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Abstract

Parkinson'’s disease

Age-associated neurodegenerative disorders such as Alzheimer's disease are a major public health challenge, due

to the demographic increase in the proportion of older individuals in society. However, the relatively few currently
approved drugs for these conditions provide only symptomatic relief. A major goal of neurodegeneration research is
therefore to identify potential new therapeutic compounds that can slow or even reverse disease progression, either
by impacting directly on the neurodegenerative process or by activating endogenous physiological neuroprotec-
tive mechanisms that decline with ageing. This requires model systems that can recapitulate key features of human
neurodegenerative diseases that are also amenable to compound screening approaches. Mammalian models are very
powerful, but are prohibitively expensive for high-throughput drug screens. Given the highly conserved neurological
pathways between mammals and invertebrates, Caenorhabditis elegans has emerged as a powerful tool for neuro-
protective compound screening. Here we describe how C. elegans has been used to model various human ageing-
associated neurodegenerative diseases and provide an extensive list of compounds that have therapeutic activity in
these worm models and so may have translational potential.

Keywords: Adult onset neuronal ceroid lipofuscinosis, Aging, Alzheimer's disease, Amyotrophic lateral sclerosis,
Caenorhabditis elegans, Compound screening, Frontotemporal dementia, Huntington'’s disease, Neurodegeneration,

Background

Despite decades of intense molecular research and the iden-
tification of many specific causative mutations, debilitating
neurodegenerative diseases (NDs) including common dis-
orders such as Alzheimer’s disease (AD) and Parkinson’s
disease (PD), afflict millions worldwide and remain a signif-
icant and unresolved financial and social burden. Indeed, as
ageing itself is by far the greatest risk factor for these dis-
eases, this burden is set to increase dramatically as a result
of our increasingly ageing population. Given the urgent
need for therapies for these devastating and eventually fatal
disorders, many researchers have developed animal models
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of NDs in order to screen for potential new drugs. In this
review, we focus on compound screens performed in the
nematode worm, Caenorhabditis elegans. We describe var-
ious different NDs that have been modelled in worms and
list the therapeutic compounds that have been identified
for each. In some cases, these compounds have also been
shown to be protective in mammalian ND models, suggest-
ing translational potential for human patients. We conclude
that the combination of accurate genetic ND worm models
with high-throughput automated drug screening platforms
is a potentially very efficient strategy for early therapeutic
drug discovery for NDs.

Review

An overview of human neurodegenerative diseases

NDs are characterised by progressive neuropsychiat-
ric dysfunction and the loss of structure and function of
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specific neuronal circuitry that in turn result in behav-
ioural symptoms. NDs can occur on a completely heredi-
tary basis (e.g. Huntington’s disease), or can be hereditary
and also appear sporadically in the majority of cases
(e.g. AD, PD). In spite of the diversity in the underlying
genes involved, inheritance patterns, clinical manifes-
tation and exact sites of neuropathology, the rare, early
onset familial (also known as Mendelian) forms and the
more prevalent late-onset sporadic forms of different
NDs share some common genetic origins and patho-
logical hallmarks, such as the progressive and chronic
nature of the disease, the extensive loss of specific neu-
ronal subtypes, synaptic dysfunctions, the formation
and deposition of misfolded protein aggregates [1-3].
Research and technological innovations over the past
10 years have made considerable progress in the elucida-
tion of mechanisms of ND initiation and progression that
lead to neurodegeneration. Emerging common themes in
the pathogenesis of neurodegeneration include: aberrant
phosphorylation, palmitoylation and acetylation of dis-
ease-causing proteins, protein misfolding, deficient ubiq-
uitin—proteasome system (UPS) or autophagic process to
clear disease-causing proteins, altered RNA metabolism,
oxidative stress, mitochondrial dysfunction, excitotoxic-
ity, disrupted axonal transport, neuroinflammation and
microglial activation [4]. Linkage analysis, high-through-
put sequencing and genome-wide association studies
(GWAS) have also identified susceptibility genes in many
NDs (Table 1) and promise to help unravel even more
genes, novel loci and common genetic variants associated
with the diverse collection of human NDs. Thus devel-
opments of therapeutic interventions that are applicable
across the broad spectrum of NDs and target the shared
pathogenic mechanisms may offer the best hope for a
future neuroprotective therapy.

