
Chen et al. Chemistry Central Journal  (2015) 9:65 
DOI 10.1186/s13065-015-0143-y

REVIEW

Using C. elegans to discover 
therapeutic compounds for ageing-associated 
neurodegenerative diseases
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Abstract 

Age-associated neurodegenerative disorders such as Alzheimer’s disease are a major public health challenge, due 
to the demographic increase in the proportion of older individuals in society. However, the relatively few currently 
approved drugs for these conditions provide only symptomatic relief. A major goal of neurodegeneration research is 
therefore to identify potential new therapeutic compounds that can slow or even reverse disease progression, either 
by impacting directly on the neurodegenerative process or by activating endogenous physiological neuroprotec-
tive mechanisms that decline with ageing. This requires model systems that can recapitulate key features of human 
neurodegenerative diseases that are also amenable to compound screening approaches. Mammalian models are very 
powerful, but are prohibitively expensive for high-throughput drug screens. Given the highly conserved neurological 
pathways between mammals and invertebrates, Caenorhabditis elegans has emerged as a powerful tool for neuro-
protective compound screening. Here we describe how C. elegans has been used to model various human ageing-
associated neurodegenerative diseases and provide an extensive list of compounds that have therapeutic activity in 
these worm models and so may have translational potential.
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Background
Despite decades of intense molecular research and the iden-
tification of many specific causative mutations, debilitating 
neurodegenerative diseases (NDs) including common dis-
orders such as Alzheimer’s disease (AD) and Parkinson’s 
disease (PD), afflict millions worldwide and remain a signif-
icant and unresolved financial and social burden. Indeed, as 
ageing itself is by far the greatest risk factor for these dis-
eases, this burden is set to increase dramatically as a result 
of our increasingly ageing population. Given the urgent 
need for therapies for these devastating and eventually fatal 
disorders, many researchers have developed animal models 

of NDs in order to screen for potential new drugs. In this 
review, we focus on compound screens performed in the 
nematode worm, Caenorhabditis elegans. We describe var-
ious different NDs that have been modelled in worms and 
list the therapeutic compounds that have been identified 
for each. In some cases, these compounds have also been 
shown to be protective in mammalian ND models, suggest-
ing translational potential for human patients. We conclude 
that the combination of accurate genetic ND worm models 
with high-throughput automated drug screening platforms 
is a potentially very efficient strategy for early therapeutic 
drug discovery for NDs.

Review
An overview of human neurodegenerative diseases
NDs are characterised by progressive neuropsychiat-
ric dysfunction and the loss of structure and function of 
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specific neuronal circuitry that in turn result in behav-
ioural symptoms. NDs can occur on a completely heredi-
tary basis (e.g. Huntington’s disease), or can be hereditary 
and also appear sporadically in the majority of cases 
(e.g. AD, PD). In spite of the diversity in the underlying 
genes involved, inheritance patterns, clinical manifes-
tation and exact sites of neuropathology, the rare, early 
onset familial (also known as Mendelian) forms and the 
more prevalent late-onset sporadic forms of different 
NDs share some common genetic origins and patho-
logical hallmarks, such as the progressive and chronic 
nature of the disease, the extensive loss of specific neu-
ronal subtypes, synaptic dysfunctions, the formation 
and deposition of misfolded protein aggregates [1–3]. 
Research and technological innovations over the past 
10 years have made considerable progress in the elucida-
tion of mechanisms of ND initiation and progression that 
lead to neurodegeneration. Emerging common themes in 
the pathogenesis of neurodegeneration include: aberrant 
phosphorylation, palmitoylation and acetylation of dis-
ease-causing proteins, protein misfolding, deficient ubiq-
uitin–proteasome system (UPS) or autophagic process to 
clear disease-causing proteins, altered RNA metabolism, 
oxidative stress, mitochondrial dysfunction, excitotoxic-
ity, disrupted axonal transport, neuroinflammation and 
microglial activation [4]. Linkage analysis, high-through-
put sequencing and genome-wide association studies 
(GWAS) have also identified susceptibility genes in many 
NDs (Table  1) and promise to help unravel even more 
genes, novel loci and common genetic variants associated 
with the diverse collection of human NDs. Thus devel-
opments of therapeutic interventions that are applicable 
across the broad spectrum of NDs and target the shared 
pathogenic mechanisms may offer the best hope for a 
future neuroprotective therapy.

