ Le, they become ρL2p ≫ 1, (Lp/L)5/2, where the omitted numerical
coefficients, and thus the minimum concentration for the tightly entangled regime, could be
quite large (e.g., ten entanglements per polymer of length L ≈ Lp requires ρL2p ≈ 102.5)

The (mean-field) scaling relations in Eq. (7.1), predicted from the tube model for tightly
entangled semiflexible-polymer solutions, were indeed found to be in good agreement with
fluorescence-microscopy experiments of F-actin [12, 13, 19, 91, 92] and computer simulations
of entangled WLCs [93]. However, the concentration dependence of the average tube width
De obtained from similar experiments by Lauter et al. [94] and, later on, by Jaschinski [95]
was found to be weaker than what is expected from the tube model in Eq. (7.1) (approximately
De ∝ ρ−(0.35...0.25) [95] as opposed to the expected De ∝ ρ−0.6). So, maybe the polymers have
not yet “traversed the whole tube” during the measurement time or this deviation indicates that
the concept of a static tube is not valid (at such concentrations), suggesting the dynamic-tube
approach instead that will be reviewed in Sec. 8.2. Alternatively, the deviations might hint
at strong heterogeneities of the polymeric meshwork or at increasingly pronounced filament
alignment at higher concentrations. In Ref. [96] (attached at the end of this chapter), we showed
that the degree of nematic order depends on the preparation protocol and can in fact be quite high
for semidilute F-actin solutions (i.e., below the biphasic isotropic–nematic concentration regime,
ρ < ρnem, which is expected to start at ρnem ≈ 4.3/(La) for rigid rods [97] and ρnem ≈ 6.7/(Lpa)
for semiflexible polymers [98]). Although the alignment itself turned out to be long-lived, the
alignment-induced tube dilation was found to relax quickly after the preparation, making it a
rather unlikely candidate for the observed deviations from the tube-model predictions.

7.1.2 Energy scales

Based on the tube model, one can predict the typical free-energy scales corresponding to the
different response and relaxation processes at work when the solution is mechanically driven.
The corresponding free-energy densities provide the rough estimates [6, 85, 99]

G/kBT ≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ/L (rotation)
ρ/Le ∝ ρ7/5L−1/5p (bending)
ρL2p/L

3
e ∝ ρ11/5L7/5p (affine stretching)

(7.2)

for the magnitudes of the linear shear modulus G, where Eq. (7.1) was used to replace Le in
the second and third line. The first line describes the rotation of a polymer as a whole, which
is associated with an energy contribution of kBT per chain. The contribution in the second
line follows from the excess free energy due to bending fluctuations that are impeded by the
topological entanglements. All modes of wavelength larger than Le are “frozen” or effectively
“caged”, their number being given by L/Le, and the excess free energy that is stored in the tube of
length L evaluates to kBT (L/Le). The third line gives the characteristic energy scale of longitudinal
stretch modes of wavelength ≈ Le. For stiff-polymer segments of length Le, the modulus for the
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stretch response exceeds the one for bending by (Lp/Le)
2, which is on the order of 102 to 103

for entangled F-actin solution. One thus concludes that the longitudinal stretching should not
contribute to the linear response, which is instead dominated by the bending contributions. Note
that this implies that the polymer does not follow the applied strain affinely (see also Sec. 8.5.2,
where nonaffinity is discussed for crosslinked polymer networks).

Over a broad range of low frequencies—slow enough that all unconstrained bending modes
are allowed to relax, but fast enough that the meshwork’s topology remains unchanged (Sec. 8.1)—
entangled semiflexible-polymer solutions exhibit an approximately constant shear modulus,
called the plateau modulus G0. While the concentration dependence G0 ∝ ρ7/5 in the second line
of Eq. (7.2) has been confirmed in various micro- and macrorheology experiments [14, 52, 74, 75,
100], the expected persistence-length scalingG0 ∝ L−1/5p was recently found to be in conflict with
data obtained for solutions of DNA-helix tubes [52] and F-actin [53], which instead indicate that
G0 increases with increasing Lp (with an exponent on the order of one [52], or even larger [53]).
A comparison of the latter with Eq. (7.2) suggests that stretch modes are excited, which, in
turn, would require that somewhat sticky contacts prevent the polymers from freely sliding past
each other. Alternatively, stretch contributions might be traced back to long-lived topologically
constrained hairpin configurations that are often created during sample preparation [96]. Since
such strongly bent filaments exhibit a large prestrain/-stress, transverse deformations can couple
to longitudinal stretching modes via hydrodynamic friction [82], even in the linear regime (see,
e.g., Ref. [81] for an analysis of the linear response of a WLC under prestress). A complete picture
that would explain the experimentally observed scaling laws of G0 is however lacking (see the
recent article by Tassieri [53] for a concise overview and discussion).

7.2 Microscopic approaches

In the previous section, simple scaling arguments were employed to describe the packing struc-
ture and the mechanical properties of entangled stiff-polymer solutions as a function of the
concentration ρ and persistence length Lp of the polymers. Despite its impressive success on
a qualitative level, this approach cannot provide us with the numerical values of the omitted
coefficients. Moreover, its purely static mean-field character implies that it neglects any spatial
variations and correlations of the tube geometry and that it does not capture the dynamical
nature of the polymers’ thermal fluctuations. Addressing such questions instead requires a
microscopic approach that explicitly captures the single-chain physics as well as the confinement
effects of the topological entanglements. To proceed analytically, the central idea is to tackle the
complicated many-body problem by a mean-field approximation, where the entanglement effects
are represented at a drastically coarse-grained level. An estimate for the strength (and form)
of this mean field may then be derived using theoretical-physics tools known from liquid-state
theory or continuum mechanics, say.

In Sec. 8.1, we discuss how polymer reptation (i.e., longitudinal diffusion) triggers collective
relaxation processes that render the topological entanglements—and thus the tube—transient
on time scales beyond the typical reptation time. This means that the concept of the static tube
is valid only at intermediate time scales, long enough that unconfined bending modes have
equilibrated in the tube, but short enough that the topology of the polymer network remains
invariant. In the remainder of the present chapter, I summarize the mean-field attempts proposed
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by Morse [88] and their recent extension to the tube-size statistics.
The usual starting point for a microscopic description of entangled solutions of stiff polymers

is the Hamiltonian

H = HWBR +Htube =
κ

2

∫ L

0
ds [r ′′

⊥(s)]
2 +

ϕ

2

∫ L

0
ds [r⊥(s)]2 (7.3)

for a test filament that is confined to a homogeneous harmonic tube potential of strength ϕ. In
this form, the confinement contributionHtube represents a static mean-field approximation to
the full dynamic heterogeneous tube. Possible extensions might allow for heterogeneities via a
tube strength ϕ(s) that varies along the tube backbone [19, 88, 89]. The tube width De and the
entanglement length Le are defined via

1
4D

2
e ≡ R2

e ≡
1
2L

∫ L

0
ds
⟨
[r⊥(s)]

2⟩ , L

Le
≡

1
kBT

⟨H −Htube⟩ =
1

kBT
⟨HWBR⟩ , (7.4)

respectively, with the averages ⟨. . .⟩ ≡
∫
Dr . . . e−H/kBT performed over all polymer conforma-

tions. The tube radius Re thus gives the mean amplitude of one component of the transverse fluctu-
ations. The definition for Le follows from an equipartition argument, namely that the free energy
⟨H −Htube⟩ of the impeded bending modes corresponds to kBT times the number L/Le of these
modes. Employing equipartition (now, for all modes), Eq. (7.3) yields De = 21/4L−1/8p (ϕ/kBT )

−3/8

and Le = 23/2L1/4p (ϕ/kBT )
−1/4.

As written above, the central task is now to relate the mean tube strength ϕ to the properties
of the solution (ρ and Lp). To this end, Morse [88] proposed three approaches: (i) a binary collision
approximation (BCA), (ii) an effective medium approximation (EMA), and (iii) an elastic network
approximation (ENA). While the BCA explicitly accounts for topological entanglements on the
level of (“dressed”) pair collisions, the EMA considers a test chain that is tightly embedded in a
linear elastic medium. Synthesizing these two approaches, the chain displacement is estimated
within the ENA as the sum of a BCA and an EMA contribution, aiming at a combination of local
entanglement and collective network effects.

In the BCA, ϕ is derived from a potential V (x) of mean force for two topologically entangled
WLCs of center-of-mass distance x , which is obtained by tracing out the chains’ transverse
fluctuations. Each chain is thereby confined to the harmonic mean-field tube potential of strength
ϕ. After averaging over all possible orientations and topological configurations for such a “dressed”
pair collision, the tube strength is basically obtained as the second-order Taylor coefficient of
the entanglement potential, ϕ = − d2V /dx2. Averaging over all tube-backbone distances x , this
yields [89]

De ≈ 1.3ρ−3/5L−1/5p , Le ≈ 3.0ρ−2/5L1/5p , G0/kBT ≈ 0.3ρ7/5L−1/5p , (BCA) (7.5)

which agree with the scaling laws1 obtained form the deflection-length arguments in Eq. (7.1).
Since the BCA provides the tube strength ϕ(x) as a function of the (uniformly distributed) tube-
backbone distance x , it actually gives access to the whole distribution of ϕ and thus to the

1Based on the idea of the BCA, one can derive the scaling laws for De and Le by balancing the typical harmonic
confinement free energy ϕD2

eL of a tube of length L with kBT times the number of chains crossing this tube, which is
on the order of ρDeL, hence ϕ ∝ kBT ρ/De. Together with the scaling ϕ ∝ D

−8/3
e L

1/3
p obtained from Eqs. (7.3),(7.4),

one arrives at ϕ ∝ kBT ρ8/5L
1/5
p .
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tube-width distribution [19, 89]. Glaser et al. [19] showed that the BCA prediction for the shape
of this distribution is in excellent agreement with the statistics of the tube-size variations along
the tube backbone observed from fluorescence-microscopy experiments of entangled F-actin
solutions. However, the theoretically predicted numerical magnitudes of both the mean tube
width, Eq. (7.5), and the relative tube-width fluctuations were found to generally underestimate
the measurements by a factor on the order of 1.5 to 2 [88, 89]. A possible reason for this widely
seen discrepancy might be the approximation of a straight tube backbone that is employed in the
BCA calculation. Bending the tube, instead, goes along with tube dilation, thereby lowering the
confinement free energy and impeding less bending modes. Indeed, following the lines of the unit-
cell model by Fernández et al. [101], which yields the tube conformation from a tradeoff between
bending and confinement contributions to the overall free energy, we estimated a relative tube
dilation on the order of 1.4, and even larger values for a (quasi-statically) sheared solution [96]
(appended to this chapter). As another reason for the too small tube-width prediction the absence
of collective deformation modes in the BCA has been identified, which leads to the EMA and
ENA approaches that account for such global effects on a coarse-grained level.

In the EMA, the test polymer is assumed to affinely follow the displacement of a linear elastic
medium of shear modulus G ≈ ρkBT /Le. Matching G with the tube spring constant ϕ ≈ LpL

−4
e

yields

De ≈ 0.84ρ−1/2 , Le ≈ 2.2ρ−1/3L1/3p , G0/kBT ≈ 0.82ρ4/3L−1/3p , (EMA) (7.6)

where the numerical coefficients depend on technical details of the underlying calculation.
The ENA combines both the BCA and the EMA results by adding up the transverse polymer
displacements as ⟨r⊥⟩ENA ≡ ⟨r⊥⟩BCA + ⟨r⊥⟩EMA, which yields the relation 1/ϕENA = 1/ϕBCA +
1/ϕEMA for the overall tube strength ϕENA. As a sum of the two comparable BCA and EMA
estimates, the ENA prediction for the tube width is found to be in better agreement with (but
still slightly below) the F-actin data [88].
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Abstract: We study the influence of finite shear deformations on the microstructure and rheology
of solutions of entangled semiflexible polymers theoretically and by numerical simulations and
experiments with filamentous actin. Based on the tube model of semiflexible polymers, we predict
that large finite shear deformations strongly affect the average tube width and curvature, thereby
exciting considerable restoring stresses. In contrast, the associated shear alignment is moderate,
with little impact on the average tube parameters, and thus expected to be long-lived and detectable
after cessation of shear. Similarly, topologically preserved hairpin configurations are predicted
to leave a long-lived fingerprint in the shape of the distributions of tube widths and curvatures.
Our numerical and experimental data support the theory.

Keywords: shear alignment; F-actin; tube model

1. Introduction

Semiflexible polymers are fundamental structural and functional building blocks of biological
matter. They are the main constituents of the dynamic cytoskeletal networks and extracellular
matrices that maintain the cell’s mechanical stability and integrity. By controlling the mesoscale
architecture of these scaffolds, cells regulate their response to mechanical load, and living organisms
realize a wide range of mechanical properties and functions using only relatively few polymeric
constituents [1,2]. Networks of semiflexible polymers are therefore at the core of many attempts
to understand the rich mesoscopic and macroscopic mechanical response of biological matter in
terms of its molecular machinery [3]. Over the last decades, great progress has been made by
studying reduced in vitro model systems that share many macroscopically observed features of the
far more complex natural systems [3–6]. Their mesoscale architecture is commonly characterized by
a small set of mesoscopic parameters such as mesh size, polymer bundle thickness, and crosslinker
concentration [7–9].

The classical rheological model for entangled solutions of flexible polymers is the so-called tube
model [10,11]. It reduces the complex many-body problem to a simple mean-field picture featuring
a test polymer in a long-lived tube-shaped confining cage, and thereby light-handedly accounts
for some gross features of the linear rheology. Additional considerations are required to address
the more intricate nonlinear rheology. For example, finite-chain stretching due to intermolecular
friction [12] and tube contraction [13] were proposed to cause shear-stiffening and a rate-dependent
stress overshoot during shear startup; (convective) constraint release [14] and similar concepts [15]
were proposed to account for shear-softening.

Polymers 2016, 8, 353; doi:10.3390/polym8100353 www.mdpi.com/journal/polymers
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One may expect similar ideas to apply to the much stiffer biopolymers that govern the mechanics
of biological cells and tissues. Indeed, biopolymer solutions are generally reported to exhibit
strain-softening and shear-thinning [16–19] under slow or stationary shearing, in accordance with
predictions [20,21] based on a version of the tube model adapted to semiflexible polymers [22].
Again additional concepts, such as transient entropic filament stretching excited by some interchain
friction due to transient filament crosslinking [1,23], were invoked to account for observations
of transient shear-stiffening in response to large finite shear strains at higher rates [18,19,23–25].
Alternatively, fiber-lattice or “mikado” models for crosslinked networks relate the macroscopic
stiffening not to the response of the individual constituents (modeled as linear elements) but to
the collective behavior of a sparse sub-isostatic network [26]. An imposed strain is first taken up
by so-called floppy modes [27,28], before the network becomes rigid at a critical strain [29,30].
Brownian-dynamics simulations [31] support the notion that stiffening at intermediate timescales
(when the individual fibers have locally equilibrated) is due to slower collective modes.

Recent experiments combining bulk and microrheology measurements with confocal
fluorescence microscopy and particle tracking techniques were able to record the conformation
and orientation of individual filaments under shear [17,32–35], and found them to be very sensitive
to the polymer concentration. In very dilute solutions, actin filaments perform a tumbling motion,
switching between an advective and a diffusive phase, corresponding to strongly buckled (U-shaped)
and stretched polymer conformations, respectively [34]. In the semi-dilute regime, tumbling is
modified by filament–filament collisions, increasing both filament alignment [35] and bending [17],
as evidenced by broad tails in the distribution of the local filament curvature. Such observations
challenge mesoscopic theories and computer simulations [26,36–39] to extend the simple network
models and also consider densification [33], ordering and alignment [17,40], and even lengthening [41]
of fibers.

In the present paper, we address two major effects of shear onto the constituent polymers,
namely alignment and bending, on the basis of the tube model of semiflexible polymers. In the
following section, we derive theoretical predictions for the affine and non-affine shear alignment and
the tube-width and curvature distributions in a sheared semiflexible polymer solution. They are
then tested by dedicated computer simulations and experiments with semidilute F-actin solutions.
Technical details are deferred to Section 4.

2. Results and Discussion

As pointed out in the introduction, shearing a semidilute polymer solution will generally deform
and align the individual polymers and their long-lived tube-shaped confinement cages. In the
following, we study these two effects separately. We first concentrate on the effect of an externally
imposed nematic tube alignment on the local packing structure, quantified in terms of the tube width,
in Section 2.1. We then ask how much alignment is actually caused by shearing. Following Morse [20]
and Fernández et al. [21], we moreover estimate the tube deformation due to large finite shear strains
by minimizing a model free energy and analyze the consequences for the tube-width and curvature
distributions, in Section 2.2. Finally, we corroborate our key theoretical predictions by computer
simulations and experiments with F-actin solutions, in Sections 2.3 and 2.4.

2.1. Tube Alignment

In the absence of crosslinking molecules, the structure and mechanics of the transient polymer
network that dominates the mechanical response of a semidilute biopolymer solution is governed by
long-lived topological entanglements. They constrain the thermal motion of each constituent filament
so that it remains effectively confined to a tube-like cage formed by surrounding filaments [42].
Shear is expected to cause some alignment of the polymers and their confining tubes, which is
otherwise not entropically favorable below the nematic transition, and thereby to widen the tubes.
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In the following, we extend the so-called binary-collision approximation (BCA) developed in the
classical tube model of semiflexible polymers [43] to quantify the effect theoretically.

As usual, the polymer solution is characterized by its chain length concentration ρ, the persistence
length Lp of the constituting polymers, and the nematic order parameter

S = (3/2)
∫

du (u · d)2 fS(u)− 1/2 . (1)

Here, fS(u) denotes the distribution of the normalized tangent vector u of the filaments or
tubes, respectively, and d their mean direction. Extending standard procedures [43,44], as detailed in
Section 4.3, we arrive at the following BCA predictions for the mean tube radius and entanglement
length for a solution of prealigned polymers:

R(S) = [4α0 I(S)ρ]−3/5L−1/5
p ∼ R(0)(1 + 3S2/8) ,

Le(S) = [α0 I(S)ρ/8]−2/5L1/5
p ∼ Le(0)(1 + S2/4) .

(2)

Here, I(S) is the normalized packing entropy of the solution, which we estimate by
Onsager’s rigid-rod prediction [45] to derive the final asymptotic expressions, valid for weak
alignment (small S). A numerical solution of the full theory corroborates what the asymptotic
expressions suggest, namely that strong alignment (S → 1) is required to induce any sizeable
tube widening. This is in line with the prediction R(S)/R(0) ∝ I(S)−1/2 for rigid rod solutions,
as derived by Doi and Edwards from geometrical arguments based on pair collisions [11] and
by Sussman and Schweizer [46] building on the binary-collision approach to rigid-rod solutions
by Szamel [47]. The caging of rigid rods and the entropic repulsion and attraction induced
by the conformational fluctuations of semiflexible polymers, encoded in Equation (2), thus yield
quantitatively similar predictions. Our quantitative result is compared to our experiments and
simulations in Section 2.3, below.

