203 research outputs found
Bacterial Death Results from Mutations Made in Translocation Peptide of Leucyl-tRNA Synthetase
The family of aminoacyl-tRNA synthetases (aaRSs) ensures the fidelity of translation through providing a pool of correctly aminoacylated tRNA products that become incorporated by the ribosome. Leucyl-tRNA synthetase (LeuRS) has two functionally separate domains, one is the aminoacylation domain and the other is the CP1 editing domain. LeuRS can aminoacylate noncognate amino acids, therefore it relies on the CP1 editing domain to hydrolyze misaminoacylated tRNA products before they are released from the enzyme. The LeuRS enzyme must undergo a structural transition state in its reaction cycle in order to translocate the 3\u27 acceptor stem of tRNA 30 Ă
from the aminoacylation active site to the CP1 domain hydrolytic active site. The translocation event is difficult to study, but we believe that we have generated mutations within LeuRS that alter the translocation event of tRNA. The mutations that we have generated lead to bacterial death in Escherichia coli (E. coli). Circular dichorism experiments indicate that our mutations do not significantly alter the secondary structure of LeuRS. In vitro biochemical studies demonstrate that these mutations reduce the rates of aminoacylation and hydrolysis, while also displaying misaminoacylation activity. We attribute these biochemical findings to the resulting bacterial death that is caused by these mutation
Bacterial Death Results from Mutations Made in Translocation Peptide of Leucyl-tRNA Synthetase
The family of aminoacyl-tRNA synthetases (aaRSs) ensures the fidelity of translation through providing a pool of correctly aminoacylated tRNA products that become incorporated by the ribosome. Leucyl-tRNA synthetase (LeuRS) has two functionally separate domains, one is the aminoacylation domain and the other is the CP1 editing domain. LeuRS can aminoacylate noncognate amino acids, therefore it relies on the CP1 editing domain to hydrolyze misaminoacylated tRNA products before they are released from the enzyme. The LeuRS enzyme must undergo a structural transition state in its reaction cycle in order to translocate the 3\u27 acceptor stem of tRNA 30 Ă
from the aminoacylation active site to the CP1 domain hydrolytic active site. The translocation event is difficult to study, but we believe that we have generated mutations within LeuRS that alter the translocation event of tRNA. The mutations that we have generated lead to bacterial death in Escherichia coli (E. coli). Circular dichorism experiments indicate that our mutations do not significantly alter the secondary structure of LeuRS. In vitro biochemical studies demonstrate that these mutations reduce the rates of aminoacylation and hydrolysis, while also displaying misaminoacylation activity. We attribute these biochemical findings to the resulting bacterial death that is caused by these mutation
A Content Analysis of Catholic School Written Discipline Policies
School discipline has traditionally endorsed the use of exclusionary practices (i.e. suspension and expulsion). Such practices can have a negative short- and long-term impact on student lives, and tend to be enforced disproportionately with certain student populations. Although public school discipline policies have received increased scrutiny in recent years, Catholic school policies have received very little attention. This study presents the results of a content analysis of the written discipline policies of 33 Catholic secondary schools from two dioceses within a major metropolitan area. Results suggest that although variability exists in the types of behaviors included in formal written policies, schools in this sample rely heavily on exclusionary practices as possible consequences to many behaviors, even relatively minor ones. Further, they include positive or restorative consequences minimally, if at all. Suggestions for future research related to discipline practices in Catholic schools are made
Coxiella burnetii Phagocytosis Is Regulated by GTPases of the Rho Family and the RhoA Effectors mDia1 and ROCK