Caenorhabditis elegans as a model for human
neurodegenerative disease

A major challenge to the identification of effective dis-
ease-modifying therapies arises from an insufficient
knowledge about the contribution of multiple pathways
to disease pathogenesis. Mammalian disease models
offer in vivo opportunities and extensive similarity to the
human brain, but testing the therapeutic value of small
molecules in mammalian model systems is extremely
expensive and requires time-consuming experimen-
tal designs that can be prohibitive. Over the past dec-
ades, C. elegans has increasingly been used as a model
system to study the underlying molecular mechanisms
that give rise to neurodegeneration because of its well-
characterised and easily accessible nervous system, short
generation time (~3 days) and lifespan (~3 weeks), trac-
tability to genetic manipulation, distinctive behavioural
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and neuropathological defects, coupled with a surpris-
ingly high degree of biochemical conservation compared
to humans. Remarkable similarities exist at the molecular
and cellular levels between nematode and vertebrate neu-
rons. For example, ion channels, receptors, classic neu-
rotransmitters [acetylcholine, glutamate, y-aminobutyric
acid (GABA), serotonin, and dopamine (DA)], vesicular
transporters and the neurotransmitter release machin-
ery are similar in both structure and function between
vertebrates and C. elegans [5, 6]. Importantly, the impact
of different challenges such as genetic perturbations or
exposure to drugs on the survival and function of defined
neuronal populations in the C. elegans nervous system
can be readily studied in vivo.

To date, various laboratories have developed and char-
acterised a diverse set of C. elegans models of various
human NDs, including AD [7], PD [8] and polyglutamine
expansion diseases [9] (Table 1). These worm ND mod-
els have been developed by over-expressing human ND-
associated genes (both wild type and mutant versions)
and by mutating or altering the expression level of the
orthologous worm genes. Strong parallels were especially
observed in the genotype-to-phenotype correlations
between the human NDs and the phenotypes of trans-
genic C. elegans ND models. This supports the validity of
the approach as expression of mutant human proteins in
C. elegans can closely model a fundamental property of
these mutations in humans.

Nevertheless, there are also limitations to using C. ele-
gans to model NDs that must be considered. Although
the worm offers huge potential for experimental manip-
ulations, there are aspects of ND pathophysiology that
cannot easily be modelled in worms. For example, abun-
dant evidence supports an important role for brain
inflammation and microglial cell activation in several
NDs, notably AD [10], but there is no microglial equiv-
alent among the 56 glial cells of C. elegans. Clearly, the
very simplicity of the worm nervous system that makes it
so attractive for studying basic neurobiology is also a dis-
advantage in that the complexity of the mammalian brain
cannot be adequately reflected, and so rodent models will
continue to be required to validate any findings from C.
elegans ND studies. There are also potential pitfalls of
using C. elegans for drug screening, as many compounds
do not easily penetrate the worm’s protective cuticle [11]
and as biotransformation of compounds by the worms’
E. coli food source may give misleading pharmacological
information [12]. Although these potential pitfalls can be
mitigated by combining predictive bioaccumulation algo-
rithms [11] with increased dose regimens, and by con-
firming drug effects using metabolically inactive E. coli,
these issues need to be considered when performing drug
screens in worms.
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Despite the above caveats, C. elegans remains a widely
used animal model to identify genes that modify neuro-
degeneration in vivo. Indeed, genetic screens performed
on worm models have identified a wide variety of con-
served genes that can suppress or increase disease pro-
gression and are thus potential therapeutic drug targets.
However, relatively few of these genetic modifiers are
common to more than one disease model, despite the
shared feature of protein misfolding/aggregation [13,
14]. In addition to its utility for screening for genetic
contributors to NDs, C. elegans is a useful pharmaco-
logical model for testing potential neuroprotective com-
pounds. Numerous well-characterised ND models have
been readily exploited for triaging compounds from large
libraries consisting of novel and pre-approved drugs, and
for testing the effects of individual drugs, prior to valida-
tion in vertebrate models. Potential therapeutics identi-
fied via such compound screens using specific worm
ND models are shown in Figs. 1, 2, listed in Table 1 and
described in detail below.

