UNIVERSITY OF LEEDS

This is a repository copy of Effect of heavy-intensity 'priming’ exercise on oxygen uptake
and muscle deoxygenation kinetics during moderate-intensity step-transitions initiated
from an elevated work rate.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/105401/

Version: Accepted Version

Article:

Nederveen, JP, Keir, DA, Love, LK et al. (2 more authors) (2017) Effect of heavy-intensity
'‘priming' exercise on oxygen uptake and muscle deoxygenation kinetics during
moderate-intensity step-transitions initiated from an elevated work rate. Respiratory
Physiology & Neurobiology, 235. pp. 62-70. ISSN 1569-9048

https://doi.org/10.1016/j.resp.2016.09.013

© 2016 Elsevier B.V. Licensed under the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Elsevier Editorial System(tm) for

Respiratory Physiology & Neurobiology
Manuscript Draft

Manuscript Number: RESPNB3506R1
Title: Effect of heavy-intensity 'priming' exercise on oxygen uptake and
muscle deoxygenation kinetics during moderate-intensity step-transitions
initiated from an elevated work rate
Article Type: Research Paper
Corresponding Author: Dr. John M Kowalchuk, PhD
Corresponding Author's Institution: The University of Western Ontario

First Author: Joshua P Nederveen

Order of Authors: Joshua P Nederveen; Daniel A Keir; Lorenzo K Love;
Harry B Rossiter; John M Kowalchuk



*Highlights (for review)

Highlights

1.

2.

Priming exercise speeds Optake kinetics in those whose kinetics are slow
Slower muscle deoxygenation kinetics accompany this faster rate of adjustment
O, uptake kinetics are slower when initiated from elevated intensities

Priming mitigates this works-work effect in those with slow but not fast kinetics

Mechanistically, the worke-work effect differs depending on initial kinetics



*Abstract

Abstract

We examined the effect of heaintensity ‘priming’ exercise on the rate of adjustment of
pulmonary Q uptake (tVOjp) initiated from elevated intensities. Fourteen men (separated into
two groups tVO,,<25s [Fast] or tVO2,>25s [Slow]) completed step-transitions from 2@V-
45%lactate threshold (LT; lower-step, LS) and 4&80%LT (upper-stepUS) performed (i)
without; and (i) withUS preceded by heavy-intensity exercisdJ@). Breathby-breathVO,,

and near-infrared spectroscopy-derived muscle deoxygenation ([HHb+Mb]) were measured.
Compared td_S, tVO,, was greater (p<0.05) i0S in both Fast (LS, 19+44)S, 30+4s) and
Slow (LS, 25+5sUS, 40+11s) witht VO, in US being lower (p<0.05) in Fast. InJ3, tVO,pin

Slow was reduced (28+8s, p<0.05) and was not different (p>0.05)fBoan Fast groufJS. In
Slow, t[HHb+Mb] increased (p<0.05) iJS relative to HUS; this finding coupled with a
reducectVO,, indicates a priming-induced improvement in matching of musgldeGvery+o-

O, utilization during transitions from elevated intensities in those with Slow but notvVeast

kinetics.

Keywords: O, uptake kinetics, near-infrared spectroscopy, muscle oxygenation, priming

exercise
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Abstract

We examined the effect of heaiensity ‘priming’ exercise on the rate of adjustment of
pulmonary Q uptake (tVO,p) initiated from elevated intensities. Fourteen men (separated into
two groups: TVO2,<25s [Fast] or tVO2>25s [Slow]) completed step-transitions from 2@V-
45%lactate threshold (LT; lower-step, LS) and 4&80%LT (upper-step, US) performed (i)
without; and (i) with US preceded by heavy-intensity exercise (HUS). BlgaliteathVO,,

and near-infrared spectroscopy-derived muscle deoxygenation ([HHb+Mb]) were measured.
Compared to LS, tVO,, was greater (p<0.05) in US in both Fast (LS, 19+4s; US, 30+4s) and
Slow (LS, 25+5s; US, 40+11s) with tVO,p in US being lower (p<0.05) iRast. In HUS, tVOgpin

Slow was reduced (28+8s, p<0.05) and was not different (p>0.05) from LS or Fast group US. In
Slow, 1[HHb+Mb] increased (p<0.05) in US relative to HUS; this finding coupled with a
reduced tVO,p indicates a priming-induced improvement in matching of musgldelvery+o-

O, utilization during transitions from elevated intensities in those with Slow but notvVeast

kinetics.

Keywords: O, uptake kinetics, near-infrared spectroscopy, muscle oxygenation, priming

exercise
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1. Introduction

When exercise transitions are initiated from a higher compared to lower baseline
metabolic rate within the moderate-intensity exercise domain (i.e., intensities that do not
engender appreciable lactate accumulation), the “fundamental” (phase II) component of the
pulmonary Q uptake (VOgp) response (reflecting the dynamic adjustment of muscle VOy)
adjusts more slowly (greater phase 11 VO, time constantyVO,p) and with a greater VOy, gain
(larger AVO2y/AWR) than when the same transition is initiated from a lower baseline (Bowen et
al., 2011, Brittain et al., 2001; Hughson and Morrissey, 1982; Keir et al., 2016a, 2016b, 2014;
MacPhee et al., 2005; Williams et al., 2013). These responses have been attributed to starting the
exercise from a less favourable intramuscular ‘energetic state’ consequent to the elevated level of
muscle metabolism (Bowen et al., 2011; Grassi et al., 2011; Meyer and Foley, 1996; Wiist et al.,
2014), to slowed adjustments in convective musclel€ivery to support oxidative metabolism
(Hughson and Morrissey, 1982; MacPhee et al., 2005), and to recruitment of motor units which
are positioned higher in the muscle recruitment hierarchy and thedmugrised of muscle fibre
pools having lower metabolic efficiency and slower dynamic adjustment characteristics (Brittain
et al., 2001; Wilkerson and Jones, 2006).