In References [44,48], the BCA scheme was generalized to the so-called segment-fluid
approximation that gives access to the tube fluctuations as encoded in the distributions P(R) and
P(Le) of both the tube width and the entanglement length. The predictions were found to be in good
agreement with experimental data obtained from partially fluorescently labeled F-actin solutions,
allowing for a decent global fit for various actin concentrations. Within our extended version of
the BCA with preferential filament alignment (detailed in Section 4), the distribution functions for
the reduced variables r ≡ R/R and le ≡ Le/Le take the form of universal scaling functions that
are not only independent of concentration but also of the nematic order parameter S. Moreover,
the distribution of the entanglement length, which is the characteristic correlation length (of the
local tangent orientations, tube widths, curvatures, etc.) along the tube backbone, is predicted to
be strongly peaked around the its mean: l2

e − 1 ≈ 0.01. As a consequence, our above discussion of the
effect of alignment onto the solution rheology on the level of the mean values R and Le should suffice.

To get a rough idea, how much alignment is actually caused by shearing an initially isotropic
solution, we estimate the alignment of short, relatively straight tube segments from the affine
response of a solution of rigid phantom rods [45],

S(γ) ∼ 3γ/10 (S < 1) . (3)

The linear increase with applied strain is dictated by symmetry [38] and thus more general
than its derivation, which is detailed in Section 4.4, where we additionally derive the corresponding
angular distribution of the tube-segment directions. Beyond the linear asymptotic regime, we find
a considerable flattening of S(γ) at about γ & 3, as illustrated in Figure 1. Shear alignment beyond
S ≈ 0.7 is thus very hard to achieve. Now, using the result for S(γ) in Equation (2), we obtain the
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following prediction for the strain-dependence of the tube radius and entanglement length due to
shear alignment,

R(γ)/R(0) ∼ 1 + 0.034γ2 ,

Le(γ)/Le(0) ∼ 1 + 0.023γ2 .
(4)

The small numerical coefficients show that both quantities are weakly affected even by quite
substantial shearing, as far as shear alignment is considered. This is indeed also borne out by our
computer simulations and experiments discussed in Section 2.3, below. As a consequence, also
the restoring forces associated with shear alignment should be weak. For this reason we expect it
to persist long after a large finite shear deformation has been applied. However, shearing affects
the packing structure of the polymer solution not only through shear alignment, but also through
(non-affine) tube deformations, for which more sizeable rheological consequences were indeed
predicted by Morse [20] and Fernández et al. [21]. These are analyzed in the next paragraph.
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Figure 1. Shear alignment of tube segments. (a) Strain-dependence of the nematic order parameter
S(γ): affine scaling, as obtained for two- and three-dimensional solutions of phantom rods
(Section 4.4), and the numerical estimate from the unit-cell model [21] (see Section 4.5). Up to strains
of order one, the results are well captured by the linear asymptotic scaling of Equation (3), while
S(γ) flattens out for larger strains, implying that perfect shear alignment is hard to achieve,
even if quite substantial strains are imposed; (b) The angular distribution of the two-dimensional
phantom-rod solution, according to Equation (19). With increasing strain the bimodal structure
becomes more pronounced.

2.2. Tube Deformation

The extended BCA theory used in the above calculation is an effective two-body theory and
thus blind to the complicated many-body effects involved in shearing. The unit-cell approach by
Fernández et al. [21] considers a test polymer together with two collision partners located on opposite
sides, instead (see Section 4.5), and can thereby capture some geometric aspects inaccessible to
the BCA. In particular, it predicts non-affine deformations of the microstructure, because only the
tube–tube collision points (or, alternatively, the centers of the confining tubes) are slaved to the affine
deformation field, whereas the backbone contour of the considered test tube relaxes to a (non-affine)
conformation that minimizes the unit-cell free energy. As a consequence, the strain-dependent order
parameter S(γ) may generally be expected to differ from the affine estimate in Equation (3). But we
find good agreement between both predictions for moderate strains γ < 1, and even for the saturation
at large strains (beyond γ ≈ 3), as detailed in Section 4.5 and illustrated in Figure 1. The non-affine
contributions merely slightly enhance the alignment at intermediate strains. Altogether, the unit-cell
model thus confirms the above phantom-rod prediction that shear alignment is effectively bound to
remain relatively moderate (S . 0.7), even up to quite substantial strains of several hundred percent.
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Importantly, though, the unit cell model predicts sizable non-affine deformations of the local
packing structure, beyond the pure shear-alignment effect. For example, we find for the strain
dependence of the tube radius:

R(γ)/R(0) ∼ 1 + bRγ2 . (5)

Here and in the following, we use the script typeface to discriminate the quantities calculated
from the unit-cell model from the above BCA estimates. An important difference between them,
even if no shear is applied, is that the BCA conventionally considers a straight tube, whereas the
unit-cell model allows tubes to bend if this lowers the total equilibrium free energy, which balances
contributions from confinement and bending. In Section 4, we find that the average tube width
thereby grows by a factor R(0)/R ≈ 1.4 in the quiescent solution, and even further, with the
coefficient bR ≈ 0.14, upon shearing. The comparison of Equations (4) and (5) thus suggests that
the nonlinear shear-softening of entangled polymer solutions and the associated rheological stresses
are predominantly caused by non-affine tube deformations with only minor contributions from shear
alignment. In view of the above-established flattening of S(γ) at large strains, this statement is likely
to hold beyond the range of validity of the asymptotic result in Equation (5).

Similarly, we can use the unit-cell model to quantify how shearing affects tube bending. For the
mean curvature of the tube backbone we find for small deformations:

C(γ)/C(0) ∼ 1 + bCγ2 . (6)

with C(0) ≈ 1.4(LpLe/2)−1/2, where (LpLe/2)−1/2 is the mean curvature of a wormlike chain
confined to a straight tube segment of length Le/2, the coefficient bC ≈ 0.037 is obtained. Its small
positive value indicates that, on average and for moderate strains, the effect of filament buckling
slightly exceeds that of filament stretching.

The average curvature of the tube can also be quantified by a tube persistence length lt,
conveniently inferred from the Odijk relation Le

3
= 43R2lt between entanglement length and

tube width [49]. For a straight tube, lt is equal to the bare intrinsic persistence length Lp of the
enclosed test polymer. However, as already pointed out above, the unit cell model predicts a
substantial renormalization, even without shear, because it allows the tube to bend spontaneously to
minimize the unit-cell free energy, in qualitative accord with the persistence-length renormalization
due to molecular crowding found in recent model simulations [50]. Quantitatively, we find
lt(0) = [R/R(0)]2Lp ≈ 0.56Lp, in line with our above finding C(0) ≈ 1.4(LpLe/2)−1/2, which
can thus be rewritten as C(0) ≈ (lt(0)Le/2)−1/2. Our own simulations cannot reach high enough
densities to make this effect discernible. If we extend the Odijk relation to the case of a sheared
solution, namely Le(γ)2 = 43R(γ)2lt(γ), and replace Le(γ) by its equilibrium value Le (which is
a good approximation for moderate strains), we find for the renormalization of the tube persistence
length under shear

lt(γ)/Lp ∼
[
R/R(γ)

]2
=
[
R/R(0)

]2
(1 + bRγ2)−2 . (7)

So, some polymers stretch and others buckle upon shearing, but, overall, buckling wins and the
average tube persistence length decreases, in line with the increasing curvature, found above.

A more comprehensive characterization than by mean values is possible by statistical
distribution functions. In contrast to the marginal effects that we obtained from tube alignment,
above, we now find the distributions to be quite sensitive to the non-affine shear deformations
predicted by the unit-cell model. Rephrasing the result in terms of the reduced tube-radius
distribution pγ(r) = R(γ)Pγ[rR(γ)] yields a master curve onto which the appropriately normalized
experimental data should collapse, independently of the actin concentration. For the curvature
distribution, we apply the same procedure to arrive at a reduced curvature distribution pγ(c).

The predicted influence of shear on the master curves corresponding to pγ(r) and pγ(c) is
illustrated in Figure 2. It reveals that pγ(r) develops broad tails at small arguments as the strain
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γ increases, whereas pγ(c) becomes more sharply peaked around its average (normalized to 1) and
develops a tail at large arguments. The emergence of the tails can be traced back to so-called hairpin
conformations (thermodynamically suppressed strongly contorted unit cell configurations [20,21]),
as schematically sketched as insets in Figure 2. They are pulled tight under shearing, which accounts
for the increasingly bimodal structure developing for large strains γ in both distributions, but is found
to have only negligible impact onto the mean tube parameters.
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Figure 2. How shear affects packing structure in the unit-cell model [21]. In contrast to the most
probable tube conformations, rare hairpin configurations are buckled and pulled tighter by increasing
shear (as sketched in the insets). They are responsible for the tails emerging upon increasing strain
γ in the concentration-independent master curves of the reduced probability distribution functions
(a) pγ(r) ≡ R(γ)P[rR(γ)] for the tube width and (b) pγ(c) ≡ C(γ)Pγ[cC(γ)] for the tube curvature.

2.3. Experiments and Simulations

The details of our simulations and experiments can be found in Section 4. Briefly, the simulations
use a hybrid Monte-Carlo/Brownian-Dynamics algorithm, developed by Ramanathan and Morse [51–53],
who kindly provided us with the source code of their program, to sample over topologically allowed
states of a solution of wormlike chains. In this algorithm a sequence of Monte-Carlo steps, which
respect the mutual uncrossability of colliding chains, is drawn from the stochastic dynamics of
each chain, as obtained by solving a corresponding Langevin equation. The polymers were given
a preferential orientation at initialization, i.e., before the uncrossability constraints and Brownian
motion were switched on.

In the experiments, the thermal motion of a fluorescently labeled actin filament in the meshwork
of unlabeled neighbor filaments is tracked over a fixed time span, long enough to identify the shape of
the confinement tube. Two different setups were used to prepare the samples: a large micro chamber
and a narrow capillary yielding almost isotropic and nematically ordered solutions, respectively.
Varying the polymer concentration, this approach provides the dependence of the tube width on
the alignment strength S, because the flow-induced ordering depends on the concentration—denser
solutions yielding stronger alignment, see Figure 3b. The measured relation between the average
tube width and alignment displayed in Figure 3a is consistent with the simulations and the
BCA-prediction.

Beyond the mean tube width, we also measured the distribution of tube widths. As shown in
Figure 4, the rescaled data for all concentrations and S-values fall on a master curve, as predicted by
the extended BCA.
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Figure 3. Nematic alignment and tube deformation. (a) Dependence of the mean tube radius
R on the nematic order as predicted by the binary-collision approximation (BCA) calculation,
Equation (2), and the unit-cell model. The four experimental data points correspond to four different
F-actin concentrations c. Our Monte-Carlo/Brownian-Dynamics (MC/BD) simulations of pre-aligned
polymer solutions and F-actin experiments show no sign of the strong strain-induced tube dilation
predicted by the unit-cell model but agree with the BCA predictions for moderately pre-aligned tubes,
corresponding to shear alignment by a strain of about γ = 1.5 . . . 2.5. We interpret this as an indication
that the average tube deformations had mostly relaxed between the cessation of shear and the start of
the measurements, while the inflicted shear alignment was largely conserved. Note that the statistical
errors of the tube size is very small (≈ 1 %) for both the experiments and the simulations; (b) Polymer
solutions were prepared in two different sample geometries for each c, a narrow capillary and a wider
micro chamber, to get strongly sheared networks and weakly sheared reference samples, yielding
values for R(S) and R(S ≈ 0), respectively. Their ratio is shown in panel (a) against the values for S
in the capillary.
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Figure 4. Reduced tube-width distribution: differently prepared F-actin experiments collapse onto
a single master curve p(r) = RP(rR), independent of both concentration and the degree of nematic
order of the solution. The scaling and the shape of the equilibrium master curve, Equation (12), are
predicted by the tube model, evaluated in the binary-collision approximation (BCA). Its deformation
due to shearing is estimated using the unit-cell model. Small deviations between the data and the
equilibrium theory are consistent with the predicted effect of a remnant strain γ = 1.5 (dashed lines)
and interpreted as indicative of long-lived deformations of rare hairpin configurations.
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2.4. Comparison of Theory and Data

Our theoretical, experimental, and numerical findings all suggest that moderate tube-segment
alignment only weakly influences the tube size and its distribution and therefore excite only weak
restoring stresses. Curiously, all our experimental data seem to fall into regime of moderate
alignment, up to S ≈ 0.5 where the tube radius is almost independent of S, cf. Figure 3.
The experimental data support the predictions obtained from both the simulations of the prealigned
fiber solutions and the affine phantom model and BCA prediction: the detected alignment is
compatible with an average tube width equal to its equilibrium value.

The shear strain γ imposed on the actin solution cannot directly be controlled, in our setup,
but from the recorded filling speeds of the capillary, it should be similar for all analyzed actin
concentrations. By the time of the measurement, the solution was no longer actively sheared, only
the final shear strain was maintained. According to Equation (3), the observed weak alignment
corresponding to nematic order of strength S ≈ 0.4 . . . 0.7 is consistent with remnant shear strains
γ ≈ 1.5 . . . 2.5 and reflects the predicted difficulty to achieve any stronger shear alignment with such
strains. At the same time, the measured tube-radius data show no sign of the sizeable increase of
the mean tube radius R(S) predicted by the unit-cell model as a consequence of tube deformations.
A plausible explanation could be that the tube deformations had already been undone by the
associated restoring stresses at the time of the measurements, whereas the negligible restoring stresses
associated with the experimentally observed moderate tube alignment allowed the latter to persist.
Indeed, having no discernible effect on the tube conformations, these stresses should not appreciably
exceed the thermal energy per tube volume.

Another effect on the packing structure that should arguably be long-lived and experimentally
detectable is the change in the tube-width and curvature distributions caused by the shearing
of hairpins (Figure 2). Hairpin configurations are topologically prevented from relaxing into
more typical configurations without first disentangling from their tubes. They are preserved and
even stabilized upon shearing, and their effects onto the shapes of the tube-width and curvature
distributions are independent of the average values of the tube width and curvature. Hence, they
also should relax on a very slow time scale, and their deformation by shear and its characteristic
fingerprint in the distributions in Figure 2 (relative enhancement of the fraction of small tube radii
and large tube curvatures) should be largely preserved after cessation of shear, when the average
tube width and curvature have already relaxed. Indeed, as demonstrated in Figure 4, the frequency of
small tube widths is found to be increased compared to the prediction of the equilibrium model (solid
lines). Excellent agreement of theory and data for the tube-width distribution is obtained by choosing
a plausible value for the remnant strain γ = 1.5, consistent with the observed tube alignment in
Figure 3, according to Equation (3). Despite this very favorable agreement, some issues remain to
be resolved. Our computer simulations seem to indicate a tendency of the BCA to systematically
underestimate the fraction of narrow tubes, even in equilibrium solutions (Figure 5 of the methods
section). A thorough investigation of this issue is currently hampered by computational limitations
and experimental difficulties. The measured tube width distributions have a tendency to weakly
broaden within the observable finite-time windows, presumably because the ideal limit of strong
entanglement is difficult to achieve in practice (especially in computer simulations).

3. Conclusions

The mechanical properties of entangled solutions of semiflexible polymers depend crucially
on the response of the mesoscopic architecture to external perturbations. We have analyzed
the impact of two such perturbations: an imposed affine nematic odering and a proper shear
deformation that induces a similar degree of nematic alignment but also additional, non-affine
strains. By measuring the tube-shaped cages of labeled test polymers after cessation of shear,
we found that initially isotropic solutions developed moderate nematic order by shear alignment,
which persisted after the shearing had stopped. Besides this shear-alignment, which is comparable
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to what one would expect from a purely affine model, shearing was predicted to cause non-affine
local tube deformations (Figure 3) and leave a characteristic fingerprint in the tube-width and
backbone-curvature distributions (Figure 2). We estimated both effects using the unit-cell approach
by Fernández [21]. We could not detect the expected average tube deformations, experimentally,
presumably because they had been driven back by the associated restoring forces, at the time of
measurement. However, our data for the reduced tube-width distribution could well be fitted by
the unit-cell model, assuming a finite remnant strain consistent with the observed tube alignment
(Figure 4). The theory identifies a small fraction of topologically protected hairpins as the main
source of the observed deviations from the equilibrium distributions. Similarly, literature data for
the microstructure of F-actin solutions [17,54] seem consistent with a sizeable influence of shear on
the curvature distribution pγ(c), although the very large strains imposed in Reference [17] prohibit
a direct comparison.

In summary, our experimental and numerical data can be reconciled with the predictions of
the unit-cell model if one accepts that the predicted average tube dilation and tube buckling upon
shearing is energetically costly and relaxes quickly, so that it is not detectable after cessation of shear,
whereas moderate tube alignment and hairpin deformations induce no sizeable (global) stresses and
are therefore longer-lived, hence detectable. With this interpretation, our comparison of theory and
experiment yielded consistent results but calls for further investigations. It would be particularly
interesting to test the predicted faster relaxation of the average tube width and curvature as opposed
to the shear alignment and hairpin effects with a higher time resolution as possible in our setup.
A careful analysis of the evolution of curvature distributions upon application of finite large strains
would also be very desirable.

4. Materials and Methods

4.1. Experiments

Actin was isolated from rabbit skeletal muscle, purified, and polymerized following standard
procedures [48] to gain F-actin solutions of polymer concentrations c in the range from 0.2 to
0.8 mg/mL. These values correspond to dimensionless polymer length concentrations ρLp ≈ 2300
to 9200, based on the typical value Lp = 17 µm of the persistence length and the estimate
ρ/c ≈ 40 µm−2/(mg/mL) obtained from the molecular structure of the actin filaments [43].

The filaments were labeled with TRITC-Phalloidin (Sigma Aldrich, Taufkirchen, Germany)
and mixed gently with unlabeled filaments at a ratio of 1:1000. We used two different sample
geometries for each concentration, a narrow capillary (0.1 mm× 2 mm× 50 mm, CM Scientific Ltd.,
West Yorkshire, UK) and a large chamber (8 mm× 8 mm× 5 mm, Lab-Tek Chambers, Nalge Nunc
International, New York, NY, USA), yielding nematically ordered and almost isotropic polymer
networks, respectively. Two-dimensional confocal microscope (LSM510, Carl Zeiss, Jena, Germany;
objective C-Apochromat 63x/1.2 W korr; 543 nm laser and long pass filter 560 nm) images of a
fluorescently labeled filament were recorded every second during a time span of 150 s, superimposed,
and analyzed to measure the tube width, i.e., the space explored by the fluctuating polymer, similar to
previous studies [48]. Due to the large number of data points that we collected, the statistical errors
for the mean tube width, as obtained from a standard Jackknife method, are on the order of 1 %.
Filament orientations (i.e., order parameters) were obtained from three-dimensional stacks of images
with voxel sizes chosen according to optical resolution and Nyquist’s sampling theorem.