Alzheimer’s disease: amyloid-3 (A) models

B-Amyloid is the main component of the extracellu-
lar plaques found in the brains of Alzheimer’s disease
patients. It is widely (though not universally) believed
that aggregation of Af into oligomeric forms is the main
driver of neurodegeneration in Alzheimer’s disease. This
has been modelled in nematodes by expressing human
AP constructs in worm muscle cells [7]. The Ap-induced
paralysis observed in the well-characterised muscle-
specific strains has provided a valuable phenotype for
straightforward quantification of the effects of treatments
on AP toxicity and validation of potential therapeutic
interventions for Alzheimer’s disease. The C. elegans
strain CL2006, which constitutively expresses human
AP, 4, has been elegantly used to demonstrate the neu-
roprotective effects of a diverse range of compounds
(Table 1; Figs. 1, 2). These include natural products such
as specific gingkolides [15], soya isoflavone glycitein [16],
the green tea component epigallocatechin gallate [17,
18] and coffee extract [19]; FDA-approved drugs such as
tannic acid, bacitracin, rifampicin [20], thioflavin T [21],
reserpine [22] and the antidepressant fluoxetine; and
polyphenolic compounds such as curcumin and ferulic
acid [23, 24]. These treatments conferred considerable
life-span extension and cellular stress tolerance [15, 16].
This was a consequence of most compounds attenuat-
ing the rate of toxic human Ap,_,, mediated paralysis,
to suppress the APB;_,, induced increase in toxic reac-
tive oxygen species and hydrogen peroxide levels, and to
inhibit AB,_,, oligomerisation and deposition [15, 25].
Recent studies have also demonstrated how the antibiotic
tetracycline and its analogues [26], and ethanol extract of
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Liuwei Dihuang [27] successfully protected the CL4176
inducible A, ,, muscle-specific expression model by
inhibiting AB,_,, oligomerisation and reducing superox-
ide production. Oleuropein aglycone, the main polyphe-
nol in extra virgin olive oil, was recently shown to protect
against amyloid toxicity in both constitutive and induc-
ible AB,_,, models [28]. In addition, two recent large,
unbiased yeast-based screens of pharmacological modi-
fiers identified the 8-hydroxyquinoline chemical scaffold
(8-OHQ), a class of clinically relevant bioactive metal
chelators as neuroprotective compounds that reduced
proteotoxicity associated with the aggregation of several
ND-specific proteins including TDP-43, a-synuclein,
polyglutamine proteins, or AB,_,, [29, 30]. Notably, two
closely related 8-OHQs—PBT2 and clioquinol, which
conferred neuroprotective benefits in mouse models of
AD, were further shown to rescue AP,_,, toxicity in C.
elegans body wall muscle cells [31] and glutamatergic
neurons [30]. PBT2 was also effective in improving cog-
nition and reducing AP in cerebrospinal fluid in a small
Phase IIA trial in AD patients [31].

Tauopathies

In addition to amyloid plaque deposition, Alzheimer’s
disease is associated with intraneuronal accumulation
of neurofibrillary tangles containing the microtubule-
associated protein Tau, which aggregates into insoluble
fibrillar deposits when it is hyperphosphorylated [32].
Pathological Tau deposits are also observed in Pick’s dis-
ease, corticobasal degeneration, Down’s syndrome and
specific types of frontotemporal dementia (FID) such
as frontotemporal dementia with parkinsonism chro-
mosome 17 type (FTDP-17) and frontotemporal lobar
dementia (FTLD). Various worm transgenic Tauopathy
models expressing mutant human Tau constructs have
therefore been generated and yielded complementary
findings in regards to the effects of neuronal Tau expres-
sion [33-35]. Neurodegeneration in worms expressing
transgenic human mutant Tau can be assessed indirectly,
using phenotypes such as impaired locomotion and
reduced lifespan, but also directly by visualising loss of
neuronal cell bodies and neuronal processes in vivo. An
example of the latter is shown in Fig. 3, where a human
Tau construct containing the FTDP-17-associated
V337 M mutation is expressed in all 302 worm neurons
via a pan-neuronal C. elegans promoter. In addition,
the 26 GABAergic neurons of the worm are specifi-
cally labelled by driving green fluorescent protein (GFP)
expression from GABA-specific C. elegans promoter. In
control worms, a continuous, intact line of GFP fluores-
cence is seen running along both the ventral and dorsal
nerve cords on opposite sides of the animal. In contrast,
the mutant Tau transgenic strains exhibits large gaps in
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(See figure on previous page.)

Fig. 1 Structures of compounds with therapeutic effects in C. elegans models of human neurodegenerative diseases. Chemical structures were
obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov) or MolBase (http://www.molbase.com). AD Alzheimer's disease, ALS amyotrophic
lateral sclerosis, ANCL adult-onset neuronal ceroid lipofuscinosis, FTDP frontotemporal dementia with parkinsonism-17, HD Huntington's disease, MJD
Machado-Joseph disease (spinocerebellar ataxia type 3), PD Parkinson’s disease, Prion prion disease, SMA spinal muscular atrophy

these nerve cords where neuronal processes are missing,
thus directly demonstrating severe neurodegeneration in
the living animal.