In individuals presenting with slower VO, kinetics (i.e.,tVOzp > 20 s) within the
moderate-intensity domain, prior heavy exercise was shown to have a ‘priming effect’ on the
VO, response with kinetics becoming faster (i.e., a lower phas® k) in the ‘primed’
compared to the ‘unprimed’ condition (DeLorey et al., 2007; Gurd et al., 2006, 2005; Murias et
al., 2011; Spencer et al., 2013, 201480, the ‘speeding’ was greater in individuals presenting
with slower VOzp kinetics in the ‘unprimed’ condition (Gurd et al., 2009, 2006, 2005; Murias et

al., 2014, 2011). This effect has been linked to priming-induced: i) acute improvements in the
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coordination of microvascular blood flow ang @elivery (Murias et al., 2011; Spencer et al.,
2012); ii) acute reductions in the activation time for oxidative phosphorylation (Behnke et al.,
2002; Korzeniewski and Rossiter, 2015) through activation of rate limiting enzymes and greater
delivery of oxidative substrate to mitochondria (Gurd et al., 2006; Howlett et al., 1999; Timmons
et al., 1998); and iii) a combination of both mechanisms (Gurd et al., 2005).

Few studies have examined the effects of heavy-intensity priming exercise onllphase
VO kinetics during transitions from elevated baselines. In those studies, prior exercise was
demonstrated to be ineffective at reducing phaseV®,, during ‘work-to-work’ transitions
(DiMenna et al., 2008; DiMenna et al., 2009; DiMenna et al., 2010b), suggesting that limitations
in local muscle @ availability are unlikely to contribute to the response. However, in these
studies transitions were from moderate-intensity baselines into either the heavy- or severe-
intensity exercise domains wWhevi,, responses (and likely regulation of VOop) are markedly
different from responses confined within the moderate-intensity domain (Poole et al., 2008). Our
group has demonstrated thatiidividuals with relatively slow VOgp, kinetics, a prior bout of
heavy-intensity exercise results in faster VO, kinetics during the subsequent transition to
moderate-intensity exercise (Gurd et al., 2005; Murias et al., 2011; Scheuermann et al., 2002)
Therefore, it remains uncertain as to what effect a heavy-intensity priming intervention may have
on VOp, kinetics when transitidng from elevated baselines within the moderate-intensity
domain — particularly in individuals having slow VO3, kinetics.

Recently, Williams et al., (2013) reported that four weeks of high-intensity interval
training caused a reduction in tVO2, (relative to pre-training measures) in both the lower- (LS:
from 24 s to 14 s) and upper-step (US: from 45 s to 25 s) of a moderate-intensity ‘double-step’

protocol. The relative speeding of VO, kinetics was accompanied by an unchanged rate of
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adjustment in muse deoxygenation ([HHb+Mb]; derived using near-infrared spectroscopy) in

both LS and US (compared to pre-training measures) and that the A[HHb+Mb]/AVO; ratio
‘overshoot’ (reflecting a transient decrease in microvascular blood flow-to-muscle Q utilization

and increased extraction) was eliminated in US. Despite the apparent rectification of any
muscle Q delivery limitations in US, VOppkinetics remained slower than LS suggesting that the
fundamental cause of slower VO, kinetics may not be related to limitations in regional O
delivery.

In light of these observations, we examined the effects of heavy-intensity priming
exercise on th& O, and [HHb+Mb] responses to transitions from elevated baseline intensities
constrained within the moderate-intensity domain whilst considering individuals with both faster
and sloweVOy, kinetics. Such an experimental design could serve to elucidate the mechanisms
contributing to: i) the slowing 0¥ O, kinetics with transitions from elevated baseline intensities;
and ii) the speeding of moderate-intensity on-transient kinetics with heavy intensity priming
exercise. We hypothesized that: ™40, would be greater in US vs LS in both the faster and
slower groups; 2) heaviptensity priming exercise would lead to a reduction in TVOy, of US
(relative to unprimed control) in the slower, but not fast group; 3) the speedin@,gkinetics

in US in the slower group would be accompanied by a slowing in the kinetics of [HHb+Mb].

2. Methods
2.1 ParticipantsFourteen healthy young men (age: 25 £ 2 yr; VOzpeak 49.5 + 5.3mL-kg’
Lmin; mean # SD) volunteered and provided written informed consent to participate in this

study. All procedures were approved by The University of Western Ontario Research Ethics

Board for Health Sciences Research involving Human Subjects. Participants were recreationally
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active non-smokers, who had no known cardiovascular, respiratory, metabolic or
musculoskeletal disease and who were not taking any medications that might affect
cardiorespiratory and hemodynamic responses to exercise. Participants were instructed not to
consume food or caffeine two hours prior to visits to the laboratory for data collection and to
avoid exercise 24 hours prior to testing.

2.2 Preliminary TestingEach participant performed a ramp incremental exercise test
(20-25 W/min) to the limit of tolerance on a cycle ergometer (model: H-300-R Lode; Lode B.V.,
Groningen, The Netherlands) for determination of peak VOzp (VO2peay) and estimated lactate
threshold . ); the ramp portion of the protocol was initiated after 4 min of baseline cycling at
20 W. Participants were asked to maintain a cycling cadence between 60 - 70 rpgn. The  was
estimated by visual inspection using a combination of standard gas exchange and ventilatory
measures as previously described (Beaver et al., 1B&8&) participant was assigned work rates
(WR) corresponding to the VO, associated with: i) ~90%. (WR90); ii) 50% of the difference
between 20 W and WR90 (WR50); and iii) A50% (i.e., WR corresponding to ~50% of the
difference betweel. and VOzpeay).