Caenorhabditis elegans as a model for human 
neurodegenerative disease
A major challenge to the identification of effective dis-
ease-modifying therapies arises from an insufficient 
knowledge about the contribution of multiple pathways 
to disease pathogenesis. Mammalian disease models 
offer in vivo opportunities and extensive similarity to the 
human brain, but testing the therapeutic value of small 
molecules in mammalian model systems is extremely 
expensive and requires time-consuming experimen-
tal designs that can be prohibitive. Over the past dec-
ades, C. elegans has increasingly been used as a model 
system to study the underlying molecular mechanisms 
that give rise to neurodegeneration because of its well-
characterised and easily accessible nervous system, short 
generation time (≈3 days) and lifespan (≈3 weeks), trac-
tability to genetic manipulation, distinctive behavioural 

and neuropathological defects, coupled with a surpris-
ingly high degree of biochemical conservation compared 
to humans. Remarkable similarities exist at the molecular 
and cellular levels between nematode and vertebrate neu-
rons. For example, ion channels, receptors, classic neu-
rotransmitters [acetylcholine, glutamate, γ-aminobutyric 
acid (GABA), serotonin, and dopamine (DA)], vesicular 
transporters and the neurotransmitter release machin-
ery are similar in both structure and function between 
vertebrates and C. elegans [5, 6]. Importantly, the impact 
of different challenges such as genetic perturbations or 
exposure to drugs on the survival and function of defined 
neuronal populations in the C. elegans nervous system 
can be readily studied in vivo.

To date, various laboratories have developed and char-
acterised a diverse set of C. elegans models of various 
human NDs, including AD [7], PD [8] and polyglutamine 
expansion diseases [9] (Table 1). These worm ND mod-
els have been developed by over-expressing human ND-
associated genes (both wild type and mutant versions) 
and by mutating or altering the expression level of the 
orthologous worm genes. Strong parallels were especially 
observed in the genotype-to-phenotype correlations 
between the human NDs and the phenotypes of trans-
genic C. elegans ND models. This supports the validity of 
the approach as expression of mutant human proteins in 
C. elegans can closely model a fundamental property of 
these mutations in humans.

Nevertheless, there are also limitations to using C. ele-
gans to model NDs that must be considered. Although 
the worm offers huge potential for experimental manip-
ulations, there are aspects of ND pathophysiology that 
cannot easily be modelled in worms. For example, abun-
dant evidence supports an important role for brain 
inflammation and microglial cell activation in several 
NDs, notably AD [10], but there is no microglial equiv-
alent among the 56 glial cells of C. elegans. Clearly, the 
very simplicity of the worm nervous system that makes it 
so attractive for studying basic neurobiology is also a dis-
advantage in that the complexity of the mammalian brain 
cannot be adequately reflected, and so rodent models will 
continue to be required to validate any findings from C. 
elegans ND studies. There are also potential pitfalls of 
using C. elegans for drug screening, as many compounds 
do not easily penetrate the worm’s protective cuticle [11] 
and as biotransformation of compounds by the worms’ 
E. coli food source may give misleading pharmacological 
information [12]. Although these potential pitfalls can be 
mitigated by combining predictive bioaccumulation algo-
rithms [11] with increased dose regimens, and by con-
firming drug effects using metabolically inactive E. coli, 
these issues need to be considered when performing drug 
screens in worms.
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Despite the above caveats, C. elegans remains a widely 
used animal model to identify genes that modify neuro-
degeneration in vivo. Indeed, genetic screens performed 
on worm models have identified a wide variety of con-
served genes that can suppress or increase disease pro-
gression and are thus potential therapeutic drug targets. 
However, relatively few of these genetic modifiers are 
common to more than one disease model, despite the 
shared feature of protein misfolding/aggregation [13, 
14]. In addition to its utility for screening for genetic 
contributors to NDs, C. elegans is a useful pharmaco-
logical model for testing potential neuroprotective com-
pounds. Numerous well-characterised ND models have 
been readily exploited for triaging compounds from large 
libraries consisting of novel and pre-approved drugs, and 
for testing the effects of individual drugs, prior to valida-
tion in vertebrate models. Potential therapeutics identi-
fied via such compound screens using specific worm 
ND models are shown in Figs. 1, 2, listed in Table 1 and 
described in detail below.