Using such Tauopathy models, compounds with known
anti-aggregation activity like methylene blue, were shown
to effectively ameliorate the worms’ motility and neu-
ronal defects [36]. In addition, a novel compound belong-
ing to the aminothienopyridazine class, cmp16, was also
shown to rescue these phenotypes and to suppress Tau
aggregation in worms [36]. Importantly, aminothieno-
pyridazines are known to suppress Tau aggregation in
mammalian cells and so the improved blood—brain bar-
rier permeability of cmp16 suggests that this compound
may have significant translational potential. In a recent
screen of a library of FDA-approved compounds, dopa-
mine D2 receptor antagonism was identified as a prom-
ising strategy for targeting tau-induced neurotoxicity,
as antipsychotics such as azaperone, perphenazine, and
zotepine improved the phenotypic features of Tauopathy
in worms (Table 1; Figs. 1, 2). Azaperone, in particular,
effectively ameliorated mutant Tau-induced functional
defects and reduced the level of insoluble Tau aggre-
gation [37]. Finally, a recent study reported that the
anti-epileptic drug, ethosuximide, could ameliorate the
impaired motility and reduced lifespan phenotypes of
the Tau V337 M worm FTDP-17 model [38]. Interest-
ingly, ethosuximide’s action in this worm Tau model was
independent of its main proposed target in epilepsy, the
T-type calcium channel.

Polyglutamine (polyQ) disorders

Expansion of trinucleotide CAG repeats in a variety of
different genes leads to neurodegenerative diseases such
as Huntington’s disease and spinocerebellar ataxias due
to the expression of a polyglutamine tract within the
encoded protein. Diverse worm transgenic models where
varying lengths of polyQ tracts are expressed in specific
sets of neurons, muscle cells and even intestine cells have
been widely used to model several aspects of polyQ neu-
rotoxicity, notably to address the mechanisms underlying

the impact of aggregation prone proteins on cellular
function and to identify novel disease modifiers [39—
41]. The progressive nature of polyQ-mediated toxicity,
protein aggregation and general severity of phenotype
demonstrated in these models is age- and polyQ-tract-
length-dependent, recapitulating critical aspects of poly-
glutamine expansion diseases in patients.

Voisine et al. [42] screened candidate pharmacologi-
cal compounds utilising a HD model in which the pge-
1 genetic mutant background greatly enhanced toxicity
induced by a human Huntingtin construct containing a
150-residue glutamine tract (Htt-Q150). Both lithium
chloride and mithramycin alleviated neuronal cell death,
while trichostatin A (a class I and class II HDAC inhibi-
tor) provided significant neuroprotection. Using the
same HD model, Varma et al. [43] discovered that small
molecular inhibitors of metabolism (mitochondrial and
glycolytic function) such as rotenone, oligomycin and
4-dinitrophenol rescued neuronal loss and degenera-
tion by activating caspase inhibition and ERK and AKT
prosurvival signalling and their efficacy was further
validated in cell culture and Drosophila HD models
(Table 1; Figs. 1, 2). Resveratrol, a demonstrated acti-
vator of sirtuin deacetylases, also effectively alleviated
Htt-Q128 toxicity in both worm and neuronal culture
models [44]. Recently, treatment of a C. elegans model
of SCA3 (spinocerebellar ataxia type 3; also known as
Machado-Joseph disease) with 17-(allylamino)-17-dem-
ethoxygeldanamycin (17-AAG), an HSP90 inhibitor, suc-
cessfully decreased the mutant ATXN3 aggregation and
improved locomotor activity [39]. Treatment of the same
model with valproic acid (VA), another HDAC inhibi-
tor and a well-known anti-epileptic drug, also led to
improved locomotor activity accompanied by a decrease
in mutant ATXN3 aggregation. Therefore, HDAC inhibi-
tors which promote histone acetylation over deacetyla-
tion and which were also known to provide protection
against polyQ mediated toxicity in vertebrate and Dros-
ophila neurons may hold promise as a preventive ther-
apy in polyQ diseases.

(See figure on next page.)