2.3 Experimental Protocol. Three separate experimental protocols were performed by
each participant. Each exercise protocol began with 6 min of baseline cycling at 20 W after
which distinct series of step-changes in WR were performed as follows (Fig.1): Protocol A) two
step-changes in WR to 906 (i.e., WR90) (MOBIOD,) each lasting 6 min, separated by a 6
min bout of heavy-intensity exercise @WR corresponding to A50%, as previously described
(Scheuermann et al., 2002); Protocol B) two equal step-changes in WR performed in series from

20W—WR50 (LS) and from WR58WR90 (US), each lasting 6 min; Protocol C) two equal

step-changes in WR performed in series from 20WR50 (LS) and from WR586WR90
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(HUS), each lasting 6 min, but separated by a 6 min bout of hegwyity exercise at A50%,
and a subsequent 6 min bout at the previous workload (LS:—20IR50 WR50->A50%,
A50%—WR50; HUS: WR508590% 6. ). During all trials, participants maintained a cadefce
~70 rpm. Each participant completed 3-6 repeatsaghprotocolin a randomized ordeilhe
larger amplitude of th&O,, response dut a larger increasi@ WR resultedn eachparticipant
completing 3 repdaof ProtocolA. In orderto ensure a high signéb-noise ratio for a protocol
utilizing smallervO,, amplitude, 6 repeats were performed for Protocols BGirid all cases,
only one exercise trial was performed per visit.

2.4 Data Collection

During each trial participants wore a noseclip and breathed through a mouthpiece for
breathby-breath gas-exchange measurement. Inspired and expired volumes and flow rates were
measured using a low dead space (90 mL) bidirectional turbine (Alpha Technologies, VMM 110)
and pneumotach (Hans Rudolph, Model 4813) positioned in series from the mouthpiece (total
apparatus dead space was 150 mL); respired air was sampled continuously at the mouth and
analysed by mass spectrometry (Innovision, AMIS 2000, Lindvedvej, Denmark) for fractional
concentrations of § CO, and N. The volume turbine was calibrated before each test using a
syringe of known volume (3 L) over a range of flow rates and the pneumotach was adjusted for
zero flow. Gas concentrations were calibrated with precision-analyzed gas mixtures. The time
delay between an instantaneous, square-wave change in fractional gas concentration at the
sampling inlet and its detection by the mass spectrometer was measured electronically by
computer. Respiratory volumes, flows, and gas concentrations were recorded in real-time used to
build a profile of each breath. Alveolar gas exchange was calculated on alyr&aé&ath basis

using the algorithms of Swanson (1980).
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2.5 Near-infrared spectroscopy. Local muscle deoxygenation ([HHb+Mb]) of the vastus
lateralis muscle was monitored continuously with a frequency-domain multi-distance near-
infrared spectroscopy (NIRS) system (Oxiplex TS, Model 95205, ISS, Champaign, IL, USA) as
described elsewhere (Spencer et al., 2012). The probe was placed on the belly of the muscle,
midway between the lateral epicondyle and greater trochanter of the femur; it was secured in
place with an elastic strap and bandage tightened to prevent movement and covered with an
optically-dense, black vinyl sheet, thus minimizing the intrusion of extraneous light and loss of
NIR light. The NIRS measurements were collected continuously for the entire duration of each
trial. Briefly, the system comprised a single channel of eight laser diodes operating at two
wavelengths (A = 690 and 828 nm, four at each wavelength) pulsed in a rapid succession (110
MHz) and a photomultiplier tube. The lightweight plastic NIRS probe (connected to laser diodes
and photomultiplier tube by optical fibers) consisted of two parallel rows of light emitter fibers
and one detector fiber bundle; the source-detector separations for this probe were 2.0, 2.5, 3.0,
and 3.5 cm for both wavelengths.

The NIRS was calibrated in accordance with manufacturer guidelines at the beginning of
each testing session following an instrument warm-up period of at least 20 min. Calculation of
[HHb+Mb] reflected continuous measurements of a reduced scattering coefficient (us’) made
throughout each testing session (i.e., constant scattering value not assumed). To improve the
signal{o-noise ratio a moving average was applied to the NIRS signal with a measurement
averaging period of 1000 ms and a scatter averaging period of 50,000 ms. Data were stored
online at an output frequency of 25 Hz, but were reduced to 1 s bins for all subsequent analyses.

2.6 Data Analysis
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Breath-by-breath VO, data were edited by removing data that lay outside 3 SD of the
local mean (Lamarra et al., 1987). The remaining data were interpolated to 1 s intervals, and
time-aligned such that time “zero” represented the initiation of the step-increase in WR. The
remaining data were linearly interpolated on a sedmpgecond basis, using the protocol where
values removed by editing were replaced by data joined by straight-line segments (refer to Ke
et al.,2014). Like-trials were ensemble-averaged and further averaged into 5 s time bins. The on-
transient responses for VOz, and [HHb+Mb] were modelled using the following exponential
equation:

