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It is widely accepted that, on ensemble average, the transmission T of guided modes decays

exponentially with the waveguide length L due to small imperfections, leading to the important figure

of merit defined as the attenuation-rate coefficient � ¼ �hlnðTÞi=L. In this Letter, we evidence that the

exponential-damping law is not valid in general for periodic monomode waveguides, especially as the

group velocity decreases. This result, that contradicts common beliefs and experimental practices aiming

at measuring �, is supported by a theoretical study of light transport in the limit of very small

imperfections, and by numerical results obtained for two waveguide geometries that offer contrasted

damping behaviors.
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The impact of random imperfections on the propagation
of light in single-mode waveguides or fibers is critical for
many applications. For weakly confined modes, the trans-
port is dominated by absorption losses or by scattering into
radiation modes. The incremental transmission loss per
unit length is the same for any waveguide section, and
the transmission T decays exponentially with the wave-
guide length L, lnðTÞ ¼ ��L, where � (often expressed in
dB/cm) is referred to as the attenuation-rate coefficient [1].

Recently, the transport of slow light in periodic wave-
guides has received much attention due to its potential for
on-chip integration of time-domain optical processing [2].
Indeed, periodic waveguides such as photonic-crystal
waveguides (PhCWs), represent a simple mean to finely
control the speed of light by tuning the wavelength. Light
transport of fast modes in periodic waveguides is similar to
that in translation-invariant waveguides, but as the light
velocity is slowed down, backscattering prevails, and one
gradually moves from an ‘‘incoherent’’ loss damping to a
coherent multiple-scattering regime for which the phase of
the wave field matters. The physical mechanisms in slow-
and fast-light transports in monomode waveguides are thus
totally different.

Despite this difference, since its very early studies at the
beginning of the last decade [2–6], slow-light transport in
periodic monomode waveguides has been assumed to fol-
low the exponential-damping law hlnðTÞi ¼ ��L [7], and
the attenuation-rate coefficient � is measured with the
same classical methods as those used for translation-
invariant waveguides, see [2,5] for example. The widely
accepted belief that the attenuation hlnðTÞi of periodic
waveguides linearly varies with L prevails nowadays
[8–11], and � is presently considered as an important
figure-of-merit that needs to be optimized. Even though
� was introduced in a confusing manner, more by analogy

with translation-invariant waveguides than through a firm
theoretical basis, the classical exponential-damping law
can be legitimated by early theoretical studies on the
transport of electrons in one-dimensional (1D) metallic
wires [12]. These studies have concluded that the attenu-
ation is a self-averaging Gaussian-distributed quantity and
that hlnðTÞi ¼ �L=‘, with ‘ being the localization length
[12–14] or more appropriately the damping length in the
presence of losses.
As will be evidenced by computational results obtained

for waveguides operating with moderately low group veloc-
ities and by analytic arguments derived in the perturbation
limit, a strict exponential damping is not preserved in mono-
mode periodic waveguides as one continuously tunes the
group velocity of their fundamental modes. There are sev-
eral reasons for this. First, the transport in periodic mono-
mode waveguides is always a combination of several
physical effects such as radiation in the cladding [6], inter-
ference between radiated and guided fields [8], so that in the
end, the simplistic 1D models do not strictly apply. In
addition, the exponential damping predicted in [12–14] is
obtained in the scaling limit of L � ‘ and one may wonder
if this limit is reached in practice with on-chip waveguides
whose lengths rarely exceed a few millimeters. Even more
importantly, we note that the exponential scaling law of
localization is theoretically derived for specific assumptions
on the scattering process, for instance that the fields scatter
with a random phase uniformly distributed over 2� [12].
Nothing guaranties that such a randomization process,
which seems realistic for translation-invariant metallic wires
and electrons, remains valid for photonic Bloch modes in
periodic waveguides [15]; the geometry, the disorder model
and the scattering physics, all matter [16].
We start by considering computational results of hlnðTÞi

for two different geometries, a PhCW obtained by
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removing a single row of holes in a triangular lattice etched
into a silicon (n ¼ 3:48) membrane, with a periodicity
constant a ¼ 420 nm and a membrane thickness of
220 nm, and a sub-� grating nanowire (GNW) formed by
a chain of silicon boxes embedded in a SiO2 (n ¼ 1:44)
host medium, see the insets in Fig. 1. Remarkably low
propagation losses of 2:1 dB=cm in the telecom C-band
have been recently reported [17] for this geometry. The
segment dimensions are given in the caption, and the
grating period is a ¼ 400 nm, corresponding to a SiO2

100-nm-gap length. For TE-like polarization (with Ey¼0

on y ¼ 0), both waveguides support a truly guided
Bloch mode with a vanishing group velocity at the first
Brillouin-zone boundary at telecommunication wave-
lengths, see Fig. 1.

We assume a size disorder model for the PhCW, in
which only the hole radii of the two inner rows (see
Fig. 1) are randomly and independently varied around a
mean value of 0:3a with a statistical Gaussian distribution.
For the GNW, we assume that the wire etching results in
unwanted Gaussian-distributed variations of the etched

gaps, the period being constant. For both waveguides, we
use the same standard deviation�. The disorder models are
likely to be simplistic but they represent a good compro-
mise between computational complexity and fidelity to
reality [18] and we believe that they do not impact our
main conclusions. We further assume that every disorder
realization of a waveguide of length L ¼ Na is defined by
a random sequence ofN individual independent disordered
single cells, and that the fabrication process results in small
deformations, which are totally independent from one cell
to another (short-range disorder model). The waveguide
transmission is calculated using a coupled-Bloch-mode
method [8], which carefully considers the physics of the
scattering process by taking into account out-of-plane
leakage, in-plane multiple scattering at a short distance
between the perturbed holes of a single unit cell and at
long distance between perturbed holes belonging to differ-
ent cells.
We have calculated ensemble-averaged attenuations

hlnðTNÞi for waveguide lengths L ¼ Na, N ¼
1; 2; . . . ; 10 000 and for several values of ng, using the

same realistic disorder levels � ¼ 2 nm [11]. Figure 2(a