46 research outputs found

    Head-mounted accelerometry accurately detects prey capture in California sea lions

    Get PDF
    Detecting when and where animals feed is key to understanding their ecophysiology, but our ability to collect these data in marine mammals remains limited. Here, we test a tag-based accelerometry method to detect prey capture in California sea lions. From synchronized underwater video and acceleration data of two trained sea lions, we isolated a combined acceleration and Jerk pattern that reliably indicated prey capture in training datasets. We observed a stereotyped feeding motion in underwater video that included (1) mouth opening while approaching prey; (2) head deceleration to allow initial suction or prey engulfment, and (3) jaw closure. This motion (1–3) was repeated if a prey item was not initially engulfed. This stereotyped feeding motion informed a signal pattern phrase that accurately detected feeding in a training dataset. This phrase required (1) an initial heave-axis Jerk signal surpassing a threshold based on sampling rate; (2) an estimated dynamic surge-axis deceleration signal surpassing −0.7 g beginning within 0.2 s of the initial Jerk signal; and (3) an estimated dynamic surge-axis acceleration signal surpassing 1.0 g within 0.5 s of the beginning of the prior deceleration signal. We built an automated detector in MATLAB to identify and quantify these patterns. Blind tests of this detector on non-training datasets found high true-positive detection rates (91%–100%) with acceleration sampled at 50–333 Hz and low false-positive detection rates (0%–4.8%) at all sampling rates (16–333 Hz). At 32 Hz and below, true-positive detection rates decreased due to attenuation of signal detail. A detector optimized for an adult female was also accurate at 32–100 Hz when tested on an adult male’s data, suggesting the potential future use of a generalized detector in wild subjects. When tested on the same data, a published triaxial Jerk method produced high true-positive detection rates (91–100%) and low-to-moderate false-positive detection rates (15–43%) at ≥ 32 Hz. Using our detector, larger prey elicited longer prey capture duration in both animals at almost all sampling rates 32 Hz or faster. We conclude that this method can accurately detect feeding and estimate relative prey length in California sea lions

    Heart rate and startle responses in diving, captive harbour porpoises (Phocoena phocoena) exposed to transient noise and sonar

    Get PDF
    Anthropogenic noise can alter marine mammal behaviour and physiology, but little is known about cetacean cardiovascular responses to exposures, despite evidence that acoustic stressors, such as naval sonars, may lead to decompression sickness. Here, we measured heart rate and movements of two trained harbour porpoises during controlled exposure to 6–9 kHz sonar-like sweeps and 40 kHz peak-frequency noise pulses, designed to evoke acoustic startle responses. The porpoises initially responded to the sonar sweep with intensified bradycardia despite unaltered behaviour/ movement, but habituated rapidly to the stimuli. In contrast, 40 kHz noise pulses consistently evoked rapid muscle flinches (indicative of startles), but no behavioural or heart rate changes. We conclude that the autonomous startle response appears decoupled from, or overridden by, cardiac regulation in diving porpoises, whereas certain novel stimuli may motivate oxygen-conserving cardiovascular measures. Such responses to sound exposure may contribute to gas mismanagement for deeper-diving cetaceans

    Equity and career-life balance in marine mammal science?

    Get PDF
    It is widely acknowledged that family and care-giving responsibilities are driving women away from Science, Technology, Engineering, and Mathematics (STEM) fields. Marine mammal science often incurs heavy fieldwork and travel obligations, which make it a challenging career in which to find work-life balance. This opinion piece explores gender equality, equity (the principles of fairness that lead to equality), and work-life balance in science generally and in this field in particular. We aim to (1) raise awareness of these issues among members of the Society for Marine Mammalogy; (2) explore members’ attitudes and viewpoints collected from an online survey and further discussion at a biennial conference workshop in 2015; and (3) make suggestions for members to consider for action, or for the Board of Governors to consider in terms of changes to policy or procedures. Leaks in our pipeline—the attrition of women, and others with additional caring responsibilities—represent an intellectual and economic loss. By striving for equity and promoting work-life balance, we will help to ensure a healthy and productive Society better able to succeed in its aims promoting education, high quality research, conservation, and management of marine mammals.Publisher PDFPeer reviewe