Alzheimer’s disease: amyloid‑β (Aβ) models
β-Amyloid is the main component of the extracellu-
lar plaques found in the brains of Alzheimer’s disease 
patients. It is widely (though not universally) believed 
that aggregation of Aβ into oligomeric forms is the main 
driver of neurodegeneration in Alzheimer’s disease. This 
has been modelled in nematodes by expressing human 
Aβ constructs in worm muscle cells [7]. The Aβ-induced 
paralysis observed in the well-characterised muscle-
specific strains has provided a valuable phenotype for 
straightforward quantification of the effects of treatments 
on Aβ toxicity and validation of potential therapeutic 
interventions for Alzheimer’s disease. The C. elegans 
strain CL2006, which constitutively expresses human 
Aβ1-42, has been elegantly used to demonstrate the neu-
roprotective effects of a diverse range of compounds 
(Table 1; Figs. 1, 2). These include natural products such 
as specific gingkolides [15], soya isoflavone glycitein [16], 
the green tea component epigallocatechin gallate [17, 
18] and coffee extract [19]; FDA-approved drugs such as 
tannic acid, bacitracin, rifampicin [20], thioflavin T [21], 
reserpine [22] and the antidepressant fluoxetine; and 
polyphenolic compounds such as curcumin and ferulic 
acid [23, 24]. These treatments conferred considerable 
life-span extension and cellular stress tolerance [15, 16]. 
This was a consequence of most compounds attenuat-
ing the rate of toxic human Aβ1–42 mediated paralysis, 
to suppress the Aβ1–42 induced increase in toxic reac-
tive oxygen species and hydrogen peroxide levels, and to 
inhibit Aβ1–42 oligomerisation and deposition [15, 25]. 
Recent studies have also demonstrated how the antibiotic 
tetracycline and its analogues [26], and ethanol extract of 

Liuwei Dihuang [27] successfully protected the CL4176 
inducible Aβ1–42 muscle-specific expression model by 
inhibiting Aβ1–42 oligomerisation and reducing superox-
ide production. Oleuropein aglycone, the main polyphe-
nol in extra virgin olive oil, was recently shown to protect 
against amyloid toxicity in both constitutive and induc-
ible Aβ1–42 models [28]. In addition, two recent large, 
unbiased yeast-based screens of pharmacological modi-
fiers identified the 8-hydroxyquinoline chemical scaffold 
(8-OHQ), a class of clinically relevant bioactive metal 
chelators as neuroprotective compounds that reduced 
proteotoxicity associated with the aggregation of several 
ND-specific proteins including TDP-43, α-synuclein, 
polyglutamine proteins, or Aβ1–42 [29, 30]. Notably, two 
closely related 8-OHQs–PBT2 and clioquinol, which 
conferred neuroprotective benefits in mouse models of 
AD, were further shown to rescue Aβ1–42 toxicity in C. 
elegans body wall muscle cells [31] and glutamatergic 
neurons [30]. PBT2 was also effective in improving cog-
nition and reducing Aβ in cerebrospinal fluid in a small 
Phase IIA trial in AD patients [31].

Tauopathies
In addition to amyloid plaque deposition, Alzheimer’s 
disease is associated with intraneuronal accumulation 
of neurofibrillary tangles containing the microtubule-
associated protein Tau, which aggregates into insoluble 
fibrillar deposits when it is hyperphosphorylated [32]. 
Pathological Tau deposits are also observed in Pick’s dis-
ease, corticobasal degeneration, Down’s syndrome and 
specific types of frontotemporal dementia (FTD) such 
as frontotemporal dementia with parkinsonism chro-
mosome 17 type (FTDP-17) and frontotemporal lobar 
dementia (FTLD). Various worm transgenic Tauopathy 
models expressing mutant human Tau constructs have 
therefore been generated and yielded complementary 
findings in regards to the effects of neuronal Tau expres-
sion [33–35]. Neurodegeneration in worms expressing 
transgenic human mutant Tau can be assessed indirectly, 
using phenotypes such as impaired locomotion and 
reduced lifespan, but also directly by visualising loss of 
neuronal cell bodies and neuronal processes in vivo. An 
example of the latter is shown in Fig. 3, where a human 
Tau construct containing the FTDP-17-associated 
V337 M mutation is expressed in all 302 worm neurons 
via a pan-neuronal C. elegans promoter. In addition, 
the 26 GABAergic neurons of the worm are specifi-
cally labelled by driving green fluorescent protein (GFP) 
expression from GABA-specific C. elegans promoter. In 
control worms, a continuous, intact line of GFP fluores-
cence is seen running along both the ventral and dorsal 
nerve cords on opposite sides of the animal. In contrast, 
the mutant Tau transgenic strains exhibits large gaps in 
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these nerve cords where neuronal processes are missing, 
thus directly demonstrating severe neurodegeneration in 
the living animal.

