629 research outputs found
Anthropogenic noise increases fish mortality by predation
PublishedNoise-generating human activities affect hearing, communication and movement in terrestrial and aquatic animals, but direct evidence for impacts on survival is rare. We examined effects of motorboat noise on post-settlement survival and physiology of a prey fish species and its performance when exposed to predators. Both playback of motorboat noise and direct disturbance by motorboats elevated metabolic rate in Ambon damselfish (Pomacentrus amboinensis), which when stressed by motorboat noise responded less often and less rapidly to simulated predatory strikes. Prey were captured more readily by their natural predator (dusky dottyback, Pseudochromis fuscus) during exposure to motorboat noise compared with ambient conditions, and more than twice as many prey were consumed by the predator in field experiments when motorboats were passing. Our study suggests that a common source of noise in the marine environment has the potential to impact fish demography, highlighting the need to include anthropogenic noise in management plans.This work was supported by a NERC Knowledge Exchange Fellowship (for S.D.S.), the UK Department for Environment Food and Rural Affairs (S.D.S. and A.N.R.), the ARC Centre of Excellence for Coral Reef Studies (M.I.M; EI140100117) and an EPSRC studentship (S.L.N.). NERC KE Fellowship (S.D.S.; NE/J500616/2
Prediction of myelopathic level in cervical spondylotic myelopathy using diffusion tensor imaging
postprin
Exploring plant volatile-mediated interactions between native and introduced plants and insects
In invasion scenarios, native and introduced species co-occur creating new interactions and modifying existing ones. Many plant-plant and plant-insect interactions are mediated by volatile organic compounds (VOCs), however, these have seldom been studied in an invasion context. To fill this knowledge gap, we explored some interactions mediated by VOCs between native and introduced plants and insects in a New Zealand system. We investigated whether a native plant, Leptospermum scoparium (mānuka), changes its volatile profile when grown adjacent to two European introduced plants, Calluna vulgaris (heather) and Cytisus scoparius (Scotch broom), in a semi-field trial using potted plants without above- or below-ground physical contact. We also investigated the influence of plant cues on the host-searching behaviour of two beetles, the native Pyronota festiva (mānuka beetle), and the introduced biocontrol agent Lochmaea suturalis (heather beetle), by offering them their host-plant and non-host volatiles versus clean air, and their combination in a Y-tube olfactometer. As a follow-up, we performed preference/feeding tests in Petri dishes with fresh plant material. Results of the semi-field experiment show a significant reduction in green leaf volatiles, sesquiterpenes and total volatile emissions by mānuka plants neighbouring heather. In the Y-tube assays, the native beetle P. festiva performed poorly in discriminating between host and non-host plants based on plant volatile cues only. However, it performed relatively well in the Petri dish tests, where other cues (i.e., visual, gustatory or tactile) were present. In contrast, the introduced beetle L. suturalis showed high host-specificity in both Y-tube and Petri dish assays. This study illustrates the importance of VOCs in mediating interactions between introduced and native species, suggesting that invasive plants can disrupt native plants' communication and affect the host-searching behaviour of native insects. It also reinforces the relevance of regular host testing on introduced weed biocontrol agents to avoid unwanted host shifts or host-range expansion
Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses
The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined
School is out on noisy reefs: the effect of boat noise on predator learning and survival of juvenile coral reef fishes
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Noise produced by anthropogenic activities is increasing in many marine ecosystems. We investigated the effect of playback of boat noise on fish cognition. We focused on noise from small motorboats, since its occurrence can dominate soundscapes in coastal communities, the number of noise-producing vessels is increasing rapidly and their proximity to marine life has the potential to cause deleterious effects. Cognition-or the ability of individuals to learn and remember information-is crucial, given that most species rely on learning to achieve fitness-promoting tasks, such as finding food, choosing mates and recognizing predators. The caveat with cognition is its latent effect: the individual that fails to learn an important piece of information will live normally until the moment where it needs the information to make a fitness-related decision. Such latent effects can easily be overlooked by traditional risk assessment methods. Here, we conducted three experiments to assess the effect of boat noise playbacks on the ability of fish to learn to recognize predation threats, using a common, conserved learning paradigm. We found that fish that were trained to recognize a novel predator while being exposed to 'reef + boat noise' playbacks failed to subsequently respond to the predator, while their 'reef noise' counterparts responded appropriately. We repeated the training, giving the fish three opportunities to learn three common reef predators, and released the fish in the wild. Those trained in the presence of 'reef + boat noise' playbacks survived 40% less than the 'reef noise' controls over our 72 h monitoring period, a performance equal to that of predator-naive fish. Our last experiment indicated that these results were likely due to failed learning, as opposed to stress effects from the sound exposure. Neither playbacks nor real boat noise affected survival in the absence of predator training. Our results indicate that boat noise has the potential to cause latent effects on learning long after the stressor has gone.Funding for this study was provided by the Natural Sciences and Engineering Research Council of Canada (M.C.O.F., D.P.C.), the Australian Research Council (M.I.M., M.C.O.F., D.P.C., M.G.M.), the ARC Center of Excellence for Coral Reef Studies (M.I.M.) and the UK Natural Environment Research Council (S.D.S.)