    Seasonal activity levels of a farm-island population of striated caracaras (Phalcoboenus australis) in the Falkland Islands

    Get PDF
    Harrington KJ, Fahlbusch JA, Langrock R, Therrien J-F, Houtz JL, McDonald BI. Seasonal activity levels of a farm-island population of striated caracaras (Phalcoboenus australis) in the Falkland Islands. Animal Biotelemetry. 2020;8(1): 27

    The retrospective analysis of Antarctic tracking data project

    Get PDF
    The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations

    High field metabolic rates of wild harbour porpoises

    Get PDF
    This study was partly funded by the German Federal Agency for Nature Conservation (BfN) under the project ‘Under Water Experiments’ (project number FKZ 3515822000) and the BfN Cluster 7 ‘Effects of underwater noise on marine vertebrates’ (Z1.2-53302/2010/14) with additional support to P.T.M. and L.R.-D. from the Danish National Research Foundation (FNU) and the Carlsberg Foundation. B.I.M. was supported by a National Science Foundation International Research Postdoctoral Fellowship (OISE – 1150123). M.J. was supported by the Marine Alliance for Science and Technology Scotland (MASTS) and by a Marie Skłodowska-Curie award.Reliable estimates of field metabolic rates (FMRs) in wild animals are essential for quantifying their ecological roles, as well as for evaluating fitness consequences of anthropogenic disturbances. Yet, standard methods for measuring FMR are difficult to use on free-ranging cetaceans whose FMR may deviate substantially from scaling predictions using terrestrial mammals. Harbour porpoises (Phocoena phocoena) are among the smallest marine mammals, and yet they live in cold, high-latitude waters where their high surface-to-volume ratio suggests high FMRs to stay warm. However, published FMR estimates of harbour porpoises are contradictory, with some studies claiming high FMRs and others concluding that the energetic requirements of porpoises resemble those of similar-sized terrestrial mammals. Here, we address this controversy using data from a combination of captive and wild porpoises to estimate the FMR of wild porpoises. We show that FMRs of harbour porpoises are up to two times greater than for similar-sized terrestrial mammals, supporting the hypothesis that small, carnivorous marine mammals in cold water have elevated FMRs. Despite the potential cost of thermoregulation in colder water, harbour porpoise FMRs are stable over seasonally changing water temperatures. Varying heat loss seems to be managed via cyclical fluctuations in energy intake, which serve to build up a blubber layer that largely offsets the extra costs of thermoregulation during winter. Such high FMRs are consistent with the recently reported high feeding rates of wild porpoises and highlight concerns about the potential impact of human activities on individual fitness and population dynamics.Publisher PDFPeer reviewe

    Foraging Behavior and Success of a Mesopelagic Predator in the Northeast Pacific Ocean: Insights from a Data-Rich Species, the Northern Elephant Seal

    Get PDF
    The mesopelagic zone of the northeast Pacific Ocean is an important foraging habitat for many predators, yet few studies have addressed the factors driving basin-scale predator distributions or inter-annual variability in foraging and breeding success. Understanding these processes is critical to reveal how conditions at sea cascade to population-level effects. To begin addressing these challenging questions, we collected diving, tracking, foraging success, and natality data for 297 adult female northern elephant seal migrations from 2004 to 2010. During the longer post-molting migration, individual energy gain rates were significant predictors of pregnancy. At sea, seals focused their foraging effort along a narrow band corresponding to the boundary between the sub-arctic and sub-tropical gyres. In contrast to shallow-diving predators, elephant seals target the gyre-gyre boundary throughout the year rather than follow the southward winter migration of surface features, such as the Transition Zone Chlorophyll Front. We also assessed the impact of added transit costs by studying seals at a colony near the southern extent of the species’ range, 1,150 km to the south. A much larger proportion of seals foraged locally, implying plasticity in foraging strategies and possibly prey type. While these findings are derived from a single species, the results may provide insight to the foraging patterns of many other meso-pelagic predators in the northeast Pacific Ocean

    The retrospective analysis of Antarctic tracking data project

    Get PDF
    The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations
    corecore