Using such Tauopathy models, compounds with known 
anti-aggregation activity like methylene blue, were shown 
to effectively ameliorate the worms’ motility and neu-
ronal defects [36]. In addition, a novel compound belong-
ing to the aminothienopyridazine class, cmp16, was also 
shown to rescue these phenotypes and to suppress Tau 
aggregation in worms [36]. Importantly, aminothieno-
pyridazines are known to suppress Tau aggregation in 
mammalian cells and so the improved blood–brain bar-
rier permeability of cmp16 suggests that this compound 
may have significant translational potential. In a recent 
screen of a library of FDA-approved compounds, dopa-
mine D2 receptor antagonism was identified as a prom-
ising strategy for targeting tau-induced neurotoxicity, 
as antipsychotics such as azaperone, perphenazine, and 
zotepine improved the phenotypic features of Tauopathy 
in worms (Table  1; Figs.  1, 2). Azaperone, in particular, 
effectively ameliorated mutant Tau-induced functional 
defects and reduced the level of insoluble Tau aggre-
gation [37]. Finally, a recent study reported that the 
anti-epileptic drug, ethosuximide, could ameliorate the 
impaired motility and reduced lifespan phenotypes of 
the Tau V337  M worm FTDP-17 model [38]. Interest-
ingly, ethosuximide’s action in this worm Tau model was 
independent of its main proposed target in epilepsy, the 
T-type calcium channel.

Polyglutamine (polyQ) disorders
Expansion of trinucleotide CAG repeats in a variety of 
different genes leads to neurodegenerative diseases such 
as Huntington’s disease and spinocerebellar ataxias due 
to the expression of a polyglutamine tract within the 
encoded protein. Diverse worm transgenic models where 
varying lengths of polyQ tracts are expressed in specific 
sets of neurons, muscle cells and even intestine cells have 
been widely used to model several aspects of polyQ neu-
rotoxicity, notably to address the mechanisms underlying 

the impact of aggregation prone proteins on cellular 
function and to identify novel disease modifiers [39–
41]. The progressive nature of polyQ-mediated toxicity, 
protein aggregation and general severity of phenotype 
demonstrated in these models is age- and polyQ-tract-
length-dependent, recapitulating critical aspects of poly-
glutamine expansion diseases in patients.

Voisine et  al. [42] screened candidate pharmacologi-
cal compounds utilising a HD model in which the pqe-
1 genetic mutant background greatly enhanced toxicity 
induced by a human Huntingtin construct containing a 
150-residue glutamine tract (Htt-Q150). Both lithium 
chloride and mithramycin alleviated neuronal cell death, 
while trichostatin A (a class I and class II HDAC inhibi-
tor) provided significant neuroprotection. Using the 
same HD model, Varma et al. [43] discovered that small 
molecular inhibitors of metabolism (mitochondrial and 
glycolytic function) such as rotenone, oligomycin and 
4-dinitrophenol rescued neuronal loss and degenera-
tion by activating caspase inhibition and ERK and AKT 
prosurvival signalling and their efficacy was further 
validated in cell culture and Drosophila HD models 
(Table  1; Figs.  1, 2). Resveratrol, a demonstrated acti-
vator of sirtuin deacetylases, also effectively alleviated 
Htt-Q128 toxicity in both worm and neuronal culture 
models [44]. Recently, treatment of a C. elegans model 
of SCA3 (spinocerebellar ataxia type 3; also known as 
Machado-Joseph disease) with 17-(allylamino)-17-dem-
ethoxygeldanamycin (17-AAG), an HSP90 inhibitor, suc-
cessfully decreased the mutant ATXN3 aggregation and 
improved locomotor activity [39]. Treatment of the same 
model with valproic acid (VA), another HDAC inhibi-
tor and a well-known anti-epileptic drug, also led to 
improved locomotor activity accompanied by a decrease 
in mutant ATXN3 aggregation. Therefore, HDAC inhibi-
tors which promote histone acetylation over deacetyla-
tion and which were also known to provide protection 
against polyQ mediated toxicity in vertebrate and Dros-
ophila neurons may hold promise as a preventive ther-
apy in polyQ diseases.

(See figure on previous page.) 
Fig. 1 Structures of compounds with therapeutic effects in C. elegans models of human neurodegenerative diseases. Chemical structures were 
obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov) or MolBase (http://www.molbase.com). AD Alzheimer’s disease, ALS amyotrophic 
lateral sclerosis, ANCL adult-onset neuronal ceroid lipofuscinosis, FTDP frontotemporal dementia with parkinsonism-17, HD Huntington’s disease, MJD 
Machado–Joseph disease (spinocerebellar ataxia type 3), PD Parkinson’s disease, Prion prion disease, SMA spinal muscular atrophy