The GTPases belonging to the Rho family control the actin cytoskeleton rearrangements needed for particle internalization during phagocytosis. ROCK and mDia1 are downstream effectors of RhoA, a GTPase involved in that process. Coxiella burnetii, the etiologic agent of Q fever, is internalized by the hostÂŽs cells in an actin-dependent manner. Nevertheless, the molecular mechanism involved in this process has been poorly characterized. This work analyzes the role of different GTPases of the Rho family and some downstream effectors in the internalization of C. burnetii by phagocytic and non-phagocytic cells. The internalization of C. burnetii into HeLa and RAW cells was significantly inhibited when the cells were treated with Clostridium difficile Toxin B which irreversibly inactivates members of the Rho family. In addition, the internalization was reduced in HeLa cells that overexpressed the dominant negative mutants of RhoA, Rac1 or Cdc42 or that were knocked down for the Rho GTPases. The pharmacological inhibition or the knocking down of ROCK diminished bacterium internalization. Moreover, C. burnetii was less efficiently internalized in HeLa cells overexpressing mDia1-N1, a dominant negative mutant of mDia1, while the overexpression of the constitutively active mutant mDia1-ÎN3 increased bacteria uptake. Interestingly, when HeLa and RAW cells were infected, RhoA, Rac1 and mDia1 were recruited to membrane cell fractions. Our results suggest that the GTPases of the Rho family play an important role in C. burnetii phagocytosis in both HeLa and RAW cells. Additionally, we present evidence that ROCK and mDia1, which are downstream effectors of RhoA, are involved in that processFil: Salinas Ojeda, Romina Paola. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mendoza. Instituto de HistologĂa y EmbriologĂa de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MĂ©dicas. Instituto de HistologĂa y EmbriologĂa de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Ortiz Flores, Rodolfo Matias. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mendoza. Instituto de HistologĂa y EmbriologĂa de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MĂ©dicas. Instituto de HistologĂa y EmbriologĂa de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Distel, JesĂșs SebastiĂĄn. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mendoza. Instituto de HistologĂa y EmbriologĂa de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MĂ©dicas. Instituto de HistologĂa y EmbriologĂa de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Aguilera, Milton Osmar. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mendoza. Instituto de HistologĂa y EmbriologĂa de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MĂ©dicas. Instituto de HistologĂa y EmbriologĂa de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Colombo, Maria Isabel. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mendoza. Instituto de HistologĂa y EmbriologĂa de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MĂ©dicas. Instituto de HistologĂa y EmbriologĂa de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Beron, Walter. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mendoza. Instituto de HistologĂa y EmbriologĂa de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MĂ©dicas. Instituto de HistologĂa y EmbriologĂa de Mendoza Dr. Mario H. Burgos; Argentin
Differential Effects of MYH9 and APOL1 Risk Variants on FRMD3 Association with Diabetic ESRD in African Americans
Single nucleotide polymorphisms (SNPs) in MYH9 and APOL1 on chromosome 22 (c22) are powerfully associated with non-diabetic end-stage renal disease (ESRD) in African Americans (AAs). Many AAs diagnosed with type 2 diabetic nephropathy (T2DN) have non-diabetic kidney disease, potentially masking detection of DN genes. Therefore, genome-wide association analyses were performed using the Affymetrix SNP Array 6.0 in 966 AA with T2DN and 1,032 non-diabetic, non-nephropathy (NDNN) controls, with and without adjustment for c22 nephropathy risk variants. No associations were seen between FRMD3 SNPs and T2DN before adjusting for c22 variants. However, logistic regression analysis revealed seven FRMD3 SNPs significantly interacting with MYH9âa finding replicated in 640 additional AA T2DN cases and 683 NDNN controls. Contrasting all 1,592 T2DN cases with all 1,671 NDNN controls, FRMD3 SNPs appeared to interact with the MYH9 E1 haplotype (e.g., rs942280 interaction p-valueâ=â9.3Eâ7 additive; odds ratio [OR] 0.67). FRMD3 alleles were associated with increased risk of T2DN only in subjects lacking two MYH9 E1 risk haplotypes (rs942280 ORâ=â1.28), not in MYH9 E1 risk allele homozygotes (rs942280 ORâ=â0.80; homogeneity p-valueâ=â4.3Eâ4). Effects were weaker stratifying on APOL1. FRMD3 SNPS were associated with T2DN, not type 2 diabetes per se, comparing AAs with T2DN to those with diabetes lacking nephropathy. T2DN-associated FRMD3 SNPs were detectable in AAs only after accounting for MYH9, with differential effects for APOL1. These analyses reveal a role for FRMD3 in AA T2DN susceptibility and accounting for c22 nephropathy risk variants can assist in detecting DN susceptibility genes
The Back 2 Activity Trial: education and advice versus education and advice plus a structured walking programme for chronic low back pain