Fig. 2 Structures of compounds with therapeutic effects in C. elegans models of human neurodegenerative diseases. Chemical structures were
obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov) or MolBase (http://www.molbase.com). AD Alzheimer's disease, ALS amyotrophic
lateral sclerosis, ANCL adult-onset neuronal ceroid lipofuscinosis, FTDP frontotemporal dementia with parkinsonism-17, HD Huntington'’s disease, MJD
Machado-Joseph disease (spinocerebellar ataxia type 3), PD Parkinson’s disease, Prion prion disease, SMA spinal muscular atrophy
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Tau V337M

Day 1

Day 5

Day 10

Insets

Fig. 3 A C elegans genetic model of the Tauopathy, FTDP-17. Triple
transgenic worms expressing human V337M mutant Tau protein
(Paex-3:V337MTau), a pharyngeal GFP marker (Pmyo-2:GFP) and

a GFP reporter transgene marking the cell bodies and processes

of all C. elegans GABAergic neurons (Punc-25:GFP) were compared
with control single Punc-25:GFP transgenic worms. All panels are
micrographs of representative whole worms. Control (feft panels) and
Tau V337M expressing worms (right panel) were examined after 1, 5
and 10 days of age. In control worms, intact ventral and dorsal cords
were observed at all ages. In contrast, the mutant Tau transgenic
GABAergic reporter strain exhibited severe degeneration of neuronal
processes. Ventral and dorsal cord gaps (arrows) are disruptions in the
continuity of the ventral and dorsal nerve cords, respectively. Scale
bar represents 200 um for all panels except for the bottom two panels,
which are high magnifications of the boxed areas of day-10 worms
shown above

Other pan-neuronal or neuron specific HD models
facilitated the identification of other potential thera-
peutic interventions, including the anti-cancer agent
B-lapachone [45], D. officinarum root extracts [46] and a
phenol glycoside salidroside [47], which conferred pro-
tection against polyQ neuronal toxicity. Treating C. ele-
gans muscle polyQ models with hydroxylamine, icariin
and celecoxib derivatives (NG-094, icariside II and OSU-
03012, respectively) ameliorated polyQ-mediated protein
aggregation and protected against polyQ proteotoxicity
[48-50] (Table 1; Figs. 1, 2). Aspirin, an analgesic agent,
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was also shown to significantly improve polyQ-medi-
ated animal paralysis, reducing the number of Q35-YFP
aggregates and delaying polyQ-dependent acceleration of
aging [51].

Parkinson’s disease (PD)

Pathologically, PD is characterised by degeneration
of dopaminergic neurons in the substantia nigra and
accumulation of Lewy bodies containing aggregated
a-synuclein protein. Although most cases are idiopathic,
PD can be caused by both environmental (e.g. pesti-
cide exposure) and genetic (e.g. a-synuclein and LRRK2
mutation) effects. Multiple worm PD models, notably the
toxin-induced models, have aided in the discovery and
validation of potential pharmacological interventions for
PD. An example of how dopaminergic neurodegeneration
can be directly assessed in vivo in C. elegans is shown in
Fig. 4. Here, the eight dopaminergic neurons of the worm
are specifically labelled by GFP expression from the pro-
moter of the C. elegans dopamine transporter. In control
worms, fluorescent neuronal cell bodies extending long
processes are clearly visible in the head (6 neurons) and
tail (2 neurons) of the animal. However, treatment with
the PD-inducing toxin, 6-hydroxydopamine (6-OHDA),
causes the loss of GFP-labelled dopaminergic neuronal
cell bodies and/or processes, thus enabling direct visuali-
sation of neurodegeneration.

Chemical screens have suggested that compounds
which protect mitochondria or increase autophagy pro-
tect against a-synuclein toxicity [52, 53]. Braungart et al.
[54] performed a focused compound screen using the
C. elegans MPTP model of PD and found that lisuride
and apomorphine (dopamine receptor agonists), as well
as rottlerin (protein kinase C inhibitor) ameliorated the
MPTP-induced behavioural defects when present at a
low concentration. In addition, nomifensine (dopamine
transporter inhibitor), nicotine (acetylcholine recep-
tor agonist), selegiline (monoamine oxidase inhibitor),
MPEP (mGluR-5 inhibitor), amantadine, a-lipoic acid
(antioxidant) and ascorbic acid (antioxidant) were effec-
tive at higher concentrations [53]. In another screen, two
mammalian dopamine D2 receptor agonists, bromocrip-
tine and quinpirole, were identified to confer significant
neuroprotection independent of dopamine receptors in
a 6-OHDA-induced dopaminergic neurodegeneration
model of PD [55]. Similarly, a low concentration of aceta-
minophen (analgesic and antipyretic) was reported by
Locke et al. [56] to protect significantly against 6-OHDA
toxicity-induced dopaminergic neurodegeneration in
P ... 1:GFP expressing worms. However, the protection
appears to be selective as acetaminophen was not neu-
roprotective against a-synuclein-induced neurodegen-
eration at any concentration tested. The anti-epileptic
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Rounding