4.2. Simulations

We use a hybrid Monte-Carlo/Brownian-dynamics algorithm proposed by Ramanathan and
Morse [51–53] to simulate networks of entangled wormlike chains that have zero thickness but
can not cross each other. The Brownian dynamics of each bead-rod polymer in the solution is
computed by numerically integrating the corresponding Langevin equations. Each time step a trial
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move is computed for one randomly chosen polymer and steric interactions between filaments are
implemented by rejecting the trial move if it would lead to a cut through a neighbor filament.

To mimic the shear alignment observed in the experiments we implement nematic order in the
simulations by an external field −h cos(γ) that favors nematic alignment with an external director.
The field acts during the initialization phase when the polymers are generated and placed in the
simulation box in their free equilibrium states. After the system is initialized, the field is turned off
and the system evolves thermally— similar to what happens in experiments right after preparation.
At the end of each simulation run, we measure the order parameter

S =
1

2Nrod

Nrod

∑
i=1

(3 cos2 θi − 1) (8)

of the network by averaging the orientations of the Nrod polymer segments. The direction of each
polymer segment is characterized by the angle θi between a rod that connects two neighboring
monomer beads and the externally imposed director. Following Reference [52], we determine the
time-dependent tube radius R(t) from the reptation-corrected MSD,

R(t)2 =
1

N(T − t)

N

∑
i=1

∫ T−t

0
dt̃ di(t̃, t̃ + t)2 , (9)

where N is the number of molecules, T the total simulation time, and di(t̃, t̃ + t) gives the
closest approach between the chain’s middle bead at time t̃ + t and the contour of this chain at time t̃.
The S-dependent equilibrium mean tube radius R(S) is then obtained assuming that R(t) = R(S) f (t/τe)

can be written in terms of a universal scaling function f [51], where the so-called entanglement time
τe ∝ R(S)8/3 itself depends on the mean tube width.

The data shown in Figure 4 were obtained for solutions that contained 1296 chains of length
L = Lp in a cubic simulation box of edge length 1.2L, yielding a dimensionless polymer length
concentration of ρL2

p = 750 and an entanglement length on the order of Le ≈ 0.2Lp according to
Equation (11). The simulation time was set to one half the rotational diffusion time of a straight rod of
length L, which corresponds to about 40τe for the used polymer concentration. The measured order
parameter S was found to remain almost constant during the whole simulation time.

Figure 5 compares the reduced distribution of the tube widths obtained from isotropic solutions
of various concentrations with the BCA prediction.
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Figure 5. Reduced tube-width distribution obtained from the hybrid Monte-Carlo/Brownian-
dynamics computer simulations [51–53]. As expected from the BCA prediction, data for various
polymer length concentrations ρ collapse onto a single master curve.
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4.3. Binary Collision Approximation (BCA)

We tackle the complicated many-body problem of an entangled network of semiflexible
polymers using the binary collision approximation (BCA) [43], which can easily be extended to
nematically ordered networks. A representative test polymer is modeled as a wormlike chain (WLC)
of persistence length Lp. Its collisions with other polymers in the solution are accounted for as
far as these can be represented by independent pair interactions. Collective many-body effects
are summarily included on a mean-field level by confining all polymers to cylindrical harmonic
cages by adding a term φr2

⊥/2 to the WLC-Hamiltonian. Balancing the bending and confinement
free energy contributions, the tube radius, defined as the average transverse displacement
R2 ≡ (2L)−1

∫ L
0 ds〈r2

⊥(s)〉 of the test chain, and the entanglement length Le ≡ φ−1R−2, which
characterizes the mean distance between tube–tube collisions along a tube backbone, follow from
a straightforward calculation as

R = 2−3/4L−1/8
p φ

−3/8 and Le = 23/2L1/4
p φ

−1/4 , (10)

respectively. It was proposed by Morse [43] that the mean tube strength φ can be determined
self-consistently within the BCA as an average over all possible polymer–polymer configurations.
The strategy is to describe the steric interaction of two colliding chains in the solution as a function of
the size of the tube each chain is confined to. The calculation is eventually closed by identifying
the average of the so obtained pair interaction as the mean-field tube potential. More precisely,
the collision geometry of the two polymer segments that fluctuate around their straight primitive
paths is described in terms of their relative orientation and separation x (i.e., their closest approach).
The strength φ±(x) of the harmonic confinement potential is obtained as the second-order Taylor
coefficient of the potential of mean force F±(x) (“BCA potential”), φ±(x) ∝ ∂2

xF±(x). The latter
is of pure entropic origin and given as the negative logarithm of the partition sum of a pair of
polymers, each dressed by its own tube, in either a topologically open (subscript “+”) or entangled
(“−”) configuration. (See also the sketch in Figure 2 of Reference [44].) This differentiation is
necessary, because the number of states for two bendable polymers is not completely determined
by the positions and orientations of their primitive paths, as it would be the case for straight rigid
rods [48]. From the average over all colliding segment pairs one obtains the relation φ = α0ρ/R that
links φ to the polymer contour-length concentration ρ and the mean tube radius R. Together with
Equation (10), this procedure yields the self-consistent BCA solutions

R = (4α0ρ)−3/5L−1/5
p and Le = (α0ρ/8)−2/5L1/5

p (11)

of the mean tube radius and the entanglement length, respectively, with a numerical coefficient
α0 ≈ 0.50 [44].

In Reference [44,48], the above theory for an average tube was generalized to the so-called
segment-fluid approximation that gives access to the distribution P(φ) of tube strengths, which
can vary along the test chain. Its predicted statistics of tube-radius fluctuations was found to
be in good agreement with experimental data, allowing for a decent global fit for various actin
concentrations. The central idea behind the segment-fluid model is to introduce a canonical ensemble
of N + 1 independent entanglement segments of length L, each dressed by an individual tube
associated with its own value of φ. The segment-averaged mean field φ felt by the test polymer
as a whole, is thus obtained as an average over the N collision partners. In general, any higher
order moment φk can be computed similarly, to estimate the complete tube-strength distribution P(φ).
Glaser et al. [44,48] showed that the distribution P(φ) can be approximated to very good accuracy by
a Gamma distribution with mean φ = α0ρ/R and variance φ2 − φ

2
= β0ρ/(LR3

), where β0 ≈ 0.094.
Within the tube-segment approach, the relation between network-averaged tube width and tube
strength, given by Equation (10), is replaced by a similar relation for the fluctuating quantities R
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and φ, which allows to convert P(φ) directly into the tube-width distribution P(R). Rescaling the
tube radius by its mean, a concentration-independent scaling form of the distribution [44]

p(r) = RP(rR) ∝ r−19.1e−6.11r−8/3
(12)

ensues. Here, the magnitude r2 = R2/R2 of the fluctuations is completely determined by the value
of the combination (L/Le)α0/β0, and the scaled length L/Le ≈ 1.3 of the tube segment is obtained
by comparing r2 with a corresponding fluctuation-response estimate, which is derived for a polymer
exposed to an external force that is self-consistently identified with the confinement force. The latter
calculation reveals that L/Le itself depends only on the ratio α0/β0. Following the same lines that lead
to the tube-width distribution, we can use the local version of Equation (10) to derive the distribution
P(Le) of the entanglement length from P(φ). Again, one obtains that the reduced distribution
p(le) = LeP(leLe) depends only on the value of (L/Le)α0/β0 and takes the universal form

p(le) ∝ l−28.0
e e−6.14l−4

e . (13)

We now extend the BCA to nematically ordered polymer solutions, characterized by the standard
order parameter as defined in Equation (1). Repeating the calculations outlined in Reference [44] with
this generalized orientational segment distribution, we find that the mean φ and the variance φ2 − φ

2

of the tube strength take the same form as their isotropic-solution analogs, given in the text above
Equation (12), but now with the functions

α(S) = α0 I(S) and β(S) = β0 I(S) , (14)

that replace the numerical coefficients α0 and β0, respectively, which yields the expressions for the
mean tube radius and the mean entanglement length given in Equation (2). Here,

I(S) = (4/π)
∫

du1du2 fS(u1) fS(u2)|u1 × u2| (15)

denotes the normalized packing entropy of the solution. For low nematic order, S � 1,
the distribution fS(u) can be expanded up to linear order in S, for which the asymptotic
proportionality I(S) − 1 ∝ S2 + O(S3) follows from the normalization of fS(u) and the definition
of S. It reveals that I(S), and thus R(S), varies only weakly with S, as long as the solution is
not too strongly ordered. To make these dependencies more quantitative, we have to specify the
distribution function fS(u). Since we expect its exact functional form not to be crucial, we choose
Onsager’s trial function fa(θ) = a cosh(a cos θ)/(4π sinh a) that was originally applied to solutions
of rigid rods [45] and covers the wanted generic features of the distributions. Here, a is related to
the order parameter via S = 1− 3a−1 coth a + 3a−2, and θ = cos−1(u · d) is the angle between the
direction of the tube segment and the nematic axis. As shown by Onsager, this trial function yields
I(S) = 2 I2(2a)/ sinh2 a, where I2 denotes the modified Bessel function of the first kind. Replacing α0

in Equation (11) by its order-dependent extension α(S), Equation (14), we obtain Equation (2) for the
mean tube radius and entanglement length of the nematically ordered system, where the weak-order
asymptotics in Equation (2) follow from S ∼ a2/15 together with I(S) ∼ 1− a4/360.

4.4. Affine Strain Alignment

To estimate the tube-segment orientation in a sheared solution, we consider a solution of straight
inflexible (phantom) rods that follow an externally applied shear strain γ affinely. We describe
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the latter in terms of the deformation matrix Λγ, so that the initial distribution f0(u) of the rod
orientations u is changed to

fγ(u) =
∣∣∣∣
duγ

du

∣∣∣∣
−1

fa[u−1
γ (u)] , with uγ(u) =

Λu
|Λu| , (16)

where uγ : Sd−1 → Sd−1, as well as its inverse u−1
γ (u) = Λ−1u/|Λ−1u|, is an automorphism of the

sphere of dimension d− 1. Since the expressions for d = 3 become quite lengthy, we first start with
d = 2, which already illustrates how shearing induces nematic ordering.

4.4.1. Two-Dimensional Solution

In two dimensions, the direction u = (cos ϕ, sin ϕ) of a rod in the solution depends only on the
angle ϕ between u and the x-axis. Applying the simple shear deformation

Λ =

(
1 0
γ 1

)
(17)

of strain γ, the particle orientation becomes uγ = (cos ϕγ, sin ϕγ) with

ϕγ = arctan
(

γ cos ϕ + sin ϕ

cos ϕ

)
(18)

If we assume the system to be isotropic before the deformation, f0(ϕ) = 1/(2π), we obtain a
shear-induced dependence

fγ(ϕ) =
1

2π

∣∣∣∣
dϕ−γ

dϕ

∣∣∣∣ =
1

2π

sec2 ϕ

1 + (γ− tan ϕ)2 (19)

of the angular distribution function on ϕ. As γ increases, fγ(ϕ) turns into a double-peaked
distribution for the ordered system, as illustrated in Figure 1b. The nematic order parameter
S(γ) = 2λ1 − 1, associated to the distribution fγ, is determined by the largest eigenvalue λ1 of the
second-rank ordering tensor

∫
dϕ fγ(ϕ)uu =

1
4 + γ2

(
2 γ

γ 2 + γ2

)
, (20)

which yields

S(γ) =
γ√

4 + γ2
, (21)

shown in Figure 1a. The corresponding eigenvector gives the director

d(γ) ∝

(√
4 + γ2 − γ

2

)
(22)

(or nematic axis) of the nematic solution.

4.4.2. Three-Dimensional Solution

Simple shear of the form

Λ =




1 0 0
0 1 0
γ 0 1


 (23)
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leaves the azimuthal angle ϕγ = ϕ at its initial value and changes the polar angle as

θγ = arccos


 cos θ + γ cos ϕ sin θ√

sin2 θ + (cos θ + γ cos ϕ sin θ)2


 . (24)

This leads to the strain-dependent angular distribution

fγ(ϕ, θ) sin θ =
1

4π

∣∣∣∣
∂(ϕ−γ, θ−γ)

∂(ϕ, θ)

∣∣∣∣ sin θ−γ

=
2 sin θ

π

[
4 + γ2 − γ2 cos(2θ)− 2γ2 cos(2ϕ) sin2 θ + 4γ cos ϕ sin2(2θ)

]−3/2
(25)

of an initially isotropic three-dimensional solution, f0 = 1/(4π). Note that fγ(u) is not axially
symmetric with respect to the director d, but is characterized by biaxial order, which is typically
quantified in terms of the second-rank ordering tensor. For our purpose, however, it suffices to
estimate the degree of shear-induced alignment by the scalar order parameter S as follows. For given
strain γ, it exhibits a maximum at {ϕ∗γ, θ∗γ} with ϕ∗γ = 0 and

θ∗γ = arctan
(

1
2

√
4 + γ2 − γ

2

)
, (26)

thus determining to the director d(γ) = (sin θ∗γ, 0, cos θ∗γ), which exactly corresponds to Equation (22)
for the director of the sheared two-dimensional solution. As the distribution fγ(ϕ, θ) is not
rotationally symmetric with respect to d(γ), an analytical expression for S(γ) cannot be derived.
For small deformations, however, one obtains

∫
dϕ fγ(ϕ)uu ∼ 1

3
1+

γ

5
(e1e3 + e3e1) (27)

to linear order in γ, where e1 and e3 denote the unit vectors parallel to the x and z axis,
respectively. From its largest eigenvalue λ1 = 1/3 + γ/5 we obtain the linear scaling relation for
S(γ) = (1/2)(3λ− 1), given in Equation (3). In Figure 1, this asymptotic relation is compared with
the numerically obtained S(γ), which reveals that it provides a good approximation up to γ ≈ 1.

4.5. Unit-Cell Approach

The non-affine tube deformation caused by a macroscopically imposed simple shear deformation
is estimated using the unit-cell approach by Fernández et al. [21]. Namely, we minimize the free
energy of a test tube clamped between two neighbor tubes that change their positions affinely with
the applied strain γ, thereby exerting a force on the test tube, which bends accordingly. To treat
large polymer deformations exactly, the polymer segment is modeled as an Euler-Bernoulli beam.
Then, the tube backbone contour is obtained for strains γ up to ≈ 2 by solving the equation of
elastica with forces acting on the collision points between the test tube and its confining neighbors.
Assuming that the deformation happens in a quasi-static fashion, lateral friction is neglected and the
test polymer remains equilibrated in its tube. The value of the constraining forces is determined by
minimizing the test tube’s free energy comprising bending and confinement contributions. Following
Reference [21], Figure 6 illustrates the “test tube” of the unit-cell model clamped between two
neighboring tubes. Affine shearing of the polymer solution translates to an affine displacement of
the confining tubes (whether the centers or contact points with the test tube are displaced does not
matter much). Due to the mutual balance of enthalpic (backbone bending) and entropic (tube size)
contributions to the free energy, shearing induces a strongly non-affine local polymer deformation,
in this model. Averaging over a representative set of shear geometries, the deformation results in a
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dilation of the tube upon shear, which gives rise to a nonlinear softening at large strains, for a broad
range of polymer concentrations and initial (equilibrium) tube conformations.
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Figure 6. Unit-cell model by Fernández et al. [21]. (a) The test tube is deformed by two confining tubes
(Sketch adapted from Reference [21]); (b) The zero-strain values of the average tube radius R(γ = 0)
and the mean curvature C(γ = 0) varies with the unit-cell conformation, which is characterized by
the deflection xc0. Shearing of the network is mimicked by an affine displacement of the contact
points with (or centers of) the confining tubes. There is a trade-off between bending and confinement,
since a more strongly bent conformation allows for a wider tube, which, on average, gives rise to a
strain-induced tube dilation and bending, quantified by (c) the average tube radius R(γ) and (d) the
mean curvature C(γ) with strain γ; (e) The total free energy F (γ) increases upon shearing as required
by mechanical stability. All curves were computed numerically from the full non-linear theory.

For moderate shear deformations, the model equations can be linearized and solved analytically.
Starting point is the deflection xc +R of the tube backbone due to the force f between the colliding
tubes, as given by Equation (9a) of Reference [21]. For small y2

c f /Lp, where 2yc is the distance between
the tube–tube collisions along the backbone (see the sketch in Figure 6), the deflection becomes
xc +R ∼ y3

c f /(3Lp), which serves as a relation for the modified tube radius R. Note that positive
deflections xc > 0 correspond to hairpin conformations. This yields the total free energy as the sum

F ∼ y3
c f 2/(6Lp) + L−1/3

p yc[(2/3)y3
c f /Lp − 2xc]

−2/3 (28)

of the linearized bending free energy, i.e., expanded to lowest order in f , and the confinement free
energy. Within the linearized theory, the lateral deflection xc +R ∼ y3

c f /(3Lp) is varied to minimize
F , so that the tube-deforming force f is determined by the equilibrium condition ∂ fF = 0. If the
backbone is only weakly bent, y3

c f /(Lp|xc|)� 1, this condition can be expanded to

10y3
c f

9Lp|xc|
∼ −1 +

√
1 + (10/27)(4R/|xc|)8/3 . (29)
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Inserted into the expression for the tube radius, we obtain its strain dependence R(γ)/R(0) ∼
1 + bRγ2, Equation (5), with the zero-strain value

R(γ = 0)/|xc0| ∼
7

10
+

3
10

√
1 + (10/27)(4R/|xc0|)8/3 , (30)

where xc0 and yc0 denote the collision coordinates for the unsheared solution. Following Reference [21],

we here set yc0 = Le/2 and used that Le = 4L1/3
p R2/3, according to Equation (10). Besides the width

of the tube, we characterize its conformation in terms of the mean curvature C, defined through
the average

C2 ≡ 1
2yc

∫ yc

0
ds [r′′(s)]2 (31)

along the backbone contour r(s) of the tube segment. Note that ycLpC2
is nothing but the bending

energy of the tube segment (in natural units) as it appears in the unit-cell model. With the
weak-force scaling of Equation (29), a similar calculation as for R(γ) yields the asymptotic scaling
C(γ)/C(0) ∼ 1 + bCγ2, Equation (6), with

C(γ = 0) ∼ 9|xc0|/R

20
√

6LpLe

[
−1 +

√
1 + (10/27)(4R/|xc0|)8/3

]
. (32)

Comparing the asymptotic scaling relations with the numerically solved full model, we find
the quadratic strain dependencies in Equations (5) and (6) to be in good agreement with the full
model. However, as the above weak-force criterion does not hold for typical model parameters,
the zero-strain values R(γ = 0) and C(γ = 0) and the coefficients bR and bC obtained from the full
model can deviate substantially from their asymptotic estimates given here. Their dependence on
the ratio xc0/R between the unperturbed tube deflection and the width of a straight equilibrium
tube is shown in Figure 6. With xc0 = −R, for instance, we have y3

c f /(Lp|xc0|) ≈ 2 and,
consequently, the asymptotic solutions R(γ = 0) ∼ 1.9R and C(γ = 0) ∼ 0.39(LpLe/2)−1/2 of
the linear model markedly differ from the numerically obtained predictions R(γ = 0) ≈ 1.3R and
C(γ = 0) ≈ 1.4(LpLe/2)−1/2 of the full model, see Figure 6b. Notably, bC can actually become
negative as illustrated in Figure 6d.

