3,792 research outputs found

    An Invisible Quantum Tripwire

    Get PDF
    We present here a quantum tripwire, which is a quantum optical interrogation technique capable of detecting an intrusion with very low probability of the tripwire being revealed to the intruder. Our scheme combines interaction-free measurement with the quantum Zeno effect in order to interrogate the presence of the intruder without interaction. The tripwire exploits a curious nonlinear behaviour of the quantum Zeno effect we discovered, which occurs in a lossy system. We also employ a statistical hypothesis testing protocol, allowing us to calculate a confidence level of interaction-free measurement after a given number of trials. As a result, our quantum intruder alert system is robust against photon loss and dephasing under realistic atmospheric conditions and its design minimizes the probabilities of false positives and false negatives as well as the probability of becoming visible to the intruder.Comment: Improved based on reviewers comments; 5 figure

    Evolution of hierarchical clustering in the CFHTLS-Wide since z~1

    Full text link
    We present measurements of higher order clustering of galaxies from the latest release of the Canada-France-Hawaii-Telescope Legacy Survey (CFHTLS) Wide. We construct a volume-limited sample of galaxies that contains more than one million galaxies in the redshift range 0.2<z<1 distributed over the four independent fields of the CFHTLS. We use a counts in cells technique to measure the variance and the hierarchical moments S_n = /^(n-1) (3<n<5) as a function of redshift and angular scale.The robustness of our measurements if thoroughly tested, and the field-to-field scatter is in very good agreement with analytical predictions. At small scales, corresponding to the highly non-linear regime, we find a suggestion that the hierarchical moments increase with redshift. At large scales, corresponding to the weakly non-linear regime, measurements are fully consistent with perturbation theory predictions for standard LambdaCDM cosmology with a simple linear bias.Comment: 17 pages, 11 figures, submitted to MNRA

    The clustering properties of radio-selected AGN and star-forming galaxies up to redshifts z~3

    Get PDF
    We present the clustering properties of a complete sample of 968 radio sources detected at 1.4 GHz by the VLA-COSMOS survey with radio fluxes brighter than 0.15 mJy. 92% have redshift determinations from the Laigle et al. (2016) catalogue. Based on their radio-luminosity, these objects have been divided into two populations of 644 AGN and 247 star-forming galaxies. By fixing the slope of the auto-correlation function to gamma=2, we find r_0=11.7^{+1.0}_{-1.1} Mpc for the clustering length of the whole sample, while r_0=11.2^{+2.5}_{-3.3} Mpc and r_0=7.8^{+1.6}_{-2.1} Mpc (r_0=6.8^{+1.4}_{-1.8} Mpc if we restrict our analysis to z<0.9) are respectively obtained for AGN and star-forming galaxies. These values correspond to minimum masses for dark matter haloes of M_min=10^[13.6^{+0.3}_{-0.6}] M_sun for radio-selected AGN and M_min=10^[13.1^{+0.4}_{-1.6}] M_sun for radio-emitting star-forming galaxies (M_min=10^[12.7^{+0.7}_{-2.2}] M_sun for z<0.9). Comparisons with previous works imply an independence of the clustering properties of the AGN population with respect to both radio luminosity and redshift. We also investigate the relationship between dark and luminous matter in both populations. We obtain /M_halo/M_halo<~10^{-2.4} in the case of star-forming galaxies. Furthermore, if we restrict to z<~0.9 star-forming galaxies, we derive /M_halo<~10^{-2.1}, result which clearly indicates the cosmic process of stellar build-up as one moves towards the more local universe. Comparisons between the observed space density of radio-selected AGN and that of dark matter haloes shows that about one in two haloes is associated with a black hole in its radio-active phase. This suggests that the radio-active phase is a recurrent phenomenon.Comment: 11 pages, 7 figures, minor changes to match published version on MNRA

    Amylose in Neurospora.

    Get PDF
    Amylose in Neurospora

    Spitzer bright, UltraVISTA faint sources in COSMOS: the contribution to the overall population of massive galaxies at z=3-7

    Get PDF
    We have analysed a sample of 574 Spitzer 4.5 micron-selected galaxies with [4.5]24 (AB) over the UltraVISTA ultra-deep COSMOS field. Our aim is to investigate whether these mid-IR bright, near-IR faint sources contribute significantly to the overall population of massive galaxies at redshifts z>=3. By performing a spectral energy distribution (SED) analysis using up to 30 photometric bands, we have determined that the redshift distribution of our sample peaks at redshifts z~2.5-3.0, and ~32% of the galaxies lie at z>=3. We have studied the contribution of these sources to the galaxy stellar mass function (GSMF) at high redshifts. We found that the [4.5]24 galaxies produce a negligible change to the GSMF previously determined for Ks_auto<24 sources at 3=<z<4, but their contribution is more important at 4=~50% of the galaxies with stellar masses Mst>~6 x 10^10 Msun. We also constrained the GSMF at the highest-mass end (Mst>~2 x 10^11 Msun) at z>=5. From their presence at 5=<z<6, and virtual absence at higher redshifts, we can pinpoint quite precisely the moment of appearance of the first most massive galaxies as taking place in the ~0.2 Gyr of elapsed time between z~6 and z~5. Alternatively, if very massive galaxies existed earlier in cosmic time, they should have been significantly dust-obscured to lie beyond the detection limits of current, large-area, deep near-IR surveys.Comment: 18 pages, 15 figures, 4 tables. Updated to match version in press at the Ap