(See figure on next page.) 
Fig. 2 Structures of compounds with therapeutic effects in C. elegans models of human neurodegenerative diseases. Chemical structures were 
obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov) or MolBase (http://www.molbase.com). AD Alzheimer’s disease, ALS amyotrophic 
lateral sclerosis, ANCL adult-onset neuronal ceroid lipofuscinosis, FTDP frontotemporal dementia with parkinsonism-17, HD Huntington’s disease, MJD 
Machado–Joseph disease (spinocerebellar ataxia type 3), PD Parkinson’s disease, Prion prion disease, SMA spinal muscular atrophy

https://pubchem.ncbi.nlm.nih.gov
http://www.molbase.com
https://pubchem.ncbi.nlm.nih.gov
http://www.molbase.com
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Other pan-neuronal or neuron specific HD models 
facilitated the identification of other potential thera-
peutic interventions, including the anti-cancer agent 
β-lapachone [45], D. officinarum root extracts [46] and a 
phenol glycoside salidroside [47], which conferred pro-
tection against polyQ neuronal toxicity. Treating C. ele-
gans muscle polyQ models with hydroxylamine, icariin 
and celecoxib derivatives (NG-094, icariside II and OSU-
03012, respectively) ameliorated polyQ-mediated protein 
aggregation and protected against polyQ proteotoxicity 
[48–50] (Table 1; Figs. 1, 2). Aspirin, an analgesic agent, 

was also shown to significantly improve polyQ-medi-
ated animal paralysis, reducing the number of Q35-YFP 
aggregates and delaying polyQ-dependent acceleration of 
aging [51].

Parkinson’s disease (PD)
Pathologically, PD is characterised by degeneration 
of dopaminergic neurons in the substantia nigra and 
accumulation of Lewy bodies containing aggregated 
α-synuclein protein. Although most cases are idiopathic, 
PD can be caused by both environmental (e.g. pesti-
cide exposure) and genetic (e.g. α-synuclein and LRRK2 
mutation) effects. Multiple worm PD models, notably the 
toxin-induced models, have aided in the discovery and 
validation of potential pharmacological interventions for 
PD. An example of how dopaminergic neurodegeneration 
can be directly assessed in vivo in C. elegans is shown in 
Fig. 4. Here, the eight dopaminergic neurons of the worm 
are specifically labelled by GFP expression from the pro-
moter of the C. elegans dopamine transporter. In control 
worms, fluorescent neuronal cell bodies extending long 
processes are clearly visible in the head (6 neurons) and 
tail (2 neurons) of the animal. However, treatment with 
the PD-inducing toxin, 6-hydroxydopamine (6-OHDA), 
causes the loss of GFP-labelled dopaminergic neuronal 
cell bodies and/or processes, thus enabling direct visuali-
sation of neurodegeneration.

Chemical screens have suggested that compounds 
which protect mitochondria or increase autophagy pro-
tect against α-synuclein toxicity [52, 53]. Braungart et al. 
[54] performed a focused compound screen using the 
C. elegans MPTP model of PD and found that lisuride 
and apomorphine (dopamine receptor agonists), as well 
as rottlerin (protein kinase C inhibitor) ameliorated the 
MPTP-induced behavioural defects when present at a 
low concentration. In addition, nomifensine (dopamine 
transporter inhibitor), nicotine (acetylcholine recep-
tor agonist), selegiline (monoamine oxidase inhibitor), 
MPEP (mGluR-5 inhibitor), amantadine, α-lipoic acid 
(antioxidant) and ascorbic acid (antioxidant) were effec-
tive at higher concentrations [53]. In another screen, two 
mammalian dopamine D2 receptor agonists, bromocrip-
tine and quinpirole, were identified to confer significant 
neuroprotection independent of dopamine receptors in 
a 6-OHDA-induced dopaminergic neurodegeneration 
model of PD [55]. Similarly, a low concentration of aceta-
minophen (analgesic and antipyretic) was reported by 
Locke et al. [56] to protect significantly against 6-OHDA 
toxicity-induced dopaminergic neurodegeneration in 
Pdat-1::GFP expressing worms. However, the protection 
appears to be selective as acetaminophen was not neu-
roprotective against α-synuclein-induced neurodegen-
eration at any concentration tested. The anti-epileptic 