We note that we quantify the geometry of the straight tube by means of the BCA predictions for
R and Le, given in Equation (11), whereas the entanglement length in Reference [21] was defined as
Le = (Lp/φ)1/4, which differs from Equation (10) by the numerical prefactor 23/2. The slightly larger
values for Le and yc0 used here have consequences for both the geometry and stability of the ground
state of the unit cell, as described so far, which predicts an instability against shearing when the aspect
ratio |xc0|/yc0, or, equivalently, the ratio |xc0|/R, exceeds a certain threshold value. In this regime the
total model free energy decreases upon straining, as the test tube is widened to an unrealistically
large volume that violates the constraint set by the imposed polymer concentration. As shown
in Reference [21], this artifact of the simplified unit-cell geometry can be cured by accounting for
the so-called “Doi–Kuzuu effect” [55], which relates the number of contacts between the tubes to
the applied deformation. Upon large deformations, the test tube makes new lateral contacts with
previously spatially separated tubes, which limits the lateral expansion to physically reasonable
bounds and can effectively be accounted for by a renormalization of the unit cell parameters as a
function of the strain. With this important amendment, the ground state is always stable and robust
to moderate parameter changes. The resulting strain-dependent tube radius, curvature, and (clearly
stable) total free energy are depicted in Figure 6, using typical values Lp = 17 µm and ρ = 20 µm−2 for
the persistence length and the polymer length concentration, respectively, in Equation (11). The latter
correspond to semi-dilute F-actin solutions of concentration c = 0.5 mg/mL, based on the estimate
ρ/c ≈ 40 µm−2/(mg/mL) obtained from the molecular structure of the actin filaments [43].
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It is worth noting that the Doi–Kuzuu effect affects so-called hairpin configurations
(thermodynamically suppressed strongly contorted unit cell configurations [20,21]) differently from
the typical configurations. We keep track of this by the factor −xc/|xc| in the second term of the
differential equation

y′c(γ) = yc0λ′y(γ)− 4(xc/|xc|)(y2
c R/ξ2)λ′x(γ)− 4(y2

c/ξ2)R′(γ) (33)

that determines the longitudinal deformation of the unit cell (Equation (18) of Reference [21]).
The first term on the right hand side represents the affine stretch by a factor λy(γ), the last
term corrects for the volume change of the unit-cell due to tube dilation/contraction. The second
term accounts for the transversely approaching/distancing of the tube segments that follow the
stretch factor λx(γ), which effectively decreases/increases the distance 2yc between the collision
points. For a hairpin configuration, characterized by xc > 0, neighboring tubes are pushed aside,
corresponding to an increasing yc. It should also be noted that, apart from this topological distinction,
the correction is of mean-field type. This restriction could tend to iron out a physically meaningful
heterogeneous response of the polymer (tube) network. Beyond the mean-field approximation,
unstable unit-cells might still exist locally and give rise to spontaneous network heterogeneities
(without invoking any enthalpic attractions or crosslinkers). In a stationary shear flow, these might
play an important role for the nucleation of shear bands, a phenomenon that is known to occur in
densely entangled solutions of flexible polymers [56] and that was recently observed for entangled
F-actin solutions [16]. It would be interesting to see, whether such effects could be grasped with the
theory by pushing the treatment of the Doi–Kuzuu effect beyond the mean-field approximation.

Finally, we estimate the non-affine contributions to the nematic order parameter S, within the
unit-cell approach. Unfortunately, finding the exact deformation field from the complex response of
the tube backbone is not a straightforward task. To simplify the computation, we therefore follow
Reference [21] and consider only a discrete set of test-tube segments with orientations along the three
main stretch directions or principal axes of the simple shear deformation. Under the assumption
that the average tube deformation can be described by a deformation tensor Λγ = Λa

γ + Λn
γ

that we decompose into its affine and non-affine contribution, respectively, we can approximately
reconstruct the non-affine contribution Λn

γ from the three principle shear transformations. We first
relate these transformations for the stretching and compression along the principal axes of the affine
deformation with the lab-frame coordinates. We denote these principal directions (i.e., the normalized
eigenvectors of the affine Cauchy deformation tensor (Λa

γ)
TΛa

γ) by vi, and the corresponding
stretch factors (the eigenvalues) by λi. The index convention is that i = 1, 2, 3 represent the
stretch, compression, and neutral axis, respectively. Note that vi gives the direction before the shear
deformation and yields the orientation wi ≡ λ−1

i Λa
γvi after an affine deformation Λa

γ has been
applied. For a given point r0 in the lab frame, the model now takes its principal-axes coordinates vi · r0

before the deformation and computes its principal-axes coordinates wi · rγ at strain γ. With the above
introduced decomposition into an affine and a non-affine contribution to the deformation tensor,
rγ = (Λa

γ + Λn
γ) · r0, we obtain

wi · rγ = λivi · r0 + ∑
j

wi · (Λn
γ · vjvj · r0) . (34)

The unit operator 1 = ∑j vjvj was inserted to reintroduce the coordinates vj · r0. This equation
must be solved for the nine components of Λn

γ, which is indeed possible if we insert the end-to-end
vector of the tube segments for r0 and rγ and exploit the available information for all three principal
axes (i = 1, 2, 3). Here, another technical detail of the unit-cell model has to be taken into
account: fixing the (unperturbed) tube direction to vi yields two possible unit-cell conformations,
depending on the orientation of the trihedron built by the three principal axes. We average over
these two geometries to obtain the mean change of the tube segment orientation that we can
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use in Equation (34). With the full deformation tensor Λγ = Λa
γ + Λn

γ at hand, the non-affine
strain dependence S(γ) of the nematic order parameter is readily computed by applying the same
procedure as in Section 4.4 for the purely affine deformation. Combining S(γ) and R(γ) predicted
by the unit-cell approach, we eventually obtain the order-dependent mean tube radius R(S) that is
shown in Figure 1.
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CHAPTER 8
Viscoelastic response

Viscoelasticity is a salient feature of biological matter. It refers to the complex rheological
response that exhibits both solid- and fluid-like characteristics, depending on the probed time
scale or the applied shear rate: on short times (high frequencies), these systems behave like an
elastic solid; on long times (low frequencies), like a viscous fluid. As mentioned in Chap. 6, some
characteristics of the viscoelastic response of cells or tissue can be sufficiently reproduced by
reduced model systems of tightly entangled stiff polymers [40, 102]. They therefore provide an
excellent framework to investigate the mesoscale mechanisms underlying the diverse rheology
of the biological materials.

One can build upon the above discussion and extend the analysis of the various relaxation
processes at work by their associated characteristic time scales. They are outlined and briefly
discussed in Sec. 8.1. Starting point is, once again, the concept of the static confinement tube
as described in the previous chapter. As already alluded to there, the limitations of this model
become however evident at long times, when the topological entanglements are released, thereby
rendering the tube itself dynamic. Some of the theoretical attempts to account for such confine-
ment transients are reviewed in Sec. 8.2. The subsequent Secs. 8.3 and 8.4 address the solutions’
viscoelastic linear and nonlinear response, respectively. Based on the surveyed experimental
observations and theoretical attempts, we will hypothesize that sticky (or frictional) contacts
between the entangled polymers may be responsible for some of the unexpected observations,
especially the pronounced rate-dependent softening–stiffening transition [45]. The idea of the
sticky contacts suggests an apparent similarity between the purely entangled solutions and
(transiently) crosslinked polymer networks. The latter is therefore discussed in Sec. 8.5. In a
recently developed model, we combined the concept of a transient confinement tube with the
sticky polymer contacts to obtain the viscoelastic response of an entangled stiff-polymer solution.
It captures the above mentioned softening–stiffening transition, chiefly, because it distributes
the macroscopic deformation among soft bending modes and stiff stretching modes. Although
this work is still in progress, I present its actual status in an Appendix to this chapter, in order to
document the concrete realization of some of the ideas that are merely sketched in the main text.
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8.1 Time scales

In the following, we briefly go through the relaxation processes relevant for the biopolymer
solutions. On very short times, the dynamics is not influenced by confinement effects, and
one regains the free-polymer behavior briefly sketched in Sec. 6.1. On long enough time and
length scales, in contrast, the topological entanglements dominate the relaxation processes. The
crossover between these two regimes is given by entanglement time [6, 99].

te = (ζ⊥/kBT )L
4
e/Lp . (8.1)

It is the equilibration time for the bending modes of a polymer that is confined to a homoge-
neous tube1. Assuming that these short modes have already been equilibrated (i.e., for t > te),
longitudinal deformations relax over times

t ∥L ≈ (ζ /kBT )L
2L3e/L

2
p (8.2)

as obtained from the diffusion of the contour-length density (stored in the chain undulations) over
a length L (in the stiff-polymer limit) [86]. For tightly entangled solutions with LeLp ≪ L2, the
separation te ≪ t ∥L underlying this estimate is indeed a valid assumption. It however breaks down
in the stiff-polymer limit Lp/L → ∞, where Le/L remains finite. For this limit, Morse [86] argued
that the longitudinal relaxation time is given by the time needed for the tension to propagate
along the whole polymer, which he approximated as (ζ /kBT )L8/L5p. This estimate, however,
neglects the influence of hydrodynamic (longitudinal) friction [48, 79], which in fact can have
a significant impact on the dynamic single-polymer response: in order for a steplike stretch
deformation of the polymer to relax, the outer parts of the polymer are pulled towards its center
through the viscous solvent [79]. The characteristic time needed for the tension to relax to zero
across the whole filament, which is confined to a harmonic tube potential (see Sec. 7.2), was
estimated by Thüroff et al. [103] as

ttens ≈ (ζ /kBT )L
4L2e/(2L3p) . (8.3)

Due to the confinement, only modes up to wavelength Le equilibrate after such a release event,
which makes this relaxation time in entangled solutions shorter than for a free polymer [48, 49].
At times beyond ttens, longitudinal friction becomes negligible, and the dynamics is determined
by the transverse confinement due to topological entanglements.

In the classical reptation model, where the confinement tube is assumed to remain invariant
at all probed time scales, changing the filaments’ orientations requires them to leave their
tubes. With a typical time scale on the order of the time a filament needs to reptate (i.e., diffuse
longitudinally) its own contour length, such tube disengagement is the slowest relaxation process
of the entangled polymer solutions. Applying the Sutherland-Einstein relation to the reptation
diffusivity [50], this time is estimated as

trep = (ζ /kBT )L
3 . (8.4)

1For the (static) tube model, with Hamiltonian given in Eq. (7.3), the Langevin dynamics of a WBR becomes

ζ⊥∂tr⊥(s, t) = −κ∂4s r⊥(s, t) − ϕr⊥ + ξ⊥(s, t) ,

from which one readily obtains MSD⊥ ∝ (L3e/ℓp) [1 − Γ(3/4, t/te)/Γ(3/4)] with Le = (κ/ϕ)1/4 and Eq. (8.1) for te.
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If Lp < L, the filament orientation can relax quicker, because reptating a distance L/2 already
changes the orientation of the filament center according to the tangent–tangent correlation
⟨r ′(L/2) · r ′(0)⟩ ≈ 1 − L/2Lp, see Eq. (6.4). This corresponds to a variation ⟨∆θ 2⟩ ≈ L/Lp
of the angle ∆θ between the tangents before and after the reptation step of length L/2. The
filament orientation is thus randomized after a time trot (i.e., after trot/trep reptation steps), when
⟨∆θ 2⟩trot/trep ≈ 1, hence [41]

trot ≈ (ζ /kBT )L
2Lp . (8.5)

This scaling was confirmed by experiments with carbon nanotubes diffusing in porous agarose
networks [104] and by recent Brownian dynamics simulations of polymer solutions in the loosely
entangled stiff-chain limit [90]. For semidilute entangled solutions of semiflexible polymers, Lang
and Frey [90] however found that the polymer orientation can relax even faster via releasing
topological constraints, a mechanism that is neglected in the traditional reptation model. (Also for
entangled solutions of flexible polymers, such constraint-release events were recently identified
to play an important role for the dynamics [105–107].) The release renders the confinement tubes
themselves transient and allows bending modes of the semiflexible polymers to relax significantly
faster than for a topologically frozen network. From their simulations, Lang and Frey found the
collective releasing mechanism to yield a relaxation time

trel ≈ 10−4(ζ /kBT )ρL5 (8.6)

for the bending modes of a test filament. They provided solid evidence that the correlated
motion of the test filament and the surrounding tube-forming filaments is indeed responsible
for this new relaxation time, while they could not present a sound theoretical explanation for
its actual form. Comparing the constraint-release time in Eq. (8.6) with the usual reptation time
for a topologically frozen network in Eq. (8.4), we obtain trel/trep ≈ 10−4ρL2, which implies that
correlated disentanglement is markedly faster than single-chain reptation only if ρL2 < 104, i.e., if
the solutions are not too dense. For semidilute F-actin solutions (ρ ≈ 40 µm−1, L ≈ 10 . . . 20 µm [88,
108]), typical values of this dimensionless concentration are in fact on the order of the crossover
value 104, while the highest concentrations used in the simulations by Lang and Frey are not
larger than ρL2 ≈ 102.6. It thus remains unclear whether collective constraint-release processes
are essential for the dynamics of tightly entangled biopolymer solutions or if tube disengagement
sets in before. Assuming their relevance, Eq. (8.6) can be used to derive the time scale for the
terminal stress relaxation of the solution. Namely, since bending-mode relaxation during the
time trel goes along with a change ⟨∆θ 2⟩ ≈ L/Lp of the filament orientation, Eq. (8.6) yields a
typical relaxation time trel/⟨∆θ 2⟩ ≈ 10−4(ζ /kBT )ρL4Lp for the filament orientation [90] [cf., the
arguments leading to Eq. (8.5)].

The scaling behavior of the relaxation times introduced in Eqs. (8.3)–(8.6) and their typical
values estimated for semidilute F-actin solutions are summarized in Table 8.1. Although these
very rough estimates have to be interpreted with some caution, two interesting qualitative
findings should persist: first, terminal stress relaxation of these tightly entangled biopolymer
solutions is not necessarily facilitated by the correlated release of topological constraints and
the dynamic tube renewal as described by Lang and Frey, since its predicted relaxation time is
comparable to that of pure single-chain reptation in a frozen network topology. Second, the
tension that is built up by steplike stretch deformation of the filaments relaxes at relatively
long times (few seconds) and can thus significantly contribute to the nonlinear response. The
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relaxation process time scale F-actin [s]

bending equilibration [86, 99] te ∝ L4e/Lp 4 · 10−1

contour-length diffusion [86] t ∥L ∝ L2L3e/L
2
p 1

tension relaxation ttens ∝ L4L2e/L
3
p [103] 2

constraint release [90] trel ∝ ρL4Lp 6 · 102
randomize orientation [41] trot ∝ L2Lp 2 · 103
reptation (tube disengagement) [86] trep ∝ L3 103

Table 8.1: Relaxation processes and associated time scales for “tightly entangled” solutions of
semiflexible polymers. The order-of-magnitude estimates for F-actin are obtained from Eqs.(8.3)–
(8.6) with ρ = 40 µm−2, L = 10 µm, Lp = 17 µm, and ζ /kBT ≈ 2πηs ≈ 1.5 s/µm3 [83, 88, 108–110].
Note that, for these values, (nonlinear) tension relaxation is predicted to take much longer than
equilibrating bending modes in the tube. The estimates further suggest terminal stress relaxation
to be determined by single-chain reptation, while the correlated constraint-release mechanism
described by Lang and Frey [90] yields shorter time scales.

same holds for the time needed to build up the tension when filaments are pulled transversely
at the entanglement points [82]. Despite the recent progress in theoretically describing both
the collective constraint-release mechanism [90] and the transverse-longitudinal coupling via
hydrodynamic friction [81, 82, 103], their impact on the viscoelastic response of tightly entangled
biopolymer solutions is still poorly understood. Indeed, there is various experimental evidence
for a transient rather than a frozen network topology, as outlined in the next section. There I
also briefly review the very recent theoretical attempts to account for the collective relaxation
processes and the ensuing transient caging effects.

8.2 Dynamic tube

It is worth recalling that Morse’s EMA and ENA approaches [88] (see Sec. 7.2) aim at effectively
capturing collective relaxation processes of the entangled polymer network. As mentioned above,
this raises the question, whether the concept of a static tube (and the notion of the tube width
and its statistics) is well justified at all. And it is clearly a matter of time scales and their (possibly
absent) separation: over times longer than trot, global collective relaxation processes will render
the confinement tube eventually transient. The rough estimate in Table 8.1 indicates that this
static–dynamic crossover takes place at delay times of a few minutes for typical biopolymer
solutions, like entangled F-actin, and could thus be visible in standard experiments. And indeed,
some data support the idea of a dynamic rather than a static tube. First, the transverse MSD of a
tagged polymer is rarely found to saturate at t > te, but rather continues to grow in a creep-like
manner [17, 18], approximately as MSD⊥(t ≫ te) ∝ ln t , corresponding to a logarithmic tail in the
dynamic structure factor [45], and an approximate power-law modulus at low frequencies [15].
This is the same long-time behavior as obtained from computer simulations of entangled semi-
flexible polymers by Lang and Frey [90] and, earlier, by Ramanathan and Morse [93]. Second, the
distribution of the transverse fluctuations |r⊥(t) − r⊥(0)| feature pronounced exponential tails at
sufficiently long times t , as shown by Wang et al. [92], who recorded actin-filament trajectories
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over five to ten minutes. This is in strong contrast to the (close-to) Gaussian statistics expected for
a static confinement cage. At short times, the shape of the confinement potential and the ensuing
tube-width distributions obtained by Dichtl and Sackmann [69] and Glaser et al. [19] from time
series of maximum duration of 30 s and 2.5min, respectively, are instead in better agreement
with the concept of the static tube, even resembling the theoretically predicted deviations from
Gaussian statistics [89]. This agreement supports the estimate in Table 8.1, namely that the
constraint-release dynamics becomes important only on longer time scales.