Seasonal Volatile Emission Patterns of the Endemic New Zealand Shrub Dracophyllum subulatum on the North Island Central Plateau
Volatile organic compounds (VOCs) produced by plants are essential indicators of their physiological response to environmental conditions. But evidence of natural variation in VOC emissions and their contributing factors is still limited, especially for non-cultivated species. Here we explored the natural volatile emissions of Dracophyllum subulatum Hook.f., an endemic shrub to the North Island Central Plateau of New Zealand, and determined some environmental factors driving the plant's emissions. Volatile emissions of D. subulatum were measured on four separate occasions from December 2017 to September 2018 using the "push-pull" headspace sampling technique and analyzed using gas chromatography-mass spectrometry (GC-MS). D. subulatum was classified based on the volatiles measured on each sampling occasion using linear discriminant analysis (LDA). On each sampling occasion, we also recorded and compared ambient air temperature, herbivory damage, total soil nitrogen (N), available phosphorus (P), potassium (K), and soil moisture content. The relationship between environmental variables that differed significantly between sampling occasions and volatile emissions were estimated using generalized linear models (GLMs). Based on VOCs measured on each sampling occasion, we were able to distinguish different chemical profiles. Overall, we found that total emission and the relative proportions of all major chemical classes released by D. subulatum were significantly higher during summer. The GLMs reveal that differences in environmental factors between the four sampling occasions are highly associated with changing emissions. Higher temperatures in summer had a consistently strong positive relationship with emissions, while the impacts of soil moisture content, P and K were variable and depended on the chemical class. These results are discussed, particularly how high temperature (warming) may shape volatile emissions and plants' ecology.fals
Enhanced tonic GABAA inhibition in typical absence epilepsy
The cellular mechanisms underlying typical absence seizures, which characterize various idiopathic generalized epilepsies, are not fully understood, but impaired GABAergic inhibition remains an attractive hypothesis. In contrast, we show here that extrasynaptic GABAA receptor–dependent ‘tonic’ inhibition is increased in thalamocortical neurons from diverse genetic and pharmacological models of absence seizures. Increased tonic inhibition is due to compromised GABA uptake by the GABA transporter GAT–1 in the genetic models tested, and GAT–1 is critical in governing seizure genesis. Extrasynaptic GABAA receptors are a requirement for seizures in two of the best characterized models of absence epilepsy, and the selective activation of thalamic extrasynaptic GABAA receptors is sufficient to elicit both electrographic and behavioural correlates of seizures in normal animals. These results identify an apparently common cellular pathology in typical absence seizures that may have epileptogenic significance, and highlight novel therapeutic targets for the treatment of absence epilepsy.peer-reviewe
Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis.
Venous abnormalities contribute to the pathophysiology of several neurological conditions. This paper reviews the literature regarding venous abnormalities in multiple sclerosis (MS), leukoaraiosis, and normal-pressure hydrocephalus (NPH). The review is supplemented with hydrodynamic analysis to assess the effects on cerebrospinal fluid (CSF) dynamics and cerebral blood flow (CBF) of venous hypertension in general, and chronic cerebrospinal venous insufficiency (CCSVI) in particular.CCSVI-like venous anomalies seem unlikely to account for reduced CBF in patients with MS, thus other mechanisms must be at work, which increase the hydraulic resistance of the cerebral vascular bed in MS. Similarly, hydrodynamic changes appear to be responsible for reduced CBF in leukoaraiosis. The hydrodynamic properties of the periventricular veins make these vessels particularly vulnerable to ischemia and plaque formation.Venous hypertension in the dural sinuses can alter intracranial compliance. Consequently, venous hypertension may change the CSF dynamics, affecting the intracranial windkessel mechanism. MS and NPH appear to share some similar characteristics, with both conditions exhibiting increased CSF pulsatility in the aqueduct of Sylvius.CCSVI appears to be a real phenomenon associated with MS, which causes venous hypertension in the dural sinuses. However, the role of CCSVI in the pathophysiology of MS remains unclear
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Using C. elegans to discover therapeutic compounds for ageing-associated neurodegenerative diseases
Age-associated neurodegenerative disorders such as Alzheimer’s disease are a major public health challenge, due to the demographic increase in the proportion of older individuals in society. However, the relatively few currently approved drugs for these conditions provide only symptomatic relief. A major goal of neurodegeneration research is therefore to identify potential new therapeutic compounds that can slow or even reverse disease progression, either by impacting directly on the neurodegenerative process or by activating endogenous physiological neuroprotective mechanisms that decline with ageing. This requires model systems that can recapitulate key features of human neurodegenerative diseases that are also amenable to compound screening approaches. Mammalian models are very powerful, but are prohibitively expensive for high-throughput drug screens. Given the highly conserved neurological pathways between mammals and invertebrates, Caenorhabditis elegans has emerged as a powerful tool for neuroprotective compound screening. Here we describe how C. elegans has been used to model various human ageing-associated neurodegenerative diseases and provide an extensive list of compounds that have therapeutic activity in these worm models and so may have translational potential
- …