Day 1

Day 5

Day 10

Insets

Control Tau V337M

Fig. 3 A C. elegans genetic model of the Tauopathy, FTDP-17. Triple 
transgenic worms expressing human V337M mutant Tau protein 
(Paex-3::V337M Tau), a pharyngeal GFP marker (Pmyo-2::GFP) and 
a GFP reporter transgene marking the cell bodies and processes 
of all C. elegans GABAergic neurons (Punc-25::GFP) were compared 
with control single Punc-25::GFP transgenic worms. All panels are 
micrographs of representative whole worms. Control (left panels) and 
Tau V337M expressing worms (right panel) were examined after 1, 5 
and 10 days of age. In control worms, intact ventral and dorsal cords 
were observed at all ages. In contrast, the mutant Tau transgenic 
GABAergic reporter strain exhibited severe degeneration of neuronal 
processes. Ventral and dorsal cord gaps (arrows) are disruptions in the 
continuity of the ventral and dorsal nerve cords, respectively. Scale 
bar represents 200 μm for all panels except for the bottom two panels, 
which are high magnifications of the boxed areas of day-10 worms 
shown above
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drug, valproic acid provided significant dopaminergic 
neuroprotection in a C. elegans PD model associated 
with human α-synuclein overproduction, which was 
further shown to be mediated through ERK-MAPK sig-
nalling [57]. A more recent study has also demonstrated 
the neuroprotective effects of the naturally occurring 
polyamine spermidine and phytocompounds such as 

n-butylidenephthalide, curcumin, N-acetylcysteine 
and vitamin E on 6-OHDA-induced degeneration of 
dopaminergic neurons and their ability to attenuate 
α-synuclein accumulation. n-butylidenephthalide, in 
particular, had the greatest neuroprotective capacity 
and was shown to also restore food-sensing behaviour 
and dopamine levels in both pharmacological and trans-
genic C. elegans PD models as well as enhancing the life 
span of 6-OHDA-treated animals [58]. Acetylcorynoline, 
the major alkaloid component derived from Corydalis 
bungeana, a traditional Chinese medical herb demon-
strated the same neuroprotective effects when applied to 
the same pharmacological and transgenic C. elegans PD 
models [59].

Kinase-targeted inhibition of LRRK2 protein activ-
ity was recently established as an effective treatment for 
PD as LRRK2 kinase inhibitors consistently mitigated 
pathogenesis caused by different LRRK2 mutations. 
Liu et  al. [60] showed that though GW5074, an indo-
line compound, and sorafenib, a Raf kinase inhibitor, 
did not have protective effects against α-synuclein- and 
6-OHDA-induced toxicity, they increased survival and 
reduced dopaminergic neurodegeneration in G2019S-
LRRK2 transgenic C. elegans and Drosophila. Yao et  al. 
[61] further demonstrated the potency of kinase inhibi-
tors as they were able to pharmacologically rescue both 

BY250 + AA  

BY250 + 6-OHDA +  AA  

*

*

*

PDE

ADE
CEP

WT Blebbing Rounding Cell loss

*
*

a

b

c

Fig. 4 A C. elegans model of toxin-induced Parkinson’s disease. a 
Dopaminergic (DA) neuronal cell bodies and neurites in BY250 worms 
were visualised using an integrated Pdat-1::GFP dopamine transporter 
marker. C. elegans has eight DA neurons: six are located in the anterior 
region, which can be subclassified in pairs as two anterior deirid neu-
rons (ADE), two dorsal cephalic neurons (CEP) which are postsynaptic 
to the ADE neurons and two ventral CEPs that are not postsynaptic 
to the ADEs; two posterior deirid neurons (PDE) located posteriorly 
are also shown. Arrows depict the four CEP neuron processes and 
indicate the ADE and PDE cell bodies in a young worm. Anterior is to 
the left. b Representative examples of worms scored which display 
the three characteristic stages of DA neurodegeneration in response 
to 6-OHDA. Magnification of anterior region of C. elegans shows only 
the anterior-most DA neurons. WT: in this example, all six anterior DA 
neurons of this worm appear robust and the dendrites are intact and 
fully extended. Neuronal process blebbing; cell body rounding: this 
worm exhibited prominent cell body rounding (asterisk) and dendrite 
blebbing (arrows); cell body loss: this worm exhibited a complete loss 
of GFP in most DA neurons as CEP and ADE neurons have all degener-
ated and are no longer visible in any focal plane, only retention of GFP 
expression in the remnants of neuron cell bodies and broken neurites. 
All scale bars represent 20 μm. c Representative images of worms 
24 h post-6-OHDA-exposure are presented. BY250 worms treated 
with ascorbic acid (AA) alone expressed intact and strong GFP in all 
six DA neurons and dendrites in the heads. However, the majority of 
BY250 worms incubated with 50 mM 6-OHDA showed a marked GFP 
expression reduction in the dendrites of ADEs and CEPs, many of the 
cell somas became round (asterisk) and blebs appeared along the 
dendrites of CEPs (arrows)

◂
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the behavioural deficit and neurodegeneration mani-
fested by the expression of mutant LRRK2 G2019S and 
R1441C in  vivo using two LRRK2 inhibitors, TTT-3002 
and LRRK2-IN1, which also potently inhibited in  vitro 
kinase activities of LRRK2 wild-type, R1441C and 
G2019S at nanomolar to low micromolar concentrations 
when administered either pre-symptomatically or post-
symptomatically. Compounds that have been shown to 
be protective in the various worm PD models are listed 
in Table 1 and their chemical structures shown in Figs. 1 
and 2.