As mentioned above, the effective medium approaches can be used to mimic large-scale/long-
time relaxation processes in the entangled polymer network on a rather abstract level. The idea
is that the transverse fluctuations of a test polymer are confined to a dynamic tube, which itself is
embedded in an elastic medium. The long-time behavior is then determined by the tube dynamics
that follows the relaxation of the medium. For tube fluctuation modes that are still much shorter
than L and Lp, the surrounding medium might be described by a two-dimensional membrane that
is pierced by the tube, whereas three-dimensional deformations of the medium become important
at longer scales [111]. The two different embeddings of codimensions two and three yield a
logarithmic, MSD⊥(t) ∝ ln(t/te), and an algebraic growth, MSD⊥(t) ∝ const.− erf(t/te)(t/te)−1/2,
for the transverse polymer fluctuations, respectively [112] (here, the entanglement time te
represents the shortest relaxation time of the effective medium, it is used to regularize the
continuum theory; see the Appendix at the end of this chapter). The logarithmic tails of the
dynamic structure factor obtained from light scattering experiments for F-actin solutions [45]
suggest that the two-dimensional effective medium indeed provides a reasonable approximation
to the collective network dynamics on such intermediate time scales.

The phenomenology of the long-time dynamics of the entangled polymer solutions [45] and
the microscopic explanation via collective relaxation modes and the ensuing transient caging
effects due to topological entanglements reveal an analogy of these systems with classic glass-
forming colloidal suspensions [113]. This motivated Kroy and Glaser to put forward the so-called
glassy wormlike chain model [114, 115], where the relaxation time of long-wavelength bending
modes are slowed down exponentially, the underlying picture being that the polymer is subjected
to a rough effective free-energy landscape with a hierarchy of free-energy barriers that represent
the topological entanglements on a coarse-grained level. Penalizing long-wavelength modes by
means of such an Arrhenius energy [116] that scales with the number of entanglements per chain
gives rise to the logarithmic long-time MSD⊥(t) ∝ ln t , in agreement with what is commonly
observed for biopolymer solutions.

The classical approach to capture the glassy dynamics that emerges from transient caging
effects in colloidal solutions, similar to the picture of a dynamic tube, is the mode-coupling
theory [117]. It was however shown by Miyazaki and Yethiraj [118] that the conventional two-
point mode-coupling approximation cannot be applied to dense solutions of rods, where caging
must be traced back to topological entanglements rather than to simple excluded-volume effects.
This requires four-point correlations to be taken into account. Within the low-density limit for the
rod–rod direct correlation function, the so extended mode-coupling scheme becomes equivalent
to the kinetic-theory approach by Szamel [119, 120]. Szamel’s theory describes the translational
Brownian dynamics (neglecting rotational diffusion) of a tagged rod in a semidilute solution in
terms of a hierarchy of n-particle Smoluchowski equations, which is closed (nonperturbatively)
at the level of the two-particle distribution via an effective diffusion tensor. Conceptually, the
underlying diagrammatic expansion up to pairwise interactions is in the same spirit as the BCA
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proposed by Morse [88] to compute the static entanglement free energy. Later on, Schweizer and
Sussman extended Szamel’s framework to compute the notably large anharmonic contributions
to the dynamic confinement potential [121, 122] and to investigate the influence of rod alignment
and step deformation on the dynamic caging effect [123]. Most interestingly, they showed that
the confinement potential exhibits logarithmic tails at large displacements, which they found
to be in good agreement with the experimental data for F-actin solutions by Wang et al. [92],
although the underlying rigid-rod approach fails to predict the correct concentration dependence
of the (short-time) mean tube width. In order to apply the theory to solutions of flexible polymers,
they divided the polymers’ primitive paths into rodlike segments that follow an ideal random
walk, with topological entanglements being represented on the level of the collisions of the
segments [124]. This, of course, ignores bending free-energy contributions and correlations
of the segment orientations along the polymer, which are, however, believed to be essential to
the mechanics of tightly entangled solutions of stiff polymers [6]. So far, no attempt has been
proposed to overcome this limitation. One plausible remedy might be to dress the bare hard-core
repulsion between the rodlike polymer segments with the soft BCA interaction that correctly
captures the topologically impeded bending modes of the two colliding stiff-polymer segments
(see Ref. [89]).

8.3 Linear response

The liquid–solid hybrid nature of a viscoelastic material is most conveniently quantified by its
linear response to a time-dependent straining protocol γ (t). Often, this protocol is given by an
oscillatory shear deformation γ (t) = γ 0 cos(ωt) of small (formally vanishing) amplitude γ 0 and
given frequency ω. The stress tensor σ (t) is related to the strain rate tensor Ûγ (t) via the dynamic
linear modulus G(t) as

σ (t) =

∫ t

−∞

dt̃ G(t − t̃) Ûγ (t̃) (8.7)

After Fourier transforming this equation, the convolution turns into a product, σω = G(ω)γω ,
where σω =

∫ ∞

−∞
dt σ (t)eiωt and γω =

∫ ∞

−∞
dt γ (t)eiωt are the standard Fourier transforms of

stress and strain, respectively, and where

G(ω) = G ′(ω) + iG ′′(ω) = iω

∫ ∞

0
dt G(t)e−iωt (8.8)

denotes the frequency-dependent complex modulus. Its real and imaginary partsG ′(ω) andG ′′(ω)
provide the storage and loss modulus, which characterize the elastic and viscous contribution
to the linear response, respectively. For an elastic solid with modulus k , one has G(t) = k and
the complex modulus reduces to G(ω) = G ′(ω) = k ; for a liquid of viscosity η, G(t) = 2ηδ (t) and
thus G(ω) = iG ′′(ω) = iωη.

At high frequencies ω ≫ t−1e , the topological entanglements are not probed by an applied
deformation and one recovers the single-chain response G ′(ω) ∝ G ′′(ω) ∝ ω3/4, whereby the
solid-like elastic contributions dominate,G ′(ω) > G ′′(ω). As detailed in Sec. 6.1.3, the 3/4 power-
law scaling is expected from the transverse bending response of a wormlike chain [66, 68], but
also for affine longitudinal stretch deformations, where tension propagation can be neglected
(as opposed to pulling/release in a quiescent solvent) [79, 81, 84, 85]. Since the free-energy
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contribution due to tension is much larger then that for bending, Morse [86] argued that the
high-frequency regime is dominated by the stretch response. However, force-balance arguments,
along the lines of the floppy-mode picture established for crosslinked polymer networks [125],
rather suggest nonaffine deformations at the polymer scale, where bending modes take up most
of the macroscopic strain, while longitudinal deformations are strongly suppressed. Compared
to the affine-stretch prediction, this nonaffinity thus yields a softer response and a different
concentration dependence of the modulus [14, 126, 127]—G0 ∝ ρ7/5 vs. G0 ∝ ρ11/5 according to
the tube model, Eq. (7.2), for bending and stretching, respectively.

That nonaffine bending contributions dominate the mechanics of the entangled solutions,
at least at moderate frequencies, is indeed supported by experiments with bundled semiflexible
polymer networks by Lieleg et al. [27], who foundG0 to exhibit two scaling regimes as a function
of the crosslinker–actin molar concentration ratio R. For R < 0.01, their data agree with a
bending-dominated scalingG0 ∝ ρ1.3, independent of R, thereby resembling purely entangled
solutions, while a stretch-dominated regime G0 ∝ ρ2.4 is entered for R > 0.01. The critical
crosslinker concentration R ≈ 0.01 is thereby expected to mark the onset of bundling and, thus,
of interfilament binding. A similar transition from a bending- to a stretching-dominated regime
with increasing (pre-)strain has been observed in collagen networks [128]. This strongly suggests
that the linear response of the entangled solutions is indeed dominated by filament bending
rather than stretching. That the nonaffine contributions become increasingly suppressed with
increasing frequency is suggested by various computational models for crosslinked polymer
networks [129–132]. As we will outline in Sec. 8.5.5, the crossover frequency, as predicted by these
models, is however beyond the frequencies accessible to typical rheometric experiments. It is thus
not yet clear to what degree nonaffinities contribute to the observed high-frequency response of
biopolymer solutions and whether it is dominated by bending or stretching contributions.

For deformation rates around the entanglement frequency, ω ∼ t−1e , the topological confine-
ment determines the response, leading to an approximate plateau G ′(ω) ≈ G0 for the storage
modulus. As described in the previous section, the confinement is released at times longer than
te, so that G ′(ω) again decreases with decreasing frequency ω ≪ t−1e . This gives rise to the
low-frequency power-law regime obtained in purely entangled biopolymer solutions2 [15, 45],
whose onset depends on the underlying relaxation process—for instance, tube disengagement via
reptation or correlated constraint release, as discussed in Sec. 8.1.

I would like to end this section with a few remarks about the experimental techniques that
are usually employed to study the viscoelastic response of biopolymer solutions. The bulk
rheology of a solution is traditionally measured via macroscopic deformations, typical examples
being oscillatory shear mentioned at the beginning of this section. While these experiments
provide information about the global rheological properties, microrheology techniques have
been extensively used in the past to get a more detailed picture of the processes at the level of
the polymeric packing structure [137, 138]. In these experiments, spherical micron-size beads are
either actively pulled (using magnetic or optical tweezers, for instance) or they passively diffuse
through the medium. For the latter, single- and two-point techniques have been developed,
where the fluctuations of a single tracer particle or the correlations between two of them are

2For living cells [40, 102] and some reconstituted actin gels [133], the power-law regime is found to be extended
over all frequencies, with a marked plateau regime being absent. This observation is usually traced back to the
combination of bond kinetics [9, 134] and stiff-polymer physics, which is argued to feature broad distributions of
length, time or energy scales that yield the observed power-law rheology [135, 136].
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recorded. The wanted response functions are then deduced from the data via the fluctuation–
dissipation theorem [73]. Single-point microrheology probes the dynamics of an entangled
polymer solution on a very local scale, yielding an extended plateau regime forG ′(ω < t−1e ). Two-
point approaches, in contrast, resolve correlated collective dynamics, better reproducing the bulk
response, with a low-frequency power-law scaling ofG(ω) as obtained in macroscopic-rheometry
experiments [18]. The differences between local and bulk properties, which are reflected in the
one- and two-point measurements, emerge as a consequence of the polymers’ mesoscale packing
structure. It was shown by Sonn-Segev et al. [139] that a large contrast between the (frequency-
dependent) bulk viscosity ηb = G(ω)/iω and the solvent viscosity ηs leads to a marked increase
of the characteristic length scale at which the bulk response becomes dominant. More precisely,
the (longitudinal) displacement correlations between two tracer particles decay as r−3 for particle
distances r < rc before the asymptotic r−1 decay takes over. The dynamic crossover distance
rc ≈ (ηb/ηs)ξ separates the relative flow between the polymer network and the solvent in the
vicinity of the driven bead from the asymptotic collective (Stokes) flow further away [140]. It can
be notably larger than the mesh size ξ . The larger rc, the larger is the difference between locally
and globally probed mechanical properties of the solution. From this perspective, the observation
that deviations between one- and two-point microrheology become more pronounced as the
filament length is increased [18] is consistent with the experimentally found positive correlation
between filament length and plateau bulk modulus G0 ∝ ηb ∝ rc [14], although this length
dependence is not yet convincingly understood on a molecular level—note that the tube model
predicts G0 to be independent of L, see Eq. (7.2).

Limited to the (near-)equilibrium regime, passive microrhology techniques can only provide
information about the linear response, while analyzing the nonlinear behavior requires to strain
the solution actively. This regime is the subject of the next section.

8.4 Nonlinear response

The nonlinear response to an applied finite shear strain γ is often characterized by the differential
shear modulus K(γ ) = dσ/dγ . It gives immediate information whether the solution becomes
stiffer (dK/dγ > 0) or softer (dK/dγ < 0) upon shearing. The tube-model prediction for the
nonlinear response of an entangled semiflexible-polymer solution was first derived by Morse [87],
who assumed that the tube follows the strain affinely and that the deformation is slow enough that
the polymer’s unconfined bending modes are always equilibrated. He showed that this approach
yields a strain-softening response. Similar behavior was obtained by Fernández et al. [101] from
a unit-cell approach that allows for nonaffine tube deformations. The theoretical prediction of
strain softening has however been challenged by the more complex phenomenology found in
experiments with F-actin solutions, namely a transition from strain softening to stiffening upon
changing various parameters, like solvent or ambient conditions or the shear rate [45, 46, 141]. To
observe this transition in macroscopic-deformation experiments, inelastic flow has to be reduced,
which can be done using short stress or strain-rate pulses [45, 46]. Very recently, Robertson-
Anderson and coworkers reported a similar rate-dependent transition from active microrheology
measurements of entangled DNA [142] and F-actin [143–146]. These authors used optical
tweezers in combination with fluorescence microscopy to apply a local strain to the solutions
while recording the resulting force that acts on the bead and the surrounding deformation/flow
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field. They observed a short-term stiffening response, followed by a softening and a subsequent
viscous-flow regime. The viscous regime was found to exhibit shear thinning, while the stiffening
was found to be more pronounced as the strain rate [143] or the concentration [145] was increased,
in agreement with the earlier bulk-rheology observations [45, 46, 141], although the values of
the local and global strain rates used in the two setups differ strongly, thus making a quantitative
comparison of the different experimental techniques forbiddingly complicated.

The softening–stiffening transition is very similar towhat is observed in transiently crosslinked
biopolymer solutions [9], where it is expected to arise from the interplay between the bond
kinetics and the stiff-polymer physics [26]. For purely entangled solutions, sticky (or frictional)
interactions between the filaments [147, 148] have thus been put forward as a possible explana-
tion for the observed softening–stiffening transition [114, 115]. This idea is also supported by
active microrheology experiments by Dichtl and Sackmann [44], who used magnetic tweezers to
pull a bead, to which they attached a (fluorescently labeled) test filament, through an entangled
F-actin solution. Applying a sequence of force pulses to the bead, they observed that the test
filament remained stuck in a “pinched state” during a few successive pulses before it was released
again and continued to follow the driving force. This suggests that network heterogineities to-
gether with transient interfilament frictional coupling plays an important role for the mechanical
properties of the biopolymer solutions. And it implies that the linear modulus increases with
increasing filament length (via the number L/Le of filament contacts, i.e., entanglement points).
The observed softening–stiffening transition with increasing deformation rate might then be
explained either by a rate-dependent friction [147, 148] or by the viscoelastic single-polymer
stretch response together with the softening response of the tube deformations (see the Appendix
at the end of this chapter).

The analogy of the softening–stiffening crossover with the glass transition [45] brings us back
to the glassy wormlike chain model and the dynamic-tube approaches reviewed in Sec. 8.2. While
these theoretical attempts already hint at the mechanisms that are responsible for the observed
phenomenology, a comprehensive explanation on the basis of the solutions’ microstructure is
still lacking. So far, it is not clear whether transverse–longitudinal coupling via the solvent [82]
plays an important role for the solutions’ nonlinear stiffening response. It might in fact provide a
promising alternative mechanism to the inter-chain friction.

8.5 Crosslinked-network models

From the discussion in the previous sections we learned that the purely entangled semiflexible-
polymer solutions share some phenomenological similarities with (transiently) crosslinked poly-
mer networks, most prominently the softening–stiffening transition, but also the observations
that the plateau modulus of entangled solutions of F-actin and DNA-helix tubes increases with
increasing filament length [14] and, most surprisingly, with increasing persistence length [52,
53] (see Sec. 7.1.2). This suggests to compare the entangled stiff-poylemer solutions with rigidly
crosslinked polymer networks—promising a deeper understanding of the influence of network het-
erogeneities and the nonaffine microscale response to an applied macroscopic deformation [149].
In the following, I summarize the main theoretical progress made in this field during the last years.
For a more comprehensive discussion of the various computational approaches proposed in the
literature I would like to refer the reader to the excellent review by Broedersz and MacKintosh [7].



170 CHAPTER 8. VISCOELASTIC RESPONSE

Besides viscoelasticity, a second paramount characteristic of the mechanics of biological
matter is inelasticity. It refers to the partly reversible damage of crosslinked polymer networks
during deformation and differs from ordinary plastic (i.e., irreversible) response due to rebinding
of unbound crosslinks. When crosslinks start to break under load, rigid networks can become
liquid-like and start to flow. Bond kinetics and the ensuing inelasticity will not be discussed in the
following. A comprehensive overview of its phenomenology and various theoretical modeling
attempts together with an extensive reference list of the relevant literature can be found in
the recent review article by Gralka and Kroy [134]. The current understanding of the behavior
of yield-stress materials in soft condensed matter has recently been gathered and extensively
discussed by Bonn et al. [150].

8.5.1 Affine network models

Most early theoretical attempts to describe the viscoelastic response of biopolymer solutions
rest on the assumption of a homogeneous strain field at all length scales, where each chain
follows the macroscopic deformation affinely [62, 84, 85, 151, 152]. For crosslinked networks,
the affine models attribute the response to the stretch deformation of the filament segments
of length Ls between consecutive crosslinks. The so predicted plateau value G0 ≈ 6ρkBTL2p/L3s
for the linear modulus [similar to the stretching energy scale given in Eq. (7.2), where Ls is
replaced by the entanglement length Le] and the stress dependence K ∝ σ 3/2 for the differential
modulus, characterizing strain stiffening, has been found to be in very good agreement with
experimental data obtained from crosslinked (and bundled) F-actin [133, 153–155], intermediate
filaments [156–158], fibrin gels [159], pectin [152, 160, 161], and synthetic hydrogels [162].

8.5.2 Nonaffinity

Despite their apparent success, affine network approaches were soon challenged by the insight
that nonaffine bending modes are energetically favored, at least at moderate deformation rates
and amplitudes, as already mentioned in Sec. 8.3. Since the total elastic energy of an affinely
strained semiflexible-polymer network can be lowered via relaxing stretching modes at the cost
of the cheaper bending modes, Heussinger and Frey concluded that an affine deformation field is
always unstable [163, 164]. This is particularly important for strongly polydisperse networks,
with a nonvanishing fraction of very short segments. As the entropic tension of a chain segment
decays as L2p/L3 with the segment length Ls [see the force-extension for a WLC in Eq. (6.5)] the
polydisperse networks can built up large residual stresses under purely affine strain fields.