Y = Yas, + A (1— et Equation 1
where Yy represents the value of the dependent variable at any given timgg(t)s Yhe steady-
state baseline value of Y before an increase in WR (given as the average Y value in the 60 s
period immediately prior to a transition); A is the amplitude of the increase in Y akgverYs
the time constant representing the time to attain 63% of the steady-state amplitude; and TD
represents the mathematically generated time delay at which the exponential model is predicted
to intersect ¥s.. The functional gain ($of the phase II VO, response was calculated as
AVO2psd AWR (ml-min”"-W™), whereVO,pssis steady-state increaseVi®,, above baseline and
AWR is the change in WR (in W). Data were modelled from the phase I-phase II transition to the
end of the 6 min exercise transition using non-linear least-squares regression (Origin 8.5;
OriginLab, Northampton, MA). The 95% confidence interval o§Cfor the estimated time
constant was determined after preliminary fit of the data wig&,YA and TD constrained to the
best-fit values and the allowed to vary. Phase | was excluded from the fitting window by
progressively moving the window (from35 s) back towards time zero while examining the

flatness of the residual profile and values ofs@ihere Cis is equal to the SE (derived from the
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sum of squared residuals from the model parameter estimates) multiplied by the t-distribution
value for the 2.5% two-tailed dimensions]. The window that yielded the flattest residuals (visual
inspection) and most reducedqs§vas considered as the mono-exponential region (Rossiter et
al., 2001); note that there are other methods that the influence of phase | may be avoided (Murias
et al., 2011h)The mean response time (MFVIOzp) of VOzp was characterized from a fit of the
VO, response from t=0 to the end of the exercise. The NIRS-derived [HHb+Mb] profiles were
time-aligned and ensemble-averaged into 5 s bins to yield a single response time for each
subject. The time-course of adjustment for the [HHb+Mb] profile has been previously described
as consisting of a time delay at the onsetexafrcise, with a subsequent “exponential-like”
increase in the signal with time of exercise (DelLorey et al., 2003). The time delay for the
[HHb+Mb] response (TD-[HHb+Mb]) was determined visually using sedmnadecond data and
corresponded to the time, after the onset of exercise, at which the [HHb+Mb] signal increased
above 1 SD of the pre-transition baseline value. Determination of the TD-[HHb+Mb] was made
on individual response profiles and averaged over the number of trial repeats for that individual.
The ensemble-averaged [HHb+Mb] responses were modeled from TD-[HHb+Mb] with a
monoexponential function of the form in Eg. 1 to determine the time course of muscle
[HHb+Mb] (tr[HHb+Mb]). Baseline [HHb+Mb] ([HHb+Mb]gs,) values were fixed as the mean
value in the 60 period leading up to a transition; similar to VO, described previously. Whereas

the t{[HHb+Mb] describes the time course for the increase in [HHb+Mb], the effective time
constant, or MRT, of [HHb+Mb] (MRT-[HHb+Mb] = TDHHb+Mb] + t[HHb+Mb]) described

the overall time course of the [HHb+Mb] from the onset of each step transition. The [HHb+Mb]
at the end of each step ([HHb+Mkjs) Was computed from the average of the last 60 s of each

step transition.

1C



205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

2.7 Statistics

Values are presented as meai$D. Parameter estimates for VO, and NIRS-derived
[HHb+Mb] data using a two-way (Group Condition) repeated measures analyses of variance
(ANOVA) to determine statistical significance for the dependent variables. When interactions
were identified, Tukel} post-hoc analysis was used. Pearson product moment correlation
coefficients were used to determine the degree of association amongst key variables.

All statistical analyses were performed using SigmaPlot 11 (Systat, California, USA).
Statistical significance was accepted at p<0.05.
3. Results

By design, participants were separated into two groups basédOgnkinetics from
MOD1: tVOyp < 25 s (Fast group; n = 6; TVOyp range: 19 s 24 s) and tVOy, > 25 s (Slow
group; n =8; VO, range: 26 s - 48 s). The two groups were not different @,eax (Fast, 4.04
+0.21 L'min™"; Slow, 3.93 + 0.37 L'min""), WRpeak(Fast, 345 + 17 W; Slow, 331 + 12)\\nd
VOz,and WR associated with.  (Fadt]7 + 0.32 L-min™*and131 + 34 W, respectively; Slow,
2.19 +0.27 L'min™ and130 + 27 W, respectively). As such, the WRs corresponding to WR50
(i.e., WR used for LS), WR90 (i.e., WR used for MOD, US, and HUS) and A50% were not
different between the Fast (WR50, 75 + 17 W; WR90, 131 + 34AW%, 232 + 34 W) and
Slow groups (WR50, 75 + 13 W; WR90, 130 * 27 W50%, 231 £ 30 W) The steady-state
VO,pss associated with all moderate-intensity WRs did not exceell @hg corresponding tdL
in any of the participants.
3.1 VOyp kinetics

3.1.1 MOD1-MOD?2 TransitionThe VO, kinetic parameter estimates are displayed in

Table 1. By design, tVO,, in MOD1 was lower (p<0.05) in Fast (21 + 2 s) compared to Slow

11
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(32 £ 7 s) After heavy-intensity ‘priming’ exercise there was no change in rVOzp in Fast but in
Slow IVOzp was reduced (to 24 + 2 x0.05) and not different from Fast MOD1 and MOD2.
The reduction TVO,p between MOD1 and MOD?2 was positively correlated (r = 0.76, p<0.05)
with the initial TVO2pin MOD1 (Figure 2A).

3.1.2 LS-US Transition. The parameter estimates for the on-traN&eptesponses and
the group mean ensemble-averaged VOyp profiles to LS-US for the Fast and Slow groups are
presented in Table 2 and Figure 3 (A, B), respectively. The transition to US was initiated from an
elevated VOzphsand despitédentical AWR for LS and US, both tVO,, and G were greater in US
compared to LS in both groups (p<0.05).