Amyotrophic lateral sclerosis (ALS)
A number of transgenic lines expressing mutant forms 
of human SOD1 found in familial ALS patients under a 
range of promoters have been generated and recapitu-
lated the motor neuron degeneration and paralysis char-
acteristic of ALS patients [102, 103, 105, 108]. Genes 
recently shown to be mutated in ALS include the DNA/
RNA binding proteins TDP-43 and FUS, and C9ORF72, 
a novel familial and sporadic ALS causative gene. Treat-
ment with methylene blue, an aggregation inhibitor of 
the phenothiazine class, not only rescued toxic pheno-
types (including neuronal dysfunction and oxidative 
stress) associated with mutant TDP-43 and FUS in C. ele-
gans and zebrafish ALS models [62], but also ameliorated 
Tau mediated toxicity in a newly established C. elegans 
model [36]. Using transgenic TDP-43 models, Tauffen-
berger et al. evaluated 11 compounds previously reported 
to enhance longevity in C. elegans and resveratrol (poly-
phenol), rolipram (phosphodiesterase 4 inhibitor), reser-
pine (antihypertensive), ethosuximide (anti-epileptic), 
trolox and propyl gallate (antioxidants) were revealed 
as effective candidates that protected against mutant 
TDP-43 toxicity in motor neurons [63] (Table 1; Figs. 1, 
2). Recent genetic experiments by Kraemer’s group sug-
gested that inhibiting cell division cycle kinase 7 (CDC7) 
kinase activity reduces phosphorylation of TDP-43 and 
the consequent neurodegeneration. Small molecule inhi-
bition of CDC-7 by PHA767491 was further shown to 
robustly reduce TDP-43 phosphorylation and prevent 
TDP-43 dependent neurodegeneration both in vitro and 
in vivo [64].

Autosomal dominant adult‑onset neuronal ceroid 
lipofuscinosis (ANCL)
ANCL, also known as autosomal dominant Kufs’ dis-
ease and Parry disease, is a rare hereditary disease 
characterised by intra-neuronal inclusions of auto-
fluorescent lipofuscin-like material and neurodegen-
eration [65, 66]. Recently, four independent research 
groups have reported that ANCL is caused by muta-
tions in the DNAJC5 gene that encodes the endogenous 

neuroprotective synaptic chaperone cysteine string pro-
tein (CSP) [67–70]. Our lab has recently developed a 
C. elegans model of ANCL by using null mutants of the 
worm DNAJC5 orthologue, dnj-14 [71]. These worms 
have similar phenotypes to ANCL patients and also to 
CSP mutants in mice, in terms of reduced lifespan, pro-
gressive neuronal dysfunction and neurodegeneration 
[72]. This evolutionary conservation of CSP’s neuropro-
tective function suggests that the worm dnj-14 model 
could have potential for identifying generic neuropro-
tective interventions rather than disease specific drug 
targets. Indeed, a focused screen of pharmacological 
compounds that ameliorated the dnj-14 lifespan and neu-
ronal defects identified the polyphenolic molecule res-
veratrol, which has been shown to be neuroprotective in 
a range of animal neurodegeneration models [71]. In con-
trast to other worm neurodegeneration models [44, 63, 
73, 74], however, resveratrol acted in a sir-2.1-independ-
ent manner, as sir-2.1; dnj-14 double mutants showed full 
lifespan rescue by resveratrol. Instead, the mechanism of 
resveratrol action appeared to be via inhibition of cAMP 
phosphodiesterase, as the phosphodiesterase inhibi-
tor, rolipram was shown to mimic the effect of resvera-
trol in rescuing dnj-14 phenotypes [71]. More recently, 
the anti-epileptic drug ethosuximide has been shown 
to be protective in the dnj-14 model, acting through a 
DAF-16/FOXO-dependent mechanism that is distinct 
from its proposed mechanism of action in epilepsy [38]. 
Ethosuximide also ameliorates the phenotypes of worm 
models of FTDP-17 [38] and ALS [63] and reduces pro-
tein aggregation in a mouse neuronal cell culture model 
of Huntington’s disease [38], suggesting that it may have 
general and evolutionarily conserved neuroprotective 
properties. Indeed, it has recently been shown that etho-
suximide reverses cognitive decline in a rat model of 
Alzheimer’s disease [75]. Finally, a recent genome-wide 
transcriptional profiling study of dnj-14 mutants revealed 
a striking reduction in expression of ubiquitin protea-
some system (UPS)-related genes in comparison to wild 
type control strains [76]. Genes encoding components of 
multimeric E3 ubiquitin ligases were especially over-rep-
resented, suggesting that these may represent potential 
novel drug targets for treatment of ANCL and perhaps 
other neurodegenerative diseases.