A number of theoretical attempts to account for nonaffine effects make use of a unit cell that
follows the strain affinely while the polymer fibers that pass through this cell are allowed to
minimize the cell’s deformation free energy via nonaffine contributions [101, 126, 127, 161, 165–
167]. As the unit cell usually represents either a cube of edge length given by the network’s mesh
size ξ or an entanglement element given by a tube segment of length Le [101, 126], heterogeneities
and correlations at the level of the filament length L are neglected. That nonaffinity on the scale
L plays an important role for the mechanics of stiff-polymer networks was however shown
for computationally solved whole-network models. First insight came from athermal so-called
Mikado models, where rods are placed randomly on a plane to form a two-dimensional network,
whose response to a macroscopic low-frequency strain is obtained by numerically minimizing its
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overall elastic energy that comprises bending and stretching contributions of the filaments [168–
170]. Later studies have used lattice based network models to further elaborate on this [7, 171].
In the athermal, purely mechanical limit, often employed in these approaches, the filaments’
stretch response is either modeled by that of an elastic beam or fiber of fixed (one-dimensional
Young’s) modulus µ, whereas entropic contribution that are expected for semiflexible polymers at
finite temperature are neglected. To account for such entropic effects, the modulus µ ∝ kBTL

2
p/L

3
s

obtained for a WLC segment of length Ls, Eq. (6.5), can be used for the considered low-frequency
deformations where all bending modes are assumed to remain equilibrated. The strongly length-
dependent µ makes these thermal networks more sensitive to polydispersity and randomness
than the purely mechanical networks with µ = const. [164, 172].

The athermal Mikado networks revealed an interesting crossover behavior. For infinitely long
filaments, bending modes were found to be suppressed, while the stretching modes dominated
the affine elastic response. For filaments of finite length, in contrast, an elastic regime was
identified that is dominated by soft nonaffine bending deformations, and which crosses over to an
affine stretch-dominated regime once a critical density or a critical filament length are exceeded.
Wilhelm and Frey [168] interpreted the nonaffine–affine (bend–stretch) transition in terms of
a rigidity percolation, with a critical density ρc of the filament network that determines the
transition point. Their scaling-law prediction for the elastic modulus yields the affine/nonaffine
limit for

√
κ/µ(ρ − ρc) much larger/smaller than unity. Here, κ is the filaments’ bending rigidity

and µ their length-independent stretch modulus.3 For two- and three-dimensional lattice-based
models, this idea was later substantiated by Broedersz et al. [173], who identified two transitions
points. First, a high-density threshold is found, given by the classical Maxwell isostatic connec-
tivity threshold, when bending is switched off (κ = 0) [174–176]. The networks’ rigidity is then
controlled by their connectivity (rather than the polymer concentration, which neglects the above
mentioned stabilization effect for longer filaments). The soft–rigid crossover corresponds to the
jamming transition for granular materials [176–178]. At the isostatic point, the networks become
critical and exhibit diverging nonaffine fluctuations and a diverging length scale; the elastic
modulus takes the role of the order parameter [7]. As bending contributions are switched on
(κ > 0), a second threshold emerges discontinuously at a lower density (i.e., lower connectivity),
which marks the onset of network rigidity. The isostatic threshold at higher connectivity becomes
smeared out, representing the bending–stretching transition found in the Mikado model. The
bending rigidity thus plays the role of an applied field or coupling that shifts the critical point
(discontinuously) to a lower connectivity, once it is switched on [7]. Subisostatic networks at the
margins of mechanical stability can be made rigid by additional weak interactions [175], viscous
damping due to the solvent [129–131], internal and external stresses [179–181], externally applied
strains [182, 183], and thermal fluctuations [172, 184].

3An alternative interpretation of the mechanical response of the Mikado networks was proposed by Head et
al. [169, 170]. They argued that the total elastic energy of the network is minimized by relaxing the stretch contributions
at the ends of a test filament of total length L, at the cost of exciting softer bending modes of the filaments to which the
test filament is connected. The nonaffine–affine transition is then characterized by the length LNA ≈ Ls(Ls/

√
κ/µ)ν

(with ν = 2/5 for dense networks) over which the test filament’s stretch contributions relax, LNA ≪ L corresponding
to the bending-dominated nonaffine regime, LNA ≫ L to the stretching-dominated affine regime. Shortcomings of
this approach are, however, that the exponent ν does not seem to be universal (for less dense networks, simulations
yield ν = 1/3) and that it does not capture the correct behavior (G0 → 0) at the rigidity threshold [7].
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8.5.3 Floppy-mode theory

Based on the insight gained from the Mikado model approaches, Heussinger, Frey, and cowork-
ers [125, 185] developed a floppy-mode theory, from which they estimated the contribution
of nonaffine zero-energy deformation modes to the elastic response of such networks, when
the filaments have a vanishing bending rigidity. A qualitatively similar behavior is expected
whenever the bending modes remain much softer than stretching modes, as it is the case for the
biopolymer networks. The basic idea underlying the floppy-mode approach is that the amplitude
of transverse bending deformations does not scale with the segment length Ls but with the
total length L of the filament, in order to avoid stretching of the other filaments to which they
are connected.4 This yields a bending energy per segment of the form κL2/L3s to lowest (i.e.,
harmonic) order in the transverse deformation amplitude, corresponding to a static modulus

G0 ∝ cκL3/L4s ∝ κL2ρ1+4/(d−1) (8.9)

in d dimensions, where Ls ∝ ρ−1/(d−1). This scaling, with Ls representing the mean segment
length, is only valid if the segment-length distribution is peaked around the mean, as it is the
case for lattice based models [171, 186]. For the two-dimensional Mikado models, however, the
distances between intersecting filaments follows an exponential distribution, yielding a diverging
average bending energy when all segments would contribute equally. Heussinger and Frey thus
introduced a cutoff mode, based on the insight that too short floppy modes cease to be floppy.
So, they argued that the bending energy of the shortest fiber segment that contributes to the
overall elastic energy is on the same order as the floppy-mode energy of a whole filament, such
that bent shorter segments can relax by exciting floppy modes. This yields a static modulus
for the two-dimensional Mikado network of the form G0 ∝ κL4ρ7, in good agreement with the
simulations [168].

Equation (8.9) provides an interesting answer to the question whether bending or stretching
dominates the network mechanics. It is clear that the modulus is bounded from above by its affine
stretch-dominated limit G ≈ ρµ. This limit is thus reached, when L in Eq. (8.9) for the nonaffine
modulus exceeds the critical value LNA ∝ L2c

√
µ/κ ∝ ρ−2/(d−1)

√
µ/κ at the nonaffine–affine (bend–

stretch) transition. Deviations of this prediction from the numerically obtained Mikado-model
scaling LNA ∝ L1+νc

√
µ/κ with ν = 0.3 . . . 0.4 [169, 170], may be a consequence of the strongly

polydisperse fiber-segment lengths, as opposed to the (three-dimensional) lattice-based models.
For the latter, floppy-mode counting, similar to Maxwell’s [187, 188] classical estimate for the
rigidity threshold for central-force interactions (here, extended to three-node constraints due to
the non-zero bending stiffness), can be employed to predict the numerical values of the critical
network density at the bend–stretch transition as a function of the network dimension and the
lattice geometry [7, 173].

4Averaging out the relative angle between two connected filaments, one obtains that the transverse deflection δr⊥
of a test filament follows the distance ∆Rc.m. between the centers of mass of the two connected filaments, δr⊥ ∝ ∆Rc.m..
Assuming that the distance ∆Rc.m. between the centers of mass of two connected filaments follows the strain γ affinely,
this yields δr⊥ ∝ ∆Rc.m. ∝ γL, where we used ∆Rc.m. ≈ (V /N )1/d ∝ (Ld/2)1/d ∝ L for the distance between the
N = 2 crosslinked filaments whose centers of mass must both be located in a cylinder of volume V ∝ Ld , in d
dimensions [185].
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8.5.4 Nonlinear response

In the nonlinear response regime, permanently crosslinked networks exhibit strain stiffening,
once some critical strain amplitude γc is exceeded [155, 182]. From the affine mean-field picture,
one expects stiffening to set in when the end-to-end distance ≈ L − L2/6Lp, Eq. (6.6), of the
polymer segment is stretched to a length γcLs at which the bending fluctuations of the polymer
are pulled taut, thus [7]

γc ≈ Ls/6Lp . (affine theory) (8.10)

The two-dimensional Mikado models [168–170] and three-dimensional crosslinked-network sim-
ulations [189, 190] showed that the nonaffine contributions to the response become increasingly
suppressed with increasing strain γ . For the network models, the onset of the stiffening has thus
been interpreted as a strain-induced transition from the soft nonaffine bending-dominated regime
to the stiff affine stretching-dominated one [191]. Within the floppy-mode theory, transverse
deflections of a bent filament scale as γL and go along with an axial deformation of a segment on
the order of δ 2⊥/Ls [27]. Nonlinear contributions are assumed to become noticeable once bending
(κγ 2L2/L3s) and stretching (µγ 4L4/L3s) contribute similarly to the total elastic energy, thus [7]

γc ≈
√
κ/µ/L = L−1/2p L3/2s L−1 , (floppy-mode theory) (8.11)

where the second relation is obtained for the entropic semiflexible-polymer modulus µ = κLp/L3s .
Note that the floppy-mode theory predicts the linear-response regime to vanish as the filaments
become infinitely long (L ≫ Ls, with fixed Lp).

In contrast to most elastic materials, biopolymer networks are usually found to contract or
build up negative normal stresses in response to a uniaxial extension or shear, respectively [192].
This nonlinear effect is due to the nonlinear and asymmetric force-extension relation, which
can arise either from the entropic polymer response or from collective buckling of the athermal
filaments under compression [Majumdar2017, 185, 193]. It thus crucially depends on the strain-
induced filament reorientation and ensuing alignment [96, 189, 194, 195]. The latter can also
importantly contribute to the stiffening. Based on their simulations of two- and three dimensional
crosslinked fiber networks, Huismann, Onck, van Giessen, and coworkers related the negative
normal stresses to the nonaffine network rearrangements that govern the gradual transition
from a bending- to a stretching-dominated regime as γ increases [189, 191]. Later, the same
group identified stress-chains in the simulated networks, which they argued to be responsible
for the stiffening, namely, at smaller strains, when these chains are pulled out and, at larger
strains, when the stress-chains are reoriented [196]. Again, they obtained the former regime
to be bending-dominated, the latter stretching-dominated. A similar behavior was recently
obtained by Amuasi et al. [197] from simulations of semiflexible-polymer networks—with a
slightly different interpretation though. These authors found the tensile filaments to be pulled
into the stretch direction by the (many) surrounding polymers, the latter thereby building up
large stresses that are stored in their bending modes. In this order—first reorientation, then
pulling out undulations—the two response regimes seem in fact more plausible. They lead to an
intermediate non-affine bending-dominated stiffening (K ∼ eσL/G0 ), which turns into the affine
stretch-dominated regime (K ∼ σ 3/2) at large strains.
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8.5.5 Network dynamics and viscoelasticity

In the above, we only reviewed the quasi-stationary, purely elastic (ω = 0) response of the polymer
networks. The linear viscoelastic response of a random spring network has been investigated
by Tighe [129] and Yucht et al. [130]. They described the dynamics of the end nodes of a spring
segment deterministically, driven by the axial harmonic force and by a viscous solvent that follows
the strain affinely. Recall that in the absence of bending contributions these networks exhibit a
rigidity transition in the zero-frequency limit (ω = 0), characterized by a continuously vanishing
elastic shear modulus as the network connectivity approaches the isostatic point [173, 174]. As the
frequency is increased (ω > 0), this critical point, which separates fluid from solid-like behavior,
expands into a critical region where loss and storage moduli are comparable [G ′′(ω) ≈ G ′(ω)].
One thus obtains three regimes: a low-connectivity fluid-like, a high-connectivity solid-like, and
an intermediate critical phase.

In the (very) high-frequency limit, the viscous drag between the affinely deforming solvent
and the network dictates the response. It then becomes affine, independent of the network
connectivity [130]. Balancing tension and drag on a fiber segment of length Ls, the nonaffine–
affine crossover frequency is given by ωNA = (µ/kBTLs)/(4πηsa), with µ being the stretch
modulus, ηs the solvent viscosity, and a the hydrodynamic size of the network nodes. However,
if this crossover behavior at ωNA is applicable to typical biopolymer experiments is questionable.
While the solvent-dominated regime (ωNA > ω) is characterized by a linear scaling G ′′(ω) ∼ ηsω
for the loss modulus, most experimental data for biopolymer networks feature the semiflexibility
scaling G ′(ω) ∝ G ′′(ω) ∝ ω3/4 for the fastest accessible rates. Solvent contributions are then
expected to become paramount at even higher frequencies, beyond what is experimentally
accessible.5 For slower deformations (ω < ωNA), nonaffine contributions were shown to become
increasingly pronounced with decreasing frequency. Nonaffine deformations would then also
play an important role at all experimentally accessible frequencies.

In a recent study, Dennison and Stark [131] confirmed the above findings using an elaborate
hybrid molecular-dynamics/multiparticle-collision-dynamics simulation technique. It allowed
them to account for thermal fluctuations of the network and to explicitly incorporate hydrody-
namic interactions (via fictitious fluid particles). In agreement with earlier work by Dennison
et al. [184], the thermal fluctuations were found to stabilize networks at and below the critical
point, as long as the frequency is not so large that the fluid character takes over. As a general
observation, stronger hydrodynamic interactions led to an increased frequency dependence of
the linear modulus, a faster relaxation, and a more affine response.

The bending contributions to the viscoelastic response of crosslinked networks were recently
discussed by Rizzi et al. [132]. They used a computational approach very similar to the one
proposed by Yucht et al. [130], but with length-dependent moduli for the fiber segments, as
expected for (athermal) slender elastic beams. From their—somewhat preliminary—simulations,
Rizzi et al. found the soft nonaffine bending modes to be successively suppressed as ω increases.
This observations was, however, not worked out systematically and a convincing explanation
how the nonaffin/affine response is influenced by the interplay of the viscous solvent and the

5For typical biopolymer networks, the nonaffine–affine crossover frequency is expected to be on the order of
600 s−1, beyond the limits of macrorheometry, but accessible to microrheological techniques [15]. This estimate
is obtained for the entropic semiflexible-polymer modulus µ ≈ kBTL2p/L

3
s and the values 4πηs ≈ 3 s for water and

Lp ≈ 17 µm, Ls ≈ 2 µm, a ≈ 10 nm for crosslinked semidilute F-Actin.
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frequency-dependent stretching and bending contributions of the polymer network is still lacking.
An extension of the floppy-mode theory to the frequency-dependent dynamic response was

recently established by Plagge et al. [198]. These authors used an effective-medium approxima-
tion [185], where the energy contained in a floppy mode of given amplitude is balanced with
the average bending-energy contributions of the test filament and floppy-mode contributions of
the attached neighboring (“effective-medium”) filaments. Expanding the floppy-mode energy to
harmonic order in the deformation amplitude, a self-consistent equation for the stiffness of the
effective medium can be derived. Plagge et al. solved it numerically to compute the frequency-
dependent microrheological modulus д(ω) from the nonaffine response of the test filament. In a
second step, they introduced transient crosslinks to this model on a coarse-grained level, namely
by connecting the viscoelastic single-chain element with a dashpot of viscosity ηcl (along the
lines of a standard Maxwell element). The overall microrheological modulus д(ω) then follows
from 1/д(ω) = 1/д(ω) + 1/(iωηcl). This yields a Maxwell-like peak for the loss modulus, which is
thus assumed to represent the terminal stress relaxation due to the transient crosslinks that need
to break before the system can flow. Such a low-frequency peak in G ′′(ω) has been observed
for transiently crosslinked biopolymer networks [27, 31, 136] and is characteristic for purely
entangled biopolymer solutions [11, 15, 199]. For the latter, it is traced to the long-time relaxation
processes, like tube disengagement and collective constraint release, discussed in Sec. 8.2 (see,
e.g., Ref. [67]). Plagge et al. further used their model to address the nonlinear response of the
crosslinked networks. To this end, they introduced crosslinks with a load-dependent unbind-
ing rate, which allowed them to reproduce the rate-dependent softening–stiffening transition
discussed in Sec. 8.4.

8.5.6 Conclusions and implications for entangled biopolymer solutions

Now the question is, of course, to what extend insights that have been gained from the crosslinked
polymer networks carry over to the entangled biopolymer solutions. Here, I give a short list of
some suggestive analogies between the two systems and their possible implications for future
theoretical work. The drawn conclusions are, however, of somewhat speculative character and
should be taken with some caution.

1. In the absence of crosslinks, both soft bending and slippage at the entanglement points
contribute to the floppy modes, suggesting a markedly nonaffinity response.

2. The positive correlation between the plateau modulusG0 and filament length L [14] might
by explained along the lines of the rigidity transition [168]. This, however, seems to require
sticky/frictional polymer contacts in order for a percolated network to be formed.

3. Such frictional interactions (arguably, together with some finite prestrain) may also explain
the increase of G0 with increasing persistence length Lp [52, 53].

4. The crosslinked networks exhibit a rigidity transition as the connectivity [168–170, 173]
(i.e., concentration and/or fiber length), fiber bending rigidity [173, 175], shear rate [129,
130], or some finite (pre)strain [182, 200] are increased. This is to some extend similar to
the nonlinear softening–stiffening transition observed for F-actin solutions as the poly-
mer concentration, filament length, shear rate, salt concentration are increased or the
temperature is decreased (corresponding to an increased persistence length) [45, 46].
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5. At high frequencies, hydrodynamic interactions might suppress nonaffinities and facilitate
the excitation of stretch modes, yielding a stiffer response [130].

Interpreting these similarities can be problematic because of various complications. Simple
geometric arguments, for instance, forbid axial stretch deformations to be exited to linear order
in the strain. However, it seems plausible that local prestresses in the entangled (but sticky)
biopolymer solutions are inevitable created during sample preparation. They can give rise to a
linear coupling between the transverse and longitudinal deformation of a filament. This is what
we tacitly assumed in our approach proposed in the Appendix.

An alternative starting point might be to combine Morse’s tube model [6] with Heussinger’s
floppy mode theory [125]. The backbone and shape of the tube would then respond nonaffinely.
Following Fernandez et al. [101] (see also Ref. [96], appended to Chap. 7), the overall free energy
per tube segment comprises bending and confinement contributions. But, since the transverse
deflections are assumed to scale linearly with the filament length, according to the floppy mode
theory, the bending contributions would dominate the linear response, yielding a plateau modulus
G0 of the form given in Eq. (8.9). From such a nonaffine response one thus expectsG0 to increase
both with increasing filament length L and with increasing persistence length Lp (the value
of the exponent for the latter depending on the actual form of the segment length), without
the necessity of sticky polymer contacts. The softening–stiffening transition might then be
explained along the same lines. Namely, not in terms of a transition from a bending-dominated
to a stretching-dominated regime, but due to the reorientation of some tubes (of length L) into
the mean stretch direction. The strongly increasing number of exited bending modes of the
neighboring transverse tubes that pull on the rotating tubes is then responsible for the stiffening
response, similar to what was obtained by Amuasi et al. [197] for the crosslinked networks. It is
plausible that this pulling–reorientation mechanism requires a minimum polymer concentration,
tube (i.e., filament) length, tube bendingmodulus (which increases with increasing shear rate), etc.,
thereby providing an explanation of the softening–stiffening transition observed for entangled
biopolymers.