3.1.3 LS-HUS Transition. The parameter estimates for the on-trangiptresponses
and the group mean ensemble-averaged VO, profiles to LS-HUS for the Fast and Slow groups
are presented in Table 2 and Figure 3 (C, D), respectively. The LS to HUS transition consisted
of two equal step-changes in WR performed in series from 20VR50 (LS) and from
WR50->WR90 (HUS), each lasting 6 min, but separated by a 6 min bout of heavy-intensity
exercise at A50% and a subsequent 6 min bout at the previous workload. A Student’s t-test
confirmed that there were no differences in both VOzp and NIRS-derived parameter estimates for
LS from both protocols B and C (p<0.05), therefore these data were averaged into a single value
(LS) for all subsequent comparisons

In the Fast group, after ‘priming’ exercise, TVOzp, remained greater (p<0.05) in HUS (30
+ 5 8) than in LS (19 + 4 s) but was not different from US (30 + Hesyever, in the Slow
group, ‘priming’ exercise resulted in a speeding of VOoy, kinetics such that the TVOz, in HUS (28
+ 8 s) was not different to LS (21 + 5a)d less than the TVOyp in US (40 + 11 s) (p<0.05The

reduction in TVOyp between HUS and US was linearly correlated with tVO2p in the ‘unprimed’

12
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US condition (r = 0.73; p<0.05; Figure 2B). In both the Fast and Slow groups, after the heavy-
intensity ‘priming’ exercise, the G in HUS was not different to LS but lower than in US
(p<0.05).
3.2 [HHb+Mb] Kinetics
3.2.1 MOD1-MOD2 Transition. The parameter estimates for muscle [HHb+Mb] kinetics
are presented in Table 1. There were no differences in any [HHb+Mb] kinetic parameters
between the Fast and Slow groups during MOD1 (Table 1). In both groups, the [HHh+MDb]
was lower (p<0.05) but the [HHb+Mb], was greater (p<0.05) in MOD2 than in MOD1. Also,
in both groups, TOHHb+Mb] was shorter (p<0.05) and the T[HHb+Mb] was greater (p<0.05)
in MOD2 than in MOD1, and as a consequethesoverall T’[HHb+Mb] was not different in the
Fast group in MOD1 and MOD2 but was greater (p<0.05) in MOD2 in the Slow group (Table 1).
3.2.2 LS-US Transition. The group mean [HHb+Mb] kinetic parameter estimates and
group mean profiles for the LS-US transition are displayed in Table 3 and Figure 4A. For both
groups, the [HHb+Mh} was elevated (p<0.05) and the [HHb+Mk]was not different in US
compared to LS. Also, in both groups, a shorter TD-[HHb+Mb] (p<0.05) and greater
t[HHb+Mb] (p<0.05) in US than in LS resulted in a not different overall T’[HHb+Mb] in US and
LS. However, while the tfHHb+Mb] and t’[HHb+Mb] were not different for both groups in LS,
during US the t[HHb+Mb], but not T’ [HHb+Mb], was shorter (p<0.05) in the Slow than in the
Fast group (Table 3).
3.2.3 LS-HUS Transition. In both groups, TD-[HHb+Mb] was shorter (p<0.05) and
t[HHb+Mb] was greater (p<0.05) in HUS than in LS (Table 3). tffHHb+Mb] in HUS and US
were not different in the Fast group, but in the Slow group t[HHb+Mb] was greater (p<0.05) in

HUS than in US (Table 3). Also, in the Fast group, the overall T’[HHb+Mb] was not different in
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HUS, LS and US, but in the Slow group, T’ [HHb+Mb] was greater (p<0.05) in HUS compared to
both LS and US, and was greater (p<0.05) than the Fast group in HUS but not US.
4. Discussion

In this study, the effect of heavy-intensity ‘priming’ exercise on VOj, and muscle
deoxygenation kinetics was examined in response to moderate-intensity step-transitions initiated
from a raised baseline WR individuals with slow, compared to fast, VOp kinetics. Young
adults (mean age, 25 yrs) were grouped according to whether they expressed slower (tVOgp> 25
s) or faster (tVOgzp < 25 s) VOy, kinetics based on a preliminary step-transition to a WR
corresponding to ~90%). (WR90). Consistent with previous studies (Bowen et al., 2011;
Brittain et al., 2001; Keir et al., 2016b, 2014; MacPhee et al., 2005; Williams et al., 2D13)
participants in both the Fast and Slow groups demonstrated a greater phase 11 TVOz,and greater
G when stepransitions of similar AWR were initiated from a high (US) compared to a lower
(LS) baseline intensity, each within the moderate-intensity domain. The novel finding was that
heavyintensity ‘priming’ exercise was effective in reducing TVOyy, (i.€., speeding VO, Kinetics)
in the Slow group, but not the Fast group, during exercisgaasitions from low (MOD1 —
MOD?2: Slow, 32 s — 24 s; Fast, 21 s — 21 s) and elevated baseline WRs (US — HUS: Slow, 40
s — 28 s; Fast, 30 s — 30 s). The speeding of VO, kinetics after ‘priming’ exercise in the Slow
group was accompanied by a slowing of [HHb+Mb] kinetics (longardt’) suggesting that the
dynamics of muscle Outilization were enhanced consequent to improved muscle perfusion
which reduces the reliance on €xtraction during the early transition to exercise

These findings suggest that for the Slow group, but not the Fast group, any limitation

imposed on the adjustment of muscle (lization during US was overcome consequent to a

14



296 bout of heavy-intensity ‘priming’ exercise. Furthermore, after ‘priming’ exercise, the VOgp

297 kinetics in US were not different from LS for the Slow group.