BY250 + AA

BY250 + 6-OHDA + AA

drug, valproic acid provided significant dopaminergic
neuroprotection in a C. elegans PD model associated
with human «o-synuclein overproduction, which was
further shown to be mediated through ERK-MAPK sig-
nalling [57]. A more recent study has also demonstrated
the neuroprotective effects of the naturally occurring
polyamine spermidine and phytocompounds such as

Fig. 4 A C. elegans model of toxin-induced Parkinson'’s disease. a
Dopaminergic (DA) neuronal cell bodies and neurites in BY250 worms
were visualised using an integrated Pdat-1:GFP dopamine transporter
marker. C. elegans has eight DA neurons: six are located in the anterior
region, which can be subclassified in pairs as two anterior deirid neu-
rons (ADE), two dorsal cephalic neurons (CEP) which are postsynaptic
to the ADE neurons and two ventral CEPs that are not postsynaptic

to the ADEs; two posterior deirid neurons (PDE) located posteriorly
are also shown. Arrows depict the four CEP neuron processes and
indicate the ADE and PDE cell bodies in a young worm. Anterior is to
the left. b Representative examples of worms scored which display
the three characteristic stages of DA neurodegeneration in response
to 6-OHDA. Magnification of anterior region of C. elegans shows only
the anterior-most DA neurons. WT: in this example, all six anterior DA
neurons of this worm appear robust and the dendrites are intact and
fully extended. Neuronal process blebbing; cell body rounding: this
worm exhibited prominent cell body rounding (asterisk) and dendrite
blebbing (arrows); cell body loss: this worm exhibited a complete loss
of GFP in most DA neurons as CEP and ADE neurons have all degener-
ated and are no longer visible in any focal plane, only retention of GFP
expression in the remnants of neuron cell bodies and broken neurites.
All scale bars represent 20 um. € Representative images of worms

24 h post-6-OHDA-exposure are presented. BY250 worms treated
with ascorbic acid (AA) alone expressed intact and strong GFP in all
six DA neurons and dendrites in the heads. However, the majority of
BY250 worms incubated with 50 mM 6-OHDA showed a marked GFP
expression reduction in the dendrites of ADEs and CEPs, many of the
cell somas became round (asterisk) and blebs appeared along the
dendrites of CEPs (arrows)

n-butylidenephthalide,  curcumin,  N-acetylcysteine
and vitamin E on 6-OHDA-induced degeneration of
dopaminergic neurons and their ability to attenuate
a-synuclein accumulation. n-butylidenephthalide, in
particular, had the greatest neuroprotective capacity
and was shown to also restore food-sensing behaviour
and dopamine levels in both pharmacological and trans-
genic C. elegans PD models as well as enhancing the life
span of 6-OHDA-treated animals [58]. Acetylcorynoline,
the major alkaloid component derived from Corydalis
bungeana, a traditional Chinese medical herb demon-
strated the same neuroprotective effects when applied to
the same pharmacological and transgenic C. elegans PD
models [59].

Kinase-targeted inhibition of LRRK2 protein activ-
ity was recently established as an effective treatment for
PD as LRRK2 kinase inhibitors consistently mitigated
pathogenesis caused by different LRRK2 mutations.
Liu et al. [60] showed that though GW5074, an indo-
line compound, and sorafenib, a Raf kinase inhibitor,
did not have protective effects against «-synuclein- and
6-OHDA-induced toxicity, they increased survival and
reduced dopaminergic neurodegeneration in G2019S-
LRRK2 transgenic C. elegans and Drosophila. Yao et al.
[61] further demonstrated the potency of kinase inhibi-
tors as they were able to pharmacologically rescue both
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the behavioural deficit and neurodegeneration mani-
fested by the expression of mutant LRRK2 G2019S and
R1441C in vivo using two LRRK2 inhibitors, TTT-3002
and LRRK2-IN1, which also potently inhibited in vitro
kinase activities of LRRK2 wild-type, R1441C and
G2019S at nanomolar to low micromolar concentrations
when administered either pre-symptomatically or post-
symptomatically. Compounds that have been shown to
be protective in the various worm PD models are listed
in Table 1 and their chemical structures shown in Figs. 1
and 2.