Definite answers surely require further experimental and theoretical studies. Here, computer
simulations seem particularly promising as they allow for a systematic analysis of the various
deformation modes and the influence of parameters like filament length, persistence length,
and stickiness on the mechanical properties of the solutions. With the computational power
available today, we are however just at the edge of resolving the dynamics of the tightly entangled
solutions. The recent effort by Lang and Frey [90] provides an impressive example, with reduced
concentration L2pρ on the order of 104 and simulation times long enough to investigate the
(transient) confinement, although the filament length used in their simulations seems to be too
short to apply their interpretation to typical F-actin experiments [see the remarks bellow Eq. (8.6)].
The limitations become even more visible as one tries to take hydrodynamic interactions into
account. This was recently done by Nikoubashman and Howard [201], who used a hybrid
molecular-dynamics/multiparticle-collision-dynamics algorithm to simulate semidilute polymer
solutions together with a solvent represented by fictitious fluid particles. With L2pρ ≤ 250 these
solutions are however not tightly entangled; and, in order to keep the monomer number low, they
used a polymer aspect ratio a/L ≈ 10−2 that is much larger than for F-actin (on the order of 10−3).
Breaking these limits might nevertheless be possible in the near future with the help of massively
parallel algorithms processed on modern graphics processing units (see, e.g., Ref. [202]).
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A central task in biomechanics is to establish a physical understanding of the unique mechanical
properties of living cells and tissues in terms of the material properties of their polymeric con-
stituents. We propose an analytical model for the linear and nonlinear viscoelastic shear response
of solutions of stiff polymers. It integrates locally non-affine bending deformations as captured by
a hybrid tube/effective-medium model with transient polymer stretching and elucidates the crucial
role of the polymer length for the macroscopic mechanical response.

I. INTRODUCTION

The insight that packing structure, phase behavior,
and mechanics of semidilute polymer solutions is deter-
mined by highly correlated fluctuations, akin to those
at a critical point, marks a historical paradigm shift in
polymer physics [1]. But for stiff biopolymers, such as
those responsible for the remarkable mechanical proper-
ties of your own cells and tissue [2–4], the necessity to
pay attention to small self-affine fluctuations around the
straight ground state seems less compelling than in the
case of their much floppier synthetic relatives. First the-
oretical evidence for the relevance of nonnaffine contribu-
tions for the mechanics to such stiff-polymer systems was
provided by thorough studies of idealized “mikado” mod-
els [5–7] and random or lattice-based fiber networks [8, 9].
Their mechanical response to a macroscopic strain is
determined by bending and stretching contributions of
the filaments to the overall mechanical free energy of
the network [5–7]. For polymers close to the rod limit,
these two deformation modes become very distinct—stiff
polymers bend much easier than they stretch or buckle.
The strong free-energy separation was employed to for-
mulate a floppy-mode theory that tries to account for
some of the soft bending fluctuations of the stiff poly-
mers in a network [10, 11]. It has on the other hand
been argued that the two deformation modes give rise
to two different types of networks of stiff polymers [12]:
softer ones dominated by fluctuations and entanglements
and described by the tube model of semiflexible poly-
mers [13, 14]; and stiffer ones dominated by (transient)
crosslinks, commonly described by an affine rubber-like
network model [15]. As an experimental criterion the ab-
sence or presence of stiffening in the nonlinear shear re-
sponse has been proposed [12], whereby strain stiffening
is usually traced back to stretch deformations of polymers
that are aligned into the strain direction [16]. Later on,
experimental progress has revealed that the issue is even
more subtle, however, and that even pure F-actin solu-
tions stiffen under prestress if inelastic flow is minimized,
with the degree of stiffening changing continuously as a
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function of system parameters (such as polymer length,
concentration, and shear rate) and ambient conditions
(e.g., temperature and ionic strength) [17, 18]. A simi-
lar transition from softening to stiffening with increasing
deformation rate was recently observed from active one-
point microrheology measurements [19]. The rapidly re-
laxing (and relatively weak) stiffening reflected by these
data should however be interpreted carefully, since such
locally probed rheology can differ strongly from the bulk
response [20]. A first attempt towards a theoretical de-
scription of the linear and nonlinear viscoelastic response
of semiflexible-polymer solutions was recently proposed
by Plagge et al. [21], who extended the earlier static ver-
sions of the two-dimensional mikado models to account
for thermal fluctuations and reversible crosslinks.

Besides the softening–stiffening fingerprint in the non-
linear rheology, recent experimental observations in the
linear regime also challenge the widely accepted theo-
retical concepts. A thorough analysis of entangled so-
lutions of semiflexible DNA helix tubes, whose stiffness
can by tuned through their diameter, provides clear ev-
idence that even the linear rheology deviates qualita-
tively from the theoretically expected scaling laws for
pure solutions and is rather reminiscent of (transiently)
crosslinked networks [22]. Similar deviations have been
observed for reconstituted biopolymer solutions, where
the ionic strength of the buffer had been varied to alter
the filaments’ persistence length [23]. It is hard to see
how these fundamental effects could be integrated into
any of the prevailing schemes, which have moreover been
criticized for their ad hoc affine assumptions [11]. Finally,
the widespread observation of effective power-law rheol-
ogy of the cytoskeleton [24] suggests that neither the tube
model nor the affine network model represents an appro-
priate approach to describe the viscoelastic passive rheol-
ogy of living cells. Instead, the concept of inter-molecular
friction seems to be a recurrent property responsible for
a great part of the above outlined phenomenology, as it
notoriously intensifies the hindrance and caging effects
at the contact (or “entanglement”) points of the chains
in solution [25], closely akin to a transiently crosslinked
gel. The latter analogy is also theoretically suggested
from the pertinence of binding site models that relate
mesoscopic friction to the formation and rupture of mi-
croscopic bonds, i.e., of transient crosslinks [26, 27].

In the following, we outline an approach to the lin-
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ear and nonlinear viscoelastic response of entangled so-
lutions of stiff polymers that overcomes several of the
limitations of previous attempts. Among them is the
assumption of affinity of the longitudinal polymer defor-
mations down to the entanglement scale. It is dictated
by a twofold application of the phenomenological tube
concept in the conventional theory [13, 28]. The first
(uncritical) application serves to estimate the transverse
confinement and deformation free energy of a test poly-
mer by entanglements, which yields a contribution G⊥
to the shear modulus. Additionally, a tube-like confin-
ing potential is also assumed to represent the caging of
the test polymer during transient longitudinal stretch-
ing. On this basis the second, affine contribution G‖
is derived in the same way as for crosslinked networks
with entanglements playing the role of crosslinks. We
here relax this latter constraint by embedding the tube
into a soft viscoelastic medium that effectively represents
its transient environment. Hence the relaxation of long
wavelength modes of the polymers is not a priori blocked
by the tube but merely strongly slowed down. A concep-
tually similar effective medium approach has been pro-
posed earlier by Morse [29]. Its qualitative scenario is
very much akin to the one underlying the so-called glassy
wormlike chain (GWLC) model [30, 31] that effectively
liberates the tube to wander between energetically equiv-
alent configurations separated by free energy barriers.
Based on the transient-tube picture, a second profound
modification of the conventional approach becomes possi-
ble, namely to allow for some frictional coupling between
the stiff longitudinal deformation modes and the over-
all affine background deformation for polymers of finite
length.

As detailed in Sec. III, these two modifications allow
us to unite elements of the conventional viscoelastic tube
and network models on a new basis and, at the same
time, resolve the opposition between these models and
the ubiquitous observations of apparent power-law rhe-
ology. Additionally, the crucial role played by (zero-
energy) floppy modes and the polymer length in this re-
gard is revealed. The theory provides predictions for the
full frequency-dependent linear and nonlinear dynamic
response. It further offers a plausible explanation for
the above mentioned experimentally observed nontriv-
ial concentration (and persistence-length) dependence of
the quasi-stationary response that is in apparent conflict
with the traditional tube model.

The rest of the paper is organized in three succinct sec-
tions, with the focus on conceptual aspects and technical
details deferred to four appendices. Section II introduces
the constituent parts of the model. Its predictions for the
linear and nonlinear viscoelastic response are presented
in Sec. II. We conclude with a summary in Sec. IV, where
we briefly discuss possible applications and extensions of
the presented work.

II. MODEL

As a starting point, consider a quasi-static periodic
shear deformation, fast enough that the entangled net-
work topology can be regarded as approximately fixed,
but slow enough that it does not couple longitudinally
to the polymers, which have a finite contour length L.
Hence, the polymers can maintain their stiff longitudi-
nal modes equilibrated inside their tube-like cages, while
the latter suffer from transverse deformations (squeezing
and bending). Under such circumstances the network
may be modeled as an effective homogeneous elastic solid
embedded into a viscous solvent, with its osmotic com-
pressibility and shear elasticity resulting essentially from
the tube-like lateral confinement of the thermal contour
undulations of the polymers. Based on this intuitive pic-
ture, the tube model of semiflexible polymers [13, 32, 33]
yields a linear plateau modulusG⊥0 = ρkBT/Le. Here ρ is
the contour length concentration and Le = 3.0ρ−2/5`

1/5
p

the entanglement length. We relate the frequency depen-
dence G⊥(ω) = G⊥0 /χ⊥(ω) of the linear shear modulus to
the dynamics of a stiff chain that is confined to a dynamic
tube that itself is embedded in an elastic medium [29].
The overall dynamics is then obtained as the superposi-
tion

χ⊥(ω) = χSTA(ω) + χEMA(ω) (1)

of the static-tube (STA) and the elastic-medium (EMA)
contributions. The elastic medium accounts for the tube
relaxation on intermediate times scales, larger than the
entanglement time ω−1

e , which is typical relaxation time
for the bending fluctuations of the confined polymer, but
short enough that the tube fluctuation modes are still
much shorter than the polymer length. The latter as-
sumption suggests to describe the elastic medium as a
two-dimensional membrane that is pierced by the tube
(see Fig. 1a), whereas three-dimensional deformations
of the medium become important for tube deformations
comparable to the polymer length. Explicit expressions
for the two contributions χSTA(ω) and χEMA(ω) are de-
rived in Appendices A and B, respectively. Equation (1)
combines the chain dynamics at high frequencies, as de-
rived from the static-tube approach (STA), with the re-
laxation of the surrounding network at low frequencies,
obtained from the elastic-medium approach (EMA). The
resulting crossover of the hybrid STA/EMA model is il-
lustrated in Figs. 1b and 1c for the transverse MSD of a
test chain in the solution and the linear shear modulus,
respectively.

For the general case, where coupling of the effective
medium to the longitudinal modes has to be taken into
account, the total shear stress amplitude σω for a macro-
scopic periodic shear deformation of frequency ω and
strain amplitude γω is decomposed into the “transverse”
effective medium contribution G⊥(ω)γω and a “longitu-
dinal” single-polymer contribution G‖(ω)γ‖ω [34]:

σω = G(ω)γω = G⊥(ω)γω +G‖(ω)γ‖ω (2)
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FIG. 1. Transient tube model for entangled stiff-polymer solutions. (a) Transverse fluctuations of a test chain (green) are
confined to a tube-like cage (blue) formed by neighboring filaments; the (one-dimensional) tube is embedded into a two-
dimensional elastic medium that represents the surrounding solution. (b,c) Combining the static tube (STA, dotted lines) with
the two-dimensional elastic medium approach (EMA, dashed lines) yields a hybrid response (STA/EMA, solid lines) that is
characterized by logarithmic long-time tails for the transverse MSD 〈δr2

⊥(t)〉, corresponding to the logarithmic scaling of the
linear storage and loss modulus G′(ω) and G′′(ω) for low frequencies, very much reminiscent of frequently observed power-law
rheology.

The frequency dependence G‖(ω) = G
‖
0/χ‖(ω) with

G
‖
0 = 6ρkBT`

2
p/L

3
e is taken from the stretch response

of a wormlike chain of length Le [35] (see App. D). Now,
our central idea is that the effective medium should be
treated as a viscoelastic solvent that pulls on the lon-
gitudinal stretching modes of the individual polymers if
the solution is sheared at higher frequency. It “buffers”
the macroscopic excitation of the stiff modes featuring in
the affine network models, so that γ‖ω ≤ γω (see Fig. 2a).
Note that the stretching modes are excited in the linear
regime, in contrast to the floppy-mode picture, where
stretching contributes to second order only [10, 21, 36].
For the fully coupled or “crosslinked” case, one expects
the effective medium to take up the deformation mis-
match γω − γ‖ω. To linear order, force balance then re-
quires

ΓG⊥(ω)(γω − γ‖ω) = G‖(ω)γ‖ω . (3)

Since the stress contributions of the effective-medium
chains add up to the total tension felt by the test poly-
mer of length L, the coupling parameter is expected to
be of the form [37]

Γ = Γ0(L/Le)2 , (4)

with an effective friction coefficient Γ0. For frictional
polymer contacts, one expects Γ0 to depend logarithmi-
cally an the shear rate [27], but, for simplicity, we neglect
such a possible dependence in the following.

To generalize the model, we additionally want to allow
for some slippage sγω with s ≤ 1 between the effective
medium and the test polymer, which we anticipate to
become most important in merely physically entangled
solutions subjected to high strains and stresses. Hence,

substituting (1−s)γω for γω in the force balance, Eq. (3),
the full constitutive equation reads

γ
‖
ω

γω
= 1− s

1 +G‖(ω)/[ΓG⊥(ω)] . (5)

In the limit of very stiff polymers, G‖(ω) � ΓG⊥(ω),
the effective medium takes up all the strain, γ‖ω ∼ 0,
whereas the usual affine deformation rule γ

‖
ω ∼ γω is

recovered in the long-polymer or strong-coupling limit
G‖(ω) � ΓG⊥(ω). Note, however, that the total shear
modulus G(ω), as defined in Eq. (2), does not converge
to the conventional form in the latter case, but rather to
a hybrid mixture of the effective medium and the single-
chain predictions.

III. RESULTS

A. Linear response

To convey a general impression of the theory, we first
consider its prediction

G(ω) = G⊥(ω) +
(1− s)G‖(ω)

1 +G‖(ω)/[ΓG⊥(ω)] (6)

for the linear shear modulus.
Figure 2b illustrates the dependence of the plateau

modulus G0, which we identify with the linear elastic
modulus at the entanglement frequency, G0 ≡ G′(ωe),
on the concentration and the length of the polymers. A
good approximation to the full expressions used in this
plot can be obtained by substituting G⊥0 for G⊥(ωe) and
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FIG. 2. Linear shear response. (a) The macroscopic deformation γ is shared among the bent background polymers (red),
whose transverse fluctuations follow the transient tube model (STA/EMA, see Fig. 1), and the test polymer (green) that
is longitudinally stretched by a strain γ‖. (b) The plateau modulus G0 ≡ G′(ωe) as a function of the reduced polymer
concentration ρ`2

p, computed from Eq. (6) with s = 0, echoes the two contributions to the network’s rheology: a bending-
dominated dilute/flexible regime (ρ`2

p � c) where G0/(kBTρ/`p) ∝ (ρ`2
p)2/5 and a stretch-dominated dense/stiff regime (ρ`2

p �
c) where G0/(kBTρ/`p) ∝ (ρ`2

p)6/5. (c) Frequency-dependent storage and loss modulus G′(ω) and G′′(ω) for various coupling
strengths Γ.

G
‖
0 for G‖(ωe) in Eq. (6):

G0/G
⊥
0 ≈ 1 + (ρ`2

p/c)4/5 (7)

Here, we identified the characteristic reduced concentra-
tion c, which decreases monotonically with the polymer
length L according to

c4/5 = 2/3
1− s

(
1 +

6`2
p

Γ0L2

)
. (8)

For dilute systems of more flexible poylmers, ρ`2
p � c,

Eq. (7) yields the tube-model prediction G0 ∼ G⊥0 , while
the stretching contributions dominate the dense/stiff
regime, ρ`2

p � c, where G0 ∼ G‖0, such that

G0/kBT ∝
{
ρ7/5`

1/5
p , (ρ`2

p � c)
c−4/5ρ11/5`

7/5
p . (ρ`2

p � c)
(9)

As recently reviewed by Tassieri [23], similar scaling
regimes have been observed for pure entangled solutions
of in vitro reconstituted F-actin [38], intact cardiac thin
filaments [39], and DNA helix tubes [22]. The inter-
molecular friction and stickiness mentioned in the in-
troduction might serve as a possible mechanism under-
lying such gel-like rheology despite the absence of any
crosslinker molecules. The positive correlation between
of G0 and the polymer length L predicted by Eq. (7),
in particular the crossover form a length-independent
G0 (for ρ`2

p � c) to the quadratic scaling G0 ∝ L2

(for ρ`2
p � c) as the filaments become longer, has also

in agreement with experiments of pure F-actin solu-
tions [33, 40] and cross-linked actin networks [41]. The
data of Ref. [41] moreover suggest the shape of G0(L)
to turn from convex to concave as the rigidity of the

crosslinks increases, as also expected from our model,
namely from d2G0/dL2 ∝ 1 − (Γ0/2)(L/`p)2, if we as-
sume that the coupling strength decreases with increas-
ing crosslink rigidity, such that d2G0/dL2 > 0 for flexible
and d2G0/dL2 < 0 for rigid crosslinks, corresponding to
Γ0 < 2(`p/L)2 (i.e., weak coupling) and Γ0 > 2(`p/L)2

(strong coupling), respectively.
We next turn to the frequency dependence of the lin-

ear response. With typical in vitro solutions of F-actin
in mind [42, 43], we set `p = 17 µm and ρ = 104`−2

p ≈
40 µm−2 [29] in Fig. 2c. This plot depicts the real and
imaginary parts G′(ω) and G′′(ω) of G(ω) for various
filament lengths L, which reproduces not only the gen-
eral shape but also the dependence on polymer length
measured in macroscopic rheology (see, e.g., the data by
Hinner and Sackmann reproduced in Ref. [29], in partic-
ular the widening of the gap between G′(ω) and G′′(ω)
at high frequencies for short polymer lengths) and two-
point microrheology [44]. Passive one-point microrheo-
logical measurements with small beads can plausibly not
excite the longitudinal modes contributing to G(ω) effi-
ciently [20] and have indeed convincingly be explained by
assuming a coupling via transverse single-polymer modes
to the effective medium background alone [44].