298 That VO3, kinetics were faster in LS compared to US is consistent with other studies that
299 examined “multi-step” exercise within the moderate-intensity domain (Bowen et al., 2011,
300 Brittain et al.,, 2001; Keir et al., 2016b, 2014; MacPhee et al., 2005; Williams et al., 2013).
301 Furthermore, the finding that heaintensity ‘priming’ exercise was associated with a greater

302 reduction intVO,, during subsequent moderate-intensity exercise in those individuals having
303 “slower” compared to “faster” VO, kinetics also is consistent with previous findings (Chin et
304 al., 2010; Gurd et al., 2009, 2006, 2005; Murias et al., 2011). Therefore, this discussion will
305 focus on the novel finding: a bouof heavy-intensity priming exercise is effective at speeding

306 VO, kinetics of moderate-intensity work-to-work transitions in those with slow but not fast

307 VO kinetics.

308 In the present study, a bout of heavy-intensity ‘priming' exercise resultegdading of
309  VOpypkinetics in HUS in those with slow (>25 s) VOgp kinetics. In this group, the ‘priming’ bout
310 resulted in both faster VOyp kinetics in HUS (tVOgzp ~28s) relative to US (tVOz, ~40s) and an
311 increase in both t[HHb+Mb] and v’ [HHb+Mb] in HUS relative to US (t[HHb+Mb]: 14 vs 24 s
312 and T'[HHb+Mb] : 21 vs 26 s, for US vs HUS, respectively). The faster adjustment of muscle O»
313 utilization (inferred from the smaller phase II TVOy,) was associated with an earlier onset of
314 muscle deoxygenation (small@iD-[HHb+Mb]) but a slower time course of fractional, O
315 extraction (larger t[HHb+Mb] and t’[HHb+Mb]) suggesting that muscle microvascular
316 perfusion likely was enhanced in US after ‘priming’ exercise (a slower rate of deoxygenation in

317 the presence of faster rate of muscle uBlization is consistent with a greater, Qelivery).

318 MacPhee et al., (2005) demonstrated that transitions of moderate-intensity knee-extension
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exercise initiated from high vs. low baseline metabolic rates were assogidtatbwer kinetics

of both VO,p, and femoral (conduit) artery blood flow, as well as a lower steady-state blood flow-

to-VOzp ratio. Heavy-intensity ‘priming’ exercise could contribute to speeding of VO, kinetics

during a subsequent US exercise bout via i) greater bulk muscle (conduit artery) blood flow and
local muscle microvascular blood flow and d2livery, ii) rightward-shift of the oxyhemoglobin
dissociation curve (induced via changes in acidosis, FO@ temperature), iii) greater, @ux

from the capillary into muscle consequent to a greater muscle microvascular blood flow-to-VO,

ratio facilitating a greater capillary BGind Q driving pressure, iv) improved muscle; O
diffusing capacity related to an increase in functional capillary surface area (i.e., related to a
greater capillary red blood cell volume in contact with the muscle membrane), v) greater
intracellular PQ and Q flux across the mitochondrial membrane, or vi) more rapid activation of
rate-limiting oxidative enzymes and/or enhanced delivery of oxidative substrate to the
mitochondrial tricarboxylic acid (TCA) cycle and electron transport system (ETS) (Gerbino et
al., 1996; Burnley et al., 2000; DiMenna et al., 2010c; Spencer et al., 2012 Gurd et al., 2006;
Gurd et al., 2009). Our data suggest that microvascular blood flow distribution may have been
improved in HUS and, at least in pamntributed to a speeding of VOppkinetics during workio-

work transitions, but in the Slow group only. However, faster adjustments and flux through
metabolic pathways in the Slow, but not the Fast, group cannot be discounted. Alterations of
microvascular blood flow distribution between the Slow and Fast groups may accompany our
observation that young, healthy individuals can present with a broad range of initial TVOyp
values, in agreement with previous findings (Murias et al.,, 2011; Nederveen et al., 2014).
Although an inverse association between tVOz, and VOgpeak has been reported previously

(Chillibeck et al., 1996; Gurd et al., 2005; Murias et al., 2011), in the present study no
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relationship was observed between fitn€€®4ea) and VO3, (-0.43, p>0.05) - in fact, some
individuals presenting with the highéé()zpeak(e.g., 56 mL kg min™) were in the Slow group
(i.e., T VOzp = 39 s). Findings by Wust et al. (2013) suggest thaVthg rate constant (k = 4y
in single muscle cells is linearly correlated with the cellM@smay a finding that is reflected at
the whole body level across multiple species ranging widelOamax (reviewed by Poole and
Jones, 2012). In the present study, we did not find a significant relationship bdétaeaen
VOmax (R = 0.362, p > 0.05), perhaps as a consequence of the relatively narrow ranges for both
VOmaxandtVO,, (and thus k). Although not a focus of the present study, the lack of relationship
between measures of fitness aw,, kinetics (as assessed by the tau or K} may not be
surprising, leading one to speculate that the speed of adjustméakpfmight be an important
independent predictor of health, fithess and tolerance for exercise and daily activities (Rossiter,
2011).