Amyotrophic lateral sclerosis (ALS)

A number of transgenic lines expressing mutant forms
of human SOD1 found in familial ALS patients under a
range of promoters have been generated and recapitu-
lated the motor neuron degeneration and paralysis char-
acteristic of ALS patients [102, 103, 105, 108]. Genes
recently shown to be mutated in ALS include the DNA/
RNA binding proteins TDP-43 and FUS, and C9ORF72,
a novel familial and sporadic ALS causative gene. Treat-
ment with methylene blue, an aggregation inhibitor of
the phenothiazine class, not only rescued toxic pheno-
types (including neuronal dysfunction and oxidative
stress) associated with mutant TDP-43 and FUS in C. ele-
gans and zebrafish ALS models [62], but also ameliorated
Tau mediated toxicity in a newly established C. elegans
model [36]. Using transgenic TDP-43 models, Tauffen-
berger et al. evaluated 11 compounds previously reported
to enhance longevity in C. elegans and resveratrol (poly-
phenol), rolipram (phosphodiesterase 4 inhibitor), reser-
pine (antihypertensive), ethosuximide (anti-epileptic),
trolox and propyl gallate (antioxidants) were revealed
as effective candidates that protected against mutant
TDP-43 toxicity in motor neurons [63] (Table 1; Figs. 1,
2). Recent genetic experiments by Kraemer’s group sug-
gested that inhibiting cell division cycle kinase 7 (CDC7)
kinase activity reduces phosphorylation of TDP-43 and
the consequent neurodegeneration. Small molecule inhi-
bition of CDC-7 by PHA767491 was further shown to
robustly reduce TDP-43 phosphorylation and prevent
TDP-43 dependent neurodegeneration both in vitro and
in vivo [64].

Autosomal dominant adult-onset neuronal ceroid
lipofuscinosis (ANCL)

ANCL, also known as autosomal dominant Kufs’ dis-
ease and Parry disease, is a rare hereditary disease
characterised by intra-neuronal inclusions of auto-
fluorescent lipofuscin-like material and neurodegen-
eration [65, 66]. Recently, four independent research
groups have reported that ANCL is caused by muta-
tions in the DNAJCS5 gene that encodes the endogenous
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neuroprotective synaptic chaperone cysteine string pro-
tein (CSP) [67-70]. Our lab has recently developed a
C. elegans model of ANCL by using null mutants of the
worm DNAJCS5 orthologue, dnj-14 [71]. These worms
have similar phenotypes to ANCL patients and also to
CSP mutants in mice, in terms of reduced lifespan, pro-
gressive neuronal dysfunction and neurodegeneration
[72]. This evolutionary conservation of CSP’s neuropro-
tective function suggests that the worm dnj-14 model
could have potential for identifying generic neuropro-
tective interventions rather than disease specific drug
targets. Indeed, a focused screen of pharmacological
compounds that ameliorated the dnj-14 lifespan and neu-
ronal defects identified the polyphenolic molecule res-
veratrol, which has been shown to be neuroprotective in
a range of animal neurodegeneration models [71]. In con-
trast to other worm neurodegeneration models [44, 63,
73, 74], however, resveratrol acted in a sir-2.1-independ-
ent manner, as sir-2.1; dnj-14 double mutants showed full
lifespan rescue by resveratrol. Instead, the mechanism of
resveratrol action appeared to be via inhibition of cAMP
phosphodiesterase, as the phosphodiesterase inhibi-
tor, rolipram was shown to mimic the effect of resvera-
trol in rescuing dnj-14 phenotypes [71]. More recently,
the anti-epileptic drug ethosuximide has been shown
to be protective in the dnj-14 model, acting through a
DAF-16/FOXO-dependent mechanism that is distinct
from its proposed mechanism of action in epilepsy [38].
Ethosuximide also ameliorates the phenotypes of worm
models of FTDP-17 [38] and ALS [63] and reduces pro-
tein aggregation in a mouse neuronal cell culture model
of Huntington’s disease [38], suggesting that it may have
general and evolutionarily conserved neuroprotective
properties. Indeed, it has recently been shown that etho-
suximide reverses cognitive decline in a rat model of
Alzheimer’s disease [75]. Finally, a recent genome-wide
transcriptional profiling study of dnj-14 mutants revealed
a striking reduction in expression of ubiquitin protea-
some system (UPS)-related genes in comparison to wild
type control strains [76]. Genes encoding components of
multimeric E3 ubiquitin ligases were especially over-rep-
resented, suggesting that these may represent potential
novel drug targets for treatment of ANCL and perhaps
other neurodegenerative diseases.