B. Nonlinear response

Next, we explore the potential of the model to account
for complex features in the nonlinear rheology of stiff
polymers and consider the frequency-dependent differen-
tial modulus K(ω, γ) = dσω/dγ, which is nothing but the
linear modulus G(ω, σω) at a prestress σω built up during
the deformation of strain γ (at shear rate γ̇ = ω/2π). The
prestress enters via the backbone tension fω = 15|σω|/ρ
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FIG. 3. Nonlinear shear response. Differential shear modulus
K(ω, γ), obtained from Eq. (11), as a function of the strain γ
and stress σω for various polymer lengths L (a,b; with ω/ωe =
10−2 and ρ`2

p = 104), various strain rates γ̇ = ω/2π (c,d; with
Γ = 103 and ρ`2

p = 104), and polymer concentrations ρ (e,f;
with Γ = 100.3(ρ`2

p)4/5 and ω/ωe = 10−2).

of the stretched test polymer [35] (see App. D). At mod-
erate strain amplitudes and low shear rates, the nonlinear
response of the network can be traced back to the (quasi-
stationary) tube deformations, which provoke strain soft-
ening [45, 46]. Within our approach, such softening is
delegated to the effective medium, i.e., the transverse re-
sponse of the test chain. We here take the strain depen-
dence K⊥(ω = 0, γ) ≈ e−0.3γ2.5 of the differential mod-
ulus for a quasi-stationary deformation from Ref. [45],
where it was obtained from the tangential contraction of
a test chain in an affinely deformed tube. It is multiplied
to G⊥(ω), which amounts to replacing

G⊥(ω) 7→ K⊥(ω = 0, γ)G⊥(ω) (10)

in Eq. (6). To compute the differential modulus
K(ω, γ) = G[ω, σω(γ)] from the so extended linear mod-
ulus at prestress σω(γ), we numerically integrate

dσω
dγ = G[ω, σω(γ)] (11)

using a standard Euler scheme. The nontrivial strain and
stress dependence of K(ω, γ) and the softening–stiffening
crossover with increasing polymer length, shear rate, and
polymer concentration displayed in Fig. 3 is in very good

FIG. 4. Strain γ (a–c) and stress σ (d–f) at the onset of the
stiffening (γc, σc; blue solid lines) and at the maximum of the
differential shear modulus |K(γ, ω)| (γmax, σmax; red dashed
lines) as a function of the coupling strength Γ ∝ (L/Le)2 (a,d;
with ω/ωe = 10−2 and ρ`2

p = 104), the shear rate γ̇ = ω/2π
(b,e; with Γ = 103 and ρ`2

p = 104), and the reduced polymer
concentration ρ`2

p (c,f; with Γ = 100.3(ρ`2
p)4/5 and ω/ωe =

10−2).

agreement with experimental observations for F-actin so-
lutions (see, e.g., Fig. 4 of Ref. [17] and Fig. 5 of Ref. [18]).
A subtle point in the measurement of K(ω, γ) is to avoid
too much inelastic flow [47]. For this reason it is not ap-
propriate to apply a stationary prestress, and one has to
resort to some sort of pulsed protocols, instead [17]. Oth-
erwise the stiffening is wiped out by excessive slippage,
which results from the fact that stiff polymer segments
of length much shorter than their persistence length can
hardly be stretched at all. To account for the strong
slippage, we have set s = 0.95 for the plots in Fig. 3.
With smaller values the onset of the stiffening would oc-
cur at correspondingly smaller strains γ, as illustrated
in Fig. 4 for the critical strain γc and stress σc, which
we define through |σc| = 1.1|K(ω, 0)|γc [48]. While the
stiffening of K(ω, γ) at intermediate values of the pre-
stress is a consequence of the coupling to the stiff lon-
gitudinal modes, its breakdown at even larger prestress
is due to the effective medium collapse at large strains,
predicted by the nonlinear tube model [45, 46]. This un-
derscores the importance of fluctuations on the entangle-
ment scale even in the strong coupling regime, where one
might naively expect the theory to be completely domi-
nated by the longitudinal modes. Note that the yielding
sets in at decreasingly smaller strains γc as the shear rate
and/or polymer concentration become larger, as shown
in Figs. 4b & c, although with an increasingly larger peak
value |K(ω, γc)| (not shown). This behavior might be
a consequence of the linear approximation to the force
balance, Eq. (3), which neglects any second-order stretch
forces built up by the effective-medium chains. The influ-
ence of the latter should thus be investigated in a future
study that extends the theory proposed here.

In Fig. 4, we show the strain and stress values γmax
and σmax at which |K(ω, γ)| takes its maximum. Again,
we find these predictions to be in good agreement with
experiments of pure [17, 18] and (flexibly) crosslinked [41,
49, 50] F-actin, actin-bundle networks [51], and collagen
gels [48]. The length dependence of γc shown in Fig. 4a,
for instance, is similar to the data in Ref. [41], although
our model does not explicitly account for breaking of
crosslinks under load, which is certainly the case in these
experiments. Such inelastic effects become particularly
apparent for the length dependence of the yield stress
σmax. For bonds that break under a critical tension fc,
the force balance argument used in Eq. (3) yields a linear
scaling σmax ∝ (L/Le)fc, as indeed found in Ref. [41].
The numerical solution of our model, which delegates
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FIG. 5. Strain-softening/-stiffening regimes as a function of
the scaled coupling strength Γ(ρ`p)−4/5 ∝ (L/`p)2 and the
shear rate γ̇. The curves separate the two regimes for three
different polymer concentrations (see legend), where stiffening
is exhibited when the actual stress exceeds the linear predic-
tion by more than 10 %, i.e., when |σ| ≥ 1.1|K(ω, γ = 0)|γ
for some γ ≥ γc.

yielding to the soft tube deformations only, instead fol-
lows the approximate scaling σmax ∝ L4/3, in the stiffen-
ing regime (Fig. 4, for Γ > 103). Within our approach, in-
elastic contributions may be introduced through a stress-
dependent fraction of closed crosslinks [21, 51–54], rep-
resented by a stress-dependent coupling parameter Γ.

IV. SUMMARY AND CONCLUSIONS

We have developed an analytically tractable model for
the linear and nonlinear viscoelastic response of entan-
gled solutions of stiff biopolymers. Our approach com-
bines an extended version of the tube model for semiflex-
ible polymer solutions that properly captures the trans-
verse bending fluctuations beyond the lifetime of the
tube itself (i.e., beyond the entanglement time) with the
non-affine stretch response of the individual polymers.
The linear frictional coupling between soft bending and
stiff stretching modes at the entanglement points yields
a nontrivial dependence of the linear shear modulus on
the polymer concentration and persistence length, pro-
viding a plausible explanation for experimentally found
scaling laws that are in apparent conflict with the stan-
dard tube-model predictions [23]. We also provided solid
evidence that our approach correctly captures the non-
linear response, as illustrated for the dependence of the
differential shear modulus on the polymer length, shear
rate, and polymer concentration. Within the proposed
theory, this rich phenomenology is derived from a lin-
ear microrheological element, determined by the force
balance in Eq. , whereby nonlinearities enter via strain-
softing of a quasi-statically deformed tube and a finite
prestress built up during a macroscopic deformation. An
interesting question to be answered in a future study
is thus how nonlinear effects at the microscopic level,
like second-order longitudinal stretching of the effective-
medium chains, would alter this picture. Another poten-
tial extension of the presented framework is to explicitly
account for strain-induced (or imposed) polymer align-
ment [48, 55, 56] at the level of the coarse-grained force
balance in Eq. (3), which we expect to provide a similar
contribution to the stiffening as, for instance, recently
discussed by Amuasi et al. [57] based on computer sim-
ulations of quasi-statically deformed crosslinked polymer
solutions. These authors found the tensile filaments to be
pulled into the stretch direction by the (many) surround-
ing polymers, which thereby build up large stresses that
are stored in their bending modes. This leads to an early

non-affine bending-dominated stiffening (|K| ∼ eσL/G0),
before the affine stretch-dominated regime (K ∼ σ3/2)
at large strains becomes visible. In addition, adjacent
polymers that are aligned in parallel as the network is
strained may exhibit an increased probability to form
entanglement points along their contours [58]. Finally,
we would like to note that the inter-chain coupling could
also depend on the shear rate. While the logarithmic de-
pendence of the friction force between contacting poly-
mers on the sliding velocity suggests Γ ∝ lnω [27], an
explicit model for transient crosslinks may resort to load-
dependent bond kinetics with Γ being proportional to the
fraction of closed bonds [21, 54].

ACKNOWLEDGMENTS

We thank Pablo Fernández for fruitful discussions dur-
ing the early stages of this work. M.L. acknowledges
the financial support from the European Union through
the European Social Funds (ESF program “Wissens- und
Know-How-Transfer”) and the graduate school “Leipzig
School of Natural Sciences – Building with Molecules and
Nano-objects (BuildMoNa)”.

Appendix A: Static tube approach (STA)

We consider a semidilute solution of stiff polymers over
a time span short enough that the entangled network
topology can be regarded as fixed and the confinement
tubes, representing the caging effect due to neighboring
network chains, as approximately static. The dynamics
of a test chain in solution can then be modeled by the
(overdamped) Langevin equation [59]

ζ⊥∂tr⊥ = −κ∂4
sr⊥ + f∂2

sr⊥ − φr⊥ + ξ⊥ (A1)
for a weakly bending wormlike chain, described by the
transverse deviations r⊥ ≡ r⊥(s, t) of its contour of
length L form the straight ground state at position
s ∈ [0, L] along the contour and time t. The solvent
friction coefficient ζ⊥ per unit length is related to the
Gaussian thermal noise ξ⊥ by the fluctuation-dissipation
theorem 〈ξ⊥(s, t)ξ⊥〉 = 2kBTζ⊥δ(s)δ(t), with the Boltz-
mann constant kB and temperature T . The coefficients
κ = kBT`p, f , and φ denote the bending rigidity (`p be-
ing the persistence length), the backbone tension, and
the strength of the harmonic confinement potential that
represents the tube, respectively. Assuming hinged ends
(i.e., both the transverse excursion r⊥ the curvature
∂2
sr⊥ at the ends s = 0 and s = L vanish), one can ex-

pand r⊥(s, t) =
∑∞
k=1 r

⊥
k (t) sin(πks/L) into eigenmodes

and integrate Eq. (A1) to obtain, e.g., the MSD

〈δr2
⊥(t)〉 ≡

∫ L

0

ds
L

〈
[r⊥(s, t)− r⊥(s, 0)]2

〉

= 4L3

π4`p

∞∑

k=1

1− exp(−ωkt)
k4 + k2f/fe + (L/Le)4 ,

(A2)
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where ωk = ωL[k4 + k2f/fe + (L/Le)4], with ωL =
π4κ/(ζ⊥L4), is the inverse characteristic relaxation time
of the k-th mode, Le = π(`p/φ)1/4 the entanglement
length (to keep the expressions short, we introduce this
definition, differing from Le = 2

√
2(`p/φ)1/4 usually used

in the literature), and fe = π2κ/L2 the Euler force. Re-
placing the sum in Eq. (A2) by an integral, one obtains
the MSD

〈δr2
⊥(t)〉 ∝ (L3

e/`p) [1− Γ(3/4, ωet)/Γ(3/4)] (A3)

of an unstretched (i.e., f = 0) chain in a static tube. It
exhibits a crossover around the entanglement time τe ≡
ω−1

e = ζ⊥L4
e/(π4κ) from an initial growth close to the

scaling 〈δr2
⊥(t)〉 ∼ t3/4 of a free chain towards a satura-

tion regime at large times, 〈δr2
⊥(t � ω−1

e )〉 ∼
√

2L3
e/`p,

as shown in Fig. 1.
The Fourier transform 〈δr2

⊥(ω)〉 of the MSD is di-
rectly related to the imaginary part of the susceptibility
χ(ω) = χ′(ω)+iχ′′(ω) by the fluctuation-dissipation the-
orem χ′′(ω) = −ω〈δr2

⊥(ω)〉/(2kBT ). Using the Kramers–
Kronig relations the complex response function is ob-
tained as [30]

χSTA(ω) =
∞∑

k=1

(2
√

2/π)(L/Le)3

[k4 + k2f/fe + (L/Le)4](1 + iω/ωk) ,

(A4)
here normalized to χSTA(0) = 1 (as before, after replac-
ing the sum by an integral). Its inverse GSTA(ω) =
G⊥0 /χSTA(ω) provides the contribution of the polymer
network (i.e., without the solvent contribution) to the
dynamic shear modulus [35]. The real and imaginary
part G′STA(ω) and G′′STA(ω) of GSTA(ω) are plotted in
the right panel of Fig. 1.

Appendix B: Effective medium approach (EMA)

The equation of motion (in the overdamped limit,
corresponding to low network densities) for an in-plane
deformation u ≡ u(x, t) (no bending) of a thin two-
dimensional plate at position x reads [60, 61]

ζ∂tu = Eh

2(1 + ν)∆u+ Eh

2(1− ν)∇(∇ · u) + ξ , (B1)

where ζ denotes the friction coefficient per area, E
the Young’s modulus, and h the thickness of the
plate. The Gaussian thermal noise ξ obeys 〈ξ(x, t)ξ〉 =
2kBTAζδ(x)δ(t), with A being the surface area of the
plate. Fourier transforming Eq. (B1) one finds that uq

can be decomposed into a longitudinal (i.e., rotation free)
component ul

q that points into the direction of q and a
transverse (divergence free) component ut

q, which both
solve a diffusion equation ∂tu

l,t
q = −Dl,tq

2ul,t
q + ξl,t

q /ζ

with the diffusion constants Dl = Eh/[ζ(1 − ν2)] and
Dt = Eh/[2ζ(1− ν)]. We thus obtain the mean squared

displacement as

〈δu2(t)〉 = 1
A

∫

|q|<qc

dq
(2π)2

[〈
|ul

q|2
〉(

1− e−Dlq
2t
)

+
〈
|ut

q|2
〉(

1− e−Dtq
2t
)]
,

(B2)

with the amplitudes 〈|ul
q|2〉 = kBTA/(ζDlq

2) and
〈|ut

q|2〉 = kBTA/(ζDtq
2). The high-wavenumber cutoff

qc, also required to regularize the three-dimensional elas-
tic network theory [61], originates from the underlying
microscopic length scale of the polymer network, below
which the deformations are suppressed. It should thus
be traced back to, e.g., the mesh size of a meshwork of
rigid rods or the entanglement length of the semiflexible
polymer solution.

For the sake of simplicity and in order to compare this
approach with other models and experimental observa-
tions, we now set both the longitudinal and the trans-
verse relaxation time of the elastic continuum equal to
a entanglement time 1/ωe, i.e., Dlq

2 = Dtq
2 = ωe, and

obtain the MSD

〈δu2(t)〉 = kBT

2πζD [γE + ln(ωet)− Ei(−ωet)] , (B3)

where Ei(x) = −
∫∞
−x ds exp(−s)/s is the exponential

integral. For large t, the MSD of the tow-dimensional
elastic medium thus grows logarithmically and does not
saturate, as it is the case, for, e.g., the transverse
MSD of a polymer confined to a static tube, as illus-
trated in the left panel of Fig. 1. The Fourier trans-
form 〈δu2(ω)〉 yields, via the fluctuation-dissipation the-
orem χ̃′′EMA(ω) = −ω〈δu2(ω)〉/(2kBT ) together with the
Kramers–Kronig relations, the susceptibility χ̃EMA(ω) =
χ̃′EMA(ω) + iχ̃′′EMA(ω),

χEMA(ω) = ln(1 + ω2
e/ω

2) + i[π − 2 arctan(ω/ωe)]
2−5/8

√
π2 + 4(ln 2)2

(B4)

where we dropped the dimensionful factor (as indi-
cated by the tilde) and normalized it to |χEMA(ωe)| =
|χSTA(ωe)|. The latter follows from balancing the con-
tribution GEMA(ω) = G⊥0 /χEMA(ω) of the polymer net-
work (without the solvent contribution) to the dynamic
shear modulus with the tube modulus at ω = ωe via
|GEMA(ωe)| = |GSTA(ωe)|. As a consequence of the in-
finitely growing MSD, the two-dimensional EMA yields
a scaling GEMA(ω) ∝ 1/ ln(ω/ωe) at low frequencies,
rather reminiscent of power-law rheology (with small ex-
ponent), and does not exhibit a plateau modulus, since
GEMA(ω → 0) = 0.

Appendix C: STA/EMA hybrid

An obvious hybrid model combining the static tube
model that correctly captures the WLC dynamics at high
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frequencies with the effective medium approach that ac-
counts for collective network effects dominating the long
time response, is given by [61]

〈δr2
⊥(t)〉 = 〈δr2

⊥(t)〉STA + 〈δu2(t)〉EMA (C1)

and the corresponding susceptibility χ⊥(ω) given in
Eq. (1). A similar hybrid model, named elastic network
approximation, was proposed by Morse [29], who added
up the square roots of the MSDs to obtain an estimate
for the tube diameter. The idea of the Eq. (C1) is that
the polymer is confined to a tube, which is not static but
undergoes deformations due to permanent network rear-
rangement. This is illustrated in Fig. 1, where we com-
pare both the MSD and the microscopic shear modulus
with the corresponding static tube and elastic medium
results.

Appendix D: Stretch response of a WBR

We outline the calculation of the end-to-end response
function χ‖(ω) of a free WBR as proposed by Gittes
and MacKintosh [35] and extent it to non-zero backbone
tension f . Within the WBR approximation, the stored
length is estimated as

δ`(t) = 1
2

∫ L

0
ds [r′⊥(t, s)]2 (D1)

and the MSD 〈δ`2(t)〉 ≡ 〈[δ`(t)− δ`(0)]2〉 becomes

〈δ`2(t)〉 = π4

16L2

∑

k,m

k2m2[〈r⊥k (0)2r⊥m(0)2〉

− 〈r⊥k (0)2r⊥m(t)2〉
]

(D2)

with the same eigenmode decomposition r⊥(s, t) =∑∞
k=1 r

⊥
k (t) sin(πks/L) used in Eq. (A2). Using Wick’s

theorem, 〈r⊥k (0)2r⊥m(t)2〉 = 〈r⊥k (0)2〉2 + 2〈r⊥k (0)r⊥m(t)〉2,
and equipartition, 〈(r⊥k )2〉 = 4L3/[`pπ

4(k4 + k2f/fe)],
one arrives at

〈δ`2(t)〉 = L4

π4`2
p

∞∑

k=1

k4[1− exp(−2ωkt)]
[k4 + k2f/fe + (L/Le)4]2 . (D3)

Applying the FDT and Kramers-Kronig relations to its
Fourier transform 〈δ`2(ω)〉, yields the susceptibility (c.f.
App. A)

χ‖(ω) =
∑

k

(8
√

2/π)(Le/L)3k4

[k4 + k2f/fe + (L/Le)4]2(1− iω/2ωk) .

(D4)
and the linear shear modulus

G‖(ω) = G
‖
0/χ‖(ω) , (D5)

with the plateau modulus G‖0 ≡ G‖(ω = 0) = ρkBT`
2
p/L

3
e

for polymer segments of length L = Le, as used in our
model. Again, we approximate the sum in Eq. (D4) by
an integral and normalize the susceptibility to χ‖(0) = 1.
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