We make the observation that while the Slow group exhibited faster VOzp kinetics
following ‘priming’ exercise, VOgzp kinetics were not affected in the Fast group — this despite the
VO, being ~60% greater in US than in LS. Furthermore, in Fast, [HHb+Mb] kinetics were not
different between US and HUS. Taken together, it appears that any priming-induceskincrea
O, delivery may contribute (but not completely eliminate) the slovi@s, kinetics in the HUS
in the Slow group, but have no effect on HUS,, kinetics in Fast. However, there appears to a
limit to these improvements in,Qlelivery in Slow (~283V0,,) following priming, such that
they are similar to observed in Fast (~3080;;). Therefore, regardless of whether or not
individuals were sped following a priming bout of exercise, these data suggest that there may be
mediators other than Odelivery that limit the adjustment to mitochondrial oxidative

phosphorylation and coritiute to slowed VO, when exercise transitions are initiated from an
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elevated metabolic rate. A raised metabolic rate in muscle is associated with a disruption to the
metabolic “stability” within the active muscle (i.e., increased muscle [H'], [ADPsed, [P,
[AMPed, [IMPtee], and reduction in [PCr], [ATP], and less negative AGarp), and presumably
would occur in individuals regardless of whether their initdD,, could be considered fast or
slow Collectively, a greater perturbation of thetabolic environment prior to the onset of
exercise transitions, in part, may be responsible for greater tVOap€licited during transitions from
elevated levels of metabolism.

Alternatively, transitions from elevated baseline metabolic rates recruitsoadbinotor
units, and thus the slower VO, kinetics and greater G may reflect the metabolic and contractile
characteristics of the newly recruited muscle fibres (Brittain et al., 2001; Wilkerson and Jones
2006; Keir et al., 2016a, Keir et al., 2016h) this scenario, according to Henneman’s size
principle of motor unit recruitment, muscle fibres associatedl Wi threshold motor units,
possessing lower tVO,and G would be recruited preferentially with exercise transitions initiated
for a lower baseline WRs (e.g., LS) with muscle fibres having greater 1VO, and G
characteristics being recruited from transitions initiated from higher baseline WRs (e.g., as in US
and HUS) (Rossiter, 2011). Also, higher order muscle units may have metabolic profiles that are
less oxidative and which are perfused by vascular units having lower and slower contraction-
induced hyperemic responses (Behnke et al., 2003; Ferreira et al., 2006; McDonough et al.,
2005) and are be associated with slower VOzp kinetics in both human (Barstow et al., 1996;
Pringle et al., 2003) and animal (Crow and Kushmerick, 1982; Wust et al., 20d®R])s.
Therefore, ‘priming’ exercise should be most effective in situations where VO, kinetics are

slowed because of inadequate musclav@ilability.
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In conclusion, we showed that a bout of heauyasity ‘priming’ exercise was
associated with a speeding W0y, kinetics (smallertVO,p) in individuals presenting with
slower (Slow,TVOy, > 25s), but not faster (FastyO,, < 25s), VOy, kinetics during step-
transitions into the moderate-intensity domain initiated from an elevated baseline metabolic rate.
This reduction inctVOy, subsequent to the ‘priming’ exercise also was associated with a slower
rate of muscle deoxygenation (i.ewcrieased t- and v’-[HHb+Mb]) in the Slow, but not the Fast,
group suggesting that improved microvasculardelivery and distribution within the active
muscle fibers during the exercise on-transient may have contributed to the faster adjustment of
VO_p. However, in the Fast group microvascular dalivery appears not to limit muscle VO,

kinetics.
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Figure Captions

Figure 1. Schematic of three experimental exercise protocols. Left panel: MOBIty —
MOD?2 protocol; MOD, moderate-intensity exercise (~96% ), Hvy, heateysity “priming”
exercise. Middle panel: LS US protocol; LS (~45%. ), US (~90%. ). Right panel: LS
Hvy — HUS protocol; LS (~45%. ), Hvy, HUS (=90% ). By design, work rates at both LS

and US/HUS were identical for participants.

Figure 2. Panel (A); relationship between the changes (A) in TVO2,from MOD1 to MOD2 and
initial MOD1 tVOy, (p<0.05). Panel (B)elationship between the changes (A) in TVO2pfrom US
to HUS and initial USVO,, (p<0.05). Open circles denote individual data, filled square denotes

group mean * SD). Dashed diagonal line on each graph represents the line of best fit.

Figure 3. Ensemble average group mean responses (~5s average, open circlé@ppfdm
response to experimental conditions. Vertical dashed lines indicate the onset of the work
transition. The group mean phaséviDy, kinetic response for each condition are superimposed
over the data (black lines, fitted with a masigonential function). tVOz,values (+SD) are inset

under each transition and residuals are shown about y = 0. Panel (A) denotes the Slow group (n =
8) response to LS-US transitions; Panel (C) denotes the Slow group response to LS-Hvy-HUS
transitions. Panel (B) denotes the Fast group (n = 6) response to LS-US transitions; Panel (D)

denotes the Fast group response to LS-Hvy-HUS transitions

Figure 4. Ensemble average group mean response for the adjustments of deoxyhemoglobin
concentration ([HHb+Mb], um) in response to experimental conditions. Vertical dashed lines
indicate the onset of the work transition. Panel (A) denotes the ensemble average group mean for
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595 Slow group (black line) and for the Fast group (grey line) in response to LS-US transitions. Panel
596 (B) denotes the ensemble average group mean for the Slow group (black line) and for the Fast
597 group (grey line) in response to LS-HUS transitions.
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Table 1. Kinetic parameter estimates for VOpand HHb+Mb] in Fast and Slow groups during MOD1 and MOD2

