1,372 research outputs found

    On the attenuation coefficient of monomode periodic waveguides

    Get PDF
    It is widely accepted that, on ensemble average, the transmission T of guided modes decays exponentially with the waveguide length L due to small imperfections, leading to the important figure of merit defined as the attenuation-rate coefficient alpha = -/L. In this letter, we evidence that the exponential-damping law is not valid in general for periodic monomode waveguides, especially as the group velocity decreases. This result that contradicts common beliefs and experimental practices aiming at measuring alpha is supported by a theoretical study of light transport in the limit of very small imperfections, and by numerical results obtained for two waveguide geometries that offer contrasted damping behaviours

    Focal plane wavefront sensor achromatization : The multireference self-coherent camera

    Full text link
    High contrast imaging and spectroscopy provide unique constraints for exoplanet formation models as well as for planetary atmosphere models. But this can be challenging because of the planet-to-star small angular separation and high flux ratio. Recently, optimized instruments like SPHERE and GPI were installed on 8m-class telescopes. These will probe young gazeous exoplanets at large separations (~1au) but, because of uncalibrated aberrations that induce speckles in the coronagraphic images, they are not able to detect older and fainter planets. There are always aberrations that are slowly evolving in time. They create quasi-static speckles that cannot be calibrated a posteriori with sufficient accuracy. An active correction of these speckles is thus needed to reach very high contrast levels (>1e7). This requires a focal plane wavefront sensor. Our team proposed the SCC, the performance of which was demonstrated in the laboratory. As for all focal plane wavefront sensors, these are sensitive to chromatism and we propose an upgrade that mitigates the chromatism effects. First, we recall the principle of the SCC and we explain its limitations in polychromatic light. Then, we present and numerically study two upgrades to mitigate chromatism effects: the optical path difference method and the multireference self-coherent camera. Finally, we present laboratory tests of the latter solution. We demonstrate in the laboratory that the MRSCC camera can be used as a focal plane wavefront sensor in polychromatic light using an 80 nm bandwidth at 640 nm. We reach a performance that is close to the chromatic limitations of our bench: contrast of 4.5e-8 between 5 and 17 lambda/D. The performance of the MRSCC is promising for future high-contrast imaging instruments that aim to actively minimize the speckle intensity so as to detect and spectrally characterize faint old or light gaseous planets.Comment: 14 pages, 20 figure

    Active compensation of aperture discontinuities for WFIRST-AFTA: analytical and numerical comparison of propagation methods and preliminary results with a WFIRST-AFTA-like pupil

    Full text link
    The new frontier in the quest for the highest contrast levels in the focal plane of a coronagraph is now the correction of the large diffractive artifacts effects introduced at the science camera by apertures of increasing complexity. The coronagraph for the WFIRST/AFTA mission will be the first of such instruments in space with a two Deformable Mirrors wavefront control system. Regardless of the control algorithm for these multi Deformable Mirrors, they will have to rely on quick and accurate simulation of the propagation effects introduced by the out-of-pupil surface. In the first part of this paper, we present the analytical description of the different approximations to simulate these propagation effects. In Annex A, we prove analytically that, in the special case of surfaces inducing a converging beam, the Fresnel method yields high fidelity for simulations of these effects. We provide numerical simulations showing this effect. In the second part, we use these tools in the framework of the Active Compensation of Aperture Discontinuities technique (ACAD) applied to pupil geometries similar to WFIRST-AFTA. We present these simulations in the context of the optical layout of the High-contrast imager for Complex Aperture Telescopes, which will test ACAD on a optical bench. The results of this analysis show that using the ACAD method, an apodized pupil lyot coronagraph and the performance of our current deformable mirrors, we are able to obtain, in numerically simulations, a dark hole with an AFTA-like pupil. Our numerical simulation shows that we can obtain contrast better than 2.1092.10^{-9} in monochromatic light and better than 3.e-8 with 10% bandwidth between 5 and 14 lambda/D.Comment: 16 pages, 5 figures, Accepted for publication (Oct. 23, 2015) in Journal of Astronomical Telescopes, Instruments, and Systems, special WFIRST-AFTA coronagrap