Translational implications of C. elegans chemical 
screens
The different screening strategies that have been applied 
to C. elegans ND models have provided distinct insights 
into potential therapeutic approaches in patients. These 
strategies range from robotic automated imaging-based 
approaches designed for high throughput compound 
library screening [77] to highly focused screens of a 
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selected small group of compounds that target a com-
mon pathological process such as protein aggrega-
tion [21]. Large scale screens offer greater coverage of 
chemical space and so have potential to identify unify-
ing pharmacological themes amongst multiple hits from 
compound libraries. For example, several different dopa-
mine D2 receptor antagonists were recovered as hits in 
an unbiased library screen using a Tauopathy model, 
with genetic techniques then being used to confirm that 
reduced D2 receptor function is indeed neuroprotec-
tive [37]. Whilst this suggests that several currently pre-
scribed atypical anti-psychotic drugs could potentially be 
re-purposed for treatment of human tauopathies, dosing 
regimens would need to be carefully considered given 
reports that the relatively high doses of these medica-
tions used to treat aggression and agitation in dementia 
patients may increase the risk of death [78].

One observation that emerges from our analysis of the 
large number of studies to date is that very few compounds 
are therapeutic in multiple C. elegans ND models. Indeed, 
out of the 72 compounds shown in Figs. 1 and 2, only etho-
suximide and resveratrol are effective in more than two ND 
models and therefore appear to have general neuroprotec-
tive activity. This may be due in part to the fact that most 
published studies have focused on relatively small sets of 
compounds and so activity across multiple ND models 
remains to be tested. Nevertheless, it seems certain that this 
also reflects disease-specific pharmacological actions—for 
example, Raf kinase inhibition is therapeutic in LRRK2-
based PD models, but ineffective in α-synuclein- and 
6-OHDA-based PD models [60]. Clearly, effective clinical 
treatments with such highly disease-specific drugs requires 
knowledge of the underlying pathophysiological mecha-
nism, which is not always diagnosable in NDs. Drugs such 
as ethosuximide and resveratrol are therefore potentially 
very useful, as they may provide general neuroprotective 
activity regardless of uncertainties regarding molecular 
pathology. The mechanism of action of ethosuximide and 
resveratrol remains unclear and controversial [79–81], but 
both have been linked to increased longevity and healthspan 
in model organisms [82, 83]. Given that dietary restriction, 
the best established intervention known to increase longev-
ity and healthspan, is therapeutic in multiple ND models 
from invertebrates to mice [84], it is clear that slowing the 
ageing process can confer general neuroprotection. It may 
be that ethosuximide and resveratrol modulate some of the 
same conserved neuroprotective mechanisms that decline 
with age, thus potentially explaining their therapeutic effects 
in radically different ND models.

Conclusions and future perspectives
The nematode C. elegans has great potential for expedit-
ing neuroprotective drug discovery. Its facile genetics 

and suitability for high-throughput compound screening 
mean that both target-driven and phenotypic screening 
approaches can easily be performed (and potentially com-
bined). Although phenotypic screening became unfash-
ionable as a drug discovery paradigm in the post-genomic 
era, Swinney and Anthony have clearly shown that most 
new medicines still continue to be discovered via pheno-
typic screening [85]. This influential work has forced a re-
evaluation in the pharma industry and a consequent shift 
towards phenotypic screening that incorporates avail-
able knowledge of targets/mechanisms [86], for which C. 
elegans is ideally suited. Furthermore, there is increasing 
evidence that using compound combinations designed to 
act on multiple molecular targets can be an effective ther-
apeutic strategy—as exemplified by the spectacular suc-
cess of combination therapy for HIV [87]. Testing of many 
such drug combinations can be performed rapidly and 
cheaply using worm models, in contrast to rodent models. 
In addition, technical developments such as CRISPR [88] 
now offer the potential to rapidly create new and more 
accurate C. elegans models of human neurodegenerative 
diseases, by precisely delivering single-copies of mutant 
genes identified from patients to appropriate desired 
locations in the worm genome. Although C. elegans has 
already facilitated the identification of potential novel 
therapeutics, the future combination of more accurate 
genetic models with high-throughput automated drug 
screening platforms is a potentially very efficient strategy 
for therapeutic drug discovery for NDs.
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