FAST (n=6) SLOW (n=8)
. Parameter MOD1 MOD2 MOD1 MOD2
VOap
VOapps (L-mirY) 0.86 + 0.07 0.98 + 0.09 0.87 £0.16 1.05 + 0.16
VOzpss (L min'l) 1.89+£0.42 196 £0.4% 1.88 £0.21 1.97 £0.25
Ap, (L-min) 1.00 + 0.39 0.93 +0.39 1.00 + 0.39 0.93 +0.39
V02 (S) 21+2 2142 32 + 7* 24 + 2%
Cos(S) 5+2 7+2 5+2 6+2
G (mL-mint'w™) 9.3+1.8 8.8+1§ 9.2+0.34 8.3+0.5
[HHb+MDb]
[HHb+Mb] s (LM) 23.7+ 6.8 21.0+5.3 19.7 £4.9 17.5 + 3.85%
[HHb+Mb]ee (UM) 29.1+ 8.7 29.0x9.0 259+5.1 274+ 50
[HHb+Mb]amp (M) 75+3.6 10.7 + 6.6 5.4+2.8 8.9 +4.G
TD-[HHb+Mb] (s) 8+2 5 + 4f 8+3 3+ 2
t[HHb+Mb] (s) 11+3 15 + 4 9+3 18 + 4f
T[HHb+Mb] (s) 19+3 20+ 4 17+ 4 21+ 2%
Cos(s) 2+1 2+1 3+1 2+1

Values are mean + SD. VOzp, pulmonary Q uptake; VOzpbs; baseline VOzp; VOzpss steady-staté’Ozp; Ap, amplitude of VOzpresponse; TD,
time delay; TVO2p, time constant for VOz, response; 6, 95% confidence interval for tVO,p, G, functional gain (AVO2y/AWR). [HHb+Mb],
deoxyhemoglobin+myoglobin concentration; [HHb+MplbaselingHHb+Mb]; [HHb+Mb]ee end-exercisfHHb+Mb]; [HHb+Mb]amp,
amplitude of [HHb+Mb]; TD-[HHb+Mb], time delay of [HHb+Mb}[HHb+Mb], time constant for [HHb+Mb] responseé[HHb+Mb],
effective time constant ¢+ TD) for [HHb+Mb]; Gos, 95% confidence interval for tfHHb+MDb].

* difference from FAST (p < 0.05)

t difference from MODI1 (p < 0.05)



Table 2.VO,,kinetic parameters for lower step (LS) and upper steps (US, HUS) moderate-intensity exercise transitions

FAST (n=6) SLOW (n=8)

Parameter LS us HUS LS usS HUS
Vo, bsi (L- min) 0.82+0.09 1.30+0.28 1.47+024 081+0.10 1.32+0.17 1.47 £0.1%f
Vo, ss (L-min™) 1.31+0.23 1.86+0.43 1.96+0.38 1.30+0.17 1.91+0.28 1.93+0.23

A, (L-min?) 049+0.18 056+0.19 0.49+0.17 0.48+0.13 0.59+0.08 0.45+0.10
TD (s) 15+2 6+4 8+8 13+3 6+6 10+7
Vo, () 19+4 30 + £ 30 + & 25+5 40 + 1+ 28 + 8+
Cos(s) 7+2 7+2 7+2 7+1 7+2 7+2

G (mL-min*w™) 88+14 101+1.f 88+09+ 88+15 109+1.3 8.3+ 0.67
O, deficit (mL) 273+80 338+13% 300+93f 300+53 441+116 288+ 101+

Values are means + SDS, lower stepUS, upper step; HS, upper step following heavy-intensityQ,,, pulmonary Q uptake;
VO2pmsi, baselinévOyp, VO2pss Steady-stat& Oy, Ap, amplitude ofVOppresponse; TD, time delay; tVO2p, time constant foW Oz
response; 6, 95% confidence interval for tVOyp; G, functional gain (AVO2/AWR).

&difference from LS (p<0.05)

* difference from the Fast group (p<0.05)

1 difference from US (p<0.05)



Table 3. Muscle de-oxygenation ([HHb+Mb]) kinetic parameters for lower step (LS) and upper step (US, HUS) moderate-intensity

exercise transitions

FAST (n=6) SLOW (n=8)

Parameter LS ) HUS LS U HUS
[HHb+Mb]ps (uM) 22.0+6.1 26.8+88 238+6.7 19.7+35 225+4.8 22.8 +5.2
[HHb+Mb]ee(uM)  26.1+£8.9 31.1+11.06 29.0+10.4 228+47 259+6.2 27.8+8.1°
[HHb+Mbamp(uM) 3.9+ 2.5 42+20 55+3.3 31+14 29+1.4 50+2.9%
TD-[HHb+MDb] (s) 13+5 5+ 3 5+ 3 12+3 7+5 4+ 2
t[HHb+Mb] () 8+2 21+5 19 + 92 10+ 4 14 + 5* 24 + 7%
T [HHb+Mb] (s) 21+3 26+5 24+ 9 22 +4 21+6 28 + &
Cos(S) 4+1 4+1 32 4+1 4+2 32

Values are means + SDS, lower stepUS upper step; HS, upper step following heavy-intensity; [HHb+Mb],
deoxyhemoglobin+myoglobin concentration; [HHb+Mblbaselind HHb+Mb]; [HHb+Mb]ee end-exercisgHHb+Mb];
[HHb+Mb]amp amplitude of [HHb+Mb]; TD-[HHb+Mb], time delay for [HHb+Mbt[HHb+Mb], time constant for [HHb+Mp
responset’[HHb+Mb], effective time constant (t + TD) for [HHb+Mb]; Cgs, 95% confidence intervdbr t{fHHb+Mb].

difference fromLS (p<0.05)

* difference from the Fast group (p<0.05)

1 difference from US (p<0.05)
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