<p>Abstract</p> <p>Background</p> <p>Current evidence supports the use of exercise-based treatment for chronic low back pain that encourages the patient to assume an active role in their recovery. Walking has been shown it to be an acceptable type of exercise with a low risk of injury. However, it is not known whether structured physical activity programmes are any more effective than giving advice to remain active.</p> <p>Methods/Design</p> <p>The proposed study will test the feasibility of using a pedometer-driven walking programme, as an adjunct to a standard education and advice session in participants with chronic low back pain. Fifty adult participants will be recruited via a number of different sources. Baseline outcome measures including self reported function; objective physical activity levels; fear-avoidance beliefs and health-related quality of life will be recorded. Eligible participants will be randomly allocated under strict, double blind conditions to one of two treatments groups. Participants in group A will receive a single education and advice session with a physiotherapist based on the content of the 'Back Book'. Participants in group B will receive the same education and advice session. In addition, they will also receive a graded pedometer-driven walking programme prescribed by the physiotherapist. Follow up outcomes will be recorded by the same researcher, who will remain blinded to group allocation, at eight weeks and six months post randomisation. A qualitative exploration of participants' perception of walking will also be examined by use of focus groups at the end of the intervention. As a feasibility study, treatment effects will be represented by point estimates and confidence intervals. The assessment of participant satisfaction will be tabulated, as will adherence levels and any recorded difficulties or adverse events experienced by the participants or therapists. This information will be used to modify the planned interventions to be used in a larger randomised controlled trial.</p> <p>Discussion</p> <p>This paper describes the rationale and design of a study which will test the feasibility of using a structured, pedometer-driven walking programme in participants with chronic low back pain.</p> <p>Trial Registration</p> <p>[ISRCTN67030896]</p
Effect of heavy-intensity 'priming' exercise on oxygen uptake and muscle deoxygenation kinetics during moderate-intensity step-transitions initiated from an elevated work rate
We examined the effect of heavy-intensity âprimingâ exercise on the rate of adjustment of pulmonary O2 uptake (Ï 2p) initiated from elevated intensities. Fourteen men (separated into two groups: Ï 2pâ€25s [Fast] or Ï 2p>25s [Slow]) completed step-transitions from 20W-to- 45%lactate threshold (LT; lower-step, LS) and 45%-to-90%LT (upper-step, US) performed (i) without; and (ii) with US preceded by heavy-intensity exercise (HUS). Breath-by-breath 2p and near-infrared spectroscopy-derived muscle deoxygenation ([HHb+Mb]) were measured. Compared to LS, Ï 2p was greater (p0.05) from LS or Fast group US. In Slow, Ï[HHb+Mb] increased (p<0.05) in US relative to HUS; this finding coupled with a reduced Ï 2p indicates a priming-induced improvement in matching of muscle O2 delivery-to-O2 utilization during transitions from elevated intensities in those with Slow but not Fast 2p kinetics
Damaging variants in FOXI3 cause microtia and craniofacial microsomia
Q1Q1Pacientes con Microtia y MicrosomĂa craneofacialPurpose:
Craniofacial microsomia (CFM) represents a spectrum of craniofacial malformations, ranging from isolated microtia with or without aural atresia to underdevelopment of the mandible, maxilla, orbit, facial soft tissue, and/or facial nerve. The genetic causes of CFM remain largely unknown.
Methods:
We performed genome sequencing and linkage analysis in patients and families with microtia and CFM of unknown genetic etiology. The functional consequences of damaging missense variants were evaluated through expression of wild-type and mutant proteins in vitro.
Results:
We studied a 5-generation kindred with microtia, identifying a missense variant in FOXI3 (p.Arg236Trp) as the cause of disease (logarithm of the odds = 3.33). We subsequently identified 6 individuals from 3 additional kindreds with microtia-CFM spectrum phenotypes harboring damaging variants in FOXI3, a regulator of ectodermal and neural crest development. Missense variants in the nuclear localization sequence were identified in cases with isolated microtia with aural atresia and found to affect subcellular localization of FOXI3. Loss of function variants were found in patients with microtia and mandibular hypoplasia (CFM), suggesting dosage sensitivity of FOXI3.
Conclusion:
Damaging variants in FOXI3 are the second most frequent genetic cause of CFM, causing 1% of all cases, including 13% of familial cases in our cohort.https://orcid.org/0000-0003-3822-7780https://orcid.org/0000-0002-0729-6866Revista Internacional - IndexadaA1N
- âŠ