    Cavity Quantum Electrodynamics with Anderson-localized Modes

    Full text link
    A major challenge in quantum optics and quantum information technology is to enhance the interaction between single photons and single quantum emitters. Highly engineered optical cavities are generally implemented requiring nanoscale fabrication precision. We demonstrate a fundamentally different approach in which disorder is used as a resource rather than a nuisance. We generate strongly confined Anderson-localized cavity modes by deliberately adding disorder to photonic crystal waveguides. The emission rate of a semiconductor quantum dot embedded in the waveguide is enhanced by a factor of 15 on resonance with the Anderson-localized mode and 94 % of the emitted single-photons couple to the mode. Disordered photonic media thus provide an efficient platform for quantum electrodynamics offering an approach to inherently disorder-robust quantum information devices

    A Simple n-Dimensional Intrinsically Universal Quantum Cellular Automaton

    Full text link
    We describe a simple n-dimensional quantum cellular automaton (QCA) capable of simulating all others, in that the initial configuration and the forward evolution of any n-dimensional QCA can be encoded within the initial configuration of the intrinsically universal QCA. Several steps of the intrinsically universal QCA then correspond to one step of the simulated QCA. The simulation preserves the topology in the sense that each cell of the simulated QCA is encoded as a group of adjacent cells in the universal QCA.Comment: 13 pages, 7 figures. In Proceedings of the 4th International Conference on Language and Automata Theory and Applications (LATA 2010), Lecture Notes in Computer Science (LNCS). Journal version: arXiv:0907.382

    Dynamics of particles and cages in an experimental 2D glass former

    Full text link
    We investigate the dynamics of a glass forming 2D colloidal mixture and show the existence of collective motions of the particles. We introduce a mean square displacement MSD with respect to the nearest neighbors which shows remarkable deviations from the usual MSD quantifying the individual motion of our particles. Combined with the analysis of the self part of the Van Hove function this indicates a coupled motion of particles with their cage as well as intra cage hopping processes.Comment: Submitted to EP

    Determining a Role for Ventromedial Prefrontal Cortex in Encoding Action-Based Value Signals During Reward-Related Decision Making

    Get PDF
    Considerable evidence has emerged to implicate ventromedial prefrontal cortex in encoding expectations of future reward during value-based decision making. However, the nature of the learned associations upon which such representations depend is much less clear. Here, we aimed to determine whether expected reward representations in this region could be driven by action–outcome associations, rather than being dependent on the associative value assigned to particular discriminative stimuli. Subjects were scanned with functional magnetic resonance imaging while performing 2 variants of a simple reward-related decision task. In one version, subjects made choices between 2 different physical motor responses in the absence of discriminative stimuli, whereas in the other version, subjects chose between 2 different stimuli that were randomly assigned to different responses on a trial-by-trial basis. Using an extension of a reinforcement learning algorithm, we found activity in ventromedial prefrontal cortex tracked expected future reward during the action-based task as well as during the stimulus-based task, indicating that value representations in this region can be driven by action–outcome associations. These findings suggest that ventromedial prefrontal cortex may play a role in encoding the value of chosen actions irrespective of whether those actions denote physical motor responses or more abstract decision options

    Review of high-contrast imaging systems for current and future ground- and space-based telescopes I. Coronagraph design methods and optical performance metrics

    Full text link
    The Optimal Optical Coronagraph (OOC) Workshop at the Lorentz Center in September 2017 in Leiden, the Netherlands gathered a diverse group of 25 researchers working on exoplanet instrumentation to stimulate the emergence and sharing of new ideas. In this first installment of a series of three papers summarizing the outcomes of the OOC workshop, we present an overview of design methods and optical performance metrics developed for coronagraph instruments. The design and optimization of coronagraphs for future telescopes has progressed rapidly over the past several years in the context of space mission studies for Exo-C, WFIRST, HabEx, and LUVOIR as well as ground-based telescopes. Design tools have been developed at several institutions to optimize a variety of coronagraph mask types. We aim to give a broad overview of the approaches used, examples of their utility, and provide the optimization tools to the community. Though it is clear that the basic function of coronagraphs is to suppress starlight while maintaining light from off-axis sources, our community lacks a general set of standard performance metrics that apply to both detecting and characterizing exoplanets. The attendees of the OOC workshop agreed that it would benefit our community to clearly define quantities for comparing the performance of coronagraph designs and systems. Therefore, we also present a set of metrics that may be applied to theoretical designs, testbeds, and deployed instruments. We show how these quantities may be used to easily relate the basic properties of the optical instrument to the detection significance of the given point source in the presence of realistic noise.Comment: To appear in Proceedings of the SPIE, vol. 1069
    corecore