    The Evolution of the Stellar Mass Functions of Star-Forming and Quiescent Galaxies to z = 4 from the COSMOS/UltraVISTA Survey

    Get PDF
    We present measurements of the stellar mass functions (SMFs) of star-forming and quiescent galaxies to z = 4 using a sample of 95 675 galaxies in the COSMOS/UltraVISTA field. Sources have been selected from the DR1 UltraVISTA K_{s}-band imaging which covers a unique combination of a wide area (1.62 deg^2), to a significant depth (K_{s,tot} = 23.4). The SMFs of the combined population are in good agreement with previous measurements and show that the stellar mass density of the universe was only 50%, 10% and 1% of its current value at z ~ 0.75, 2.0, and 3.5, respectively. The quiescent population drives most of the overall growth, with the stellar mass density of these galaxies increasing by 2.71^{+0.93}_{-0.22} dex since z = 3.5. At z > 2.5, star-forming galaxies dominate the total SMF at all stellar masses, although a nonzero population of quiescent galaxies persists to z = 4. Comparisons of the K_{s}-selected star-forming galaxy SMFs to UV-selected SMFs at 2.5 < z < 4 show reasonable agreement and suggests UV-selected samples are representative of the majority of the stellar mass density at z > 3.5. We estimate the average mass growth of individual galaxies by selecting galaxies at fixed cumulative number density. The average galaxy with Log(M_{*}/M_{sun}) = 11.5 at z = 0.3 has grown in mass by only 0.2 dex (0.3 dex) since z = 2.0(3.5), whereas those with Log(M_{*}/M_{sun}) = 10.5 have grown by > 1.0 dex since z = 2. At z < 2, the time derivatives of the mass growth are always larger for lower-mass galaxies, which demonstrates that the mass growth in galaxies since that redshift is mass-dependent and primarily bottom-up. Lastly, we examine potential sources of systematic uncertainties on the SMFs and find that those from photo-z templates, SPS modeling, and the definition of quiescent galaxies dominate the total error budget in the SMFs.Comment: 18 pages paper, 12 pages appendix, 23 figures. Accepted for publication in the Ap

    A robust morphological classification of high-redshift galaxies using support vector machines on seeing limited images. II. Quantifying morphological k-correction in the COSMOS field at 1<z<2: Ks band vs. I band

    Get PDF
    We quantify the effects of \emph{morphological k-correction} at 1<z<21<z<2 by comparing morphologies measured in the K and I-bands in the COSMOS area. Ks-band data have indeed the advantage of probing old stellar populations for z<2z<2, enabling a determination of galaxy morphological types unaffected by recent star formation. In paper I we presented a new non-parametric method to quantify morphologies of galaxies on seeing limited images based on support vector machines. Here we use this method to classify \sim5000050 000 KsKs selected galaxies in the COSMOS area observed with WIRCam at CFHT. The obtained classification is used to investigate the redshift distributions and number counts per morphological type up to z2z\sim2 and to compare to the results obtained with HST/ACS in the I-band on the same objects from other works. We associate to every galaxy with Ks<21.5Ks<21.5 and z<2z<2 a probability between 0 and 1 of being late-type or early-type. The classification is found to be reliable up to z2z\sim2. The mean probability is p0.8p\sim0.8. It decreases with redshift and with size, especially for the early-type population but remains above p0.7p\sim0.7. The classification is globally in good agreement with the one obtained using HST/ACS for z<1z<1. Above z1z\sim1, the I-band classification tends to find less early-type galaxies than the Ks-band one by a factor \sim1.5 which might be a consequence of morphological k-correction effects. We argue therefore that studies based on I-band HST/ACS classifications at z>1z>1 could be underestimating the elliptical population. [abridged]Comment: accepted for publication in A&A, updated with referee comments, 12 pages, 10 figure

    Large Structures and Galaxy Evolution in COSMOS at z < 1.1

    Get PDF
    We present the first identification of large-scale structures (LSS) at z <1.1< 1.1 in the Cosmic Evolution Survey (COSMOS). The structures are identified from adaptive smoothing of galaxy counts in the pseudo-3d space (α,δ\alpha,\delta,z) using the COSMOS photometric redshift catalog. The technique is tested on a simulation including galaxies distributed in model clusters and a field galaxy population -- recovering structures on all scales from 1 to 20\arcmin without {\it a priori} assumptions for the structure size or density profile. Our procedure makes {\bf no} {\it a priori} selection on galaxy spectral energy distribution (SED, for example the Red Sequence), enabling an unbiased investigation of environmental effects on galaxy evolution. The COSMOS photometric redshift catalog yields a sample of 1.5×1051.5\times10^5 galaxies with redshift accuracy, ΔzFWHM/(1+z)0.1\Delta z_{FWHM}/(1+z) \leq 0.1 at z <1.1< 1.1 down to IAB25_{AB} \leq 25 mag. Using this sample of galaxies, we identify 42 large-scale structures and clusters. abstract truncated for astroph 25 line limit -- see preprintComment: 72 pages with 29 pages of figures, for cosmos apj suppl special issu
    corecore