Translational implications of C. elegans chemical
screens

The different screening strategies that have been applied
to C. elegans ND models have provided distinct insights
into potential therapeutic approaches in patients. These
strategies range from robotic automated imaging-based
approaches designed for high throughput compound
library screening [77] to highly focused screens of a
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selected small group of compounds that target a com-
mon pathological process such as protein aggrega-
tion [21]. Large scale screens offer greater coverage of
chemical space and so have potential to identify unify-
ing pharmacological themes amongst multiple hits from
compound libraries. For example, several different dopa-
mine D2 receptor antagonists were recovered as hits in
an unbiased library screen using a Tauopathy model,
with genetic techniques then being used to confirm that
reduced D2 receptor function is indeed neuroprotec-
tive [37]. Whilst this suggests that several currently pre-
scribed atypical anti-psychotic drugs could potentially be
re-purposed for treatment of human tauopathies, dosing
regimens would need to be carefully considered given
reports that the relatively high doses of these medica-
tions used to treat aggression and agitation in dementia
patients may increase the risk of death [78].

One observation that emerges from our analysis of the
large number of studies to date is that very few compounds
are therapeutic in multiple C. elegans ND models. Indeed,
out of the 72 compounds shown in Figs. 1 and 2, only etho-
suximide and resveratrol are effective in more than two ND
models and therefore appear to have general neuroprotec-
tive activity. This may be due in part to the fact that most
published studies have focused on relatively small sets of
compounds and so activity across multiple ND models
remains to be tested. Nevertheless, it seems certain that this
also reflects disease-specific pharmacological actions—for
example, Raf kinase inhibition is therapeutic in LRRK2-
based PD models, but ineffective in «-synuclein- and
6-OHDA-based PD models [60]. Clearly, effective clinical
treatments with such highly disease-specific drugs requires
knowledge of the underlying pathophysiological mecha-
nism, which is not always diagnosable in NDs. Drugs such
as ethosuximide and resveratrol are therefore potentially
very useful, as they may provide general neuroprotective
activity regardless of uncertainties regarding molecular
pathology. The mechanism of action of ethosuximide and
resveratrol remains unclear and controversial [79-81], but
both have been linked to increased longevity and healthspan
in model organisms [82, 83]. Given that dietary restriction,
the best established intervention known to increase longev-
ity and healthspan, is therapeutic in multiple ND models
from invertebrates to mice [84], it is clear that slowing the
ageing process can confer general neuroprotection. It may
be that ethosuximide and resveratrol modulate some of the
same conserved neuroprotective mechanisms that decline
with age, thus potentially explaining their therapeutic effects
in radically different ND models.

Conclusions and future perspectives
The nematode C. elegans has great potential for expedit-
ing neuroprotective drug discovery. Its facile genetics
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and suitability for high-throughput compound screening
mean that both target-driven and phenotypic screening
approaches can easily be performed (and potentially com-
bined). Although phenotypic screening became unfash-
ionable as a drug discovery paradigm in the post-genomic
era, Swinney and Anthony have clearly shown that most
new medicines still continue to be discovered via pheno-
typic screening [85]. This influential work has forced a re-
evaluation in the pharma industry and a consequent shift
towards phenotypic screening that incorporates avail-
able knowledge of targets/mechanisms [86], for which C.
elegans is ideally suited. Furthermore, there is increasing
evidence that using compound combinations designed to
act on multiple molecular targets can be an effective ther-
apeutic strategy—as exemplified by the spectacular suc-
cess of combination therapy for HIV [87]. Testing of many
such drug combinations can be performed rapidly and
cheaply using worm models, in contrast to rodent models.
In addition, technical developments such as CRISPR [88]
now offer the potential to rapidly create new and more
accurate C. elegans models of human neurodegenerative
diseases, by precisely delivering single-copies of mutant
genes identified from patients to appropriate desired
locations in the worm genome. Although C. elegans has
already facilitated the identification of potential novel
therapeutics, the future combination of more accurate
genetic models with high-throughput automated drug
screening platforms is a potentially very efficient strategy
for therapeutic drug discovery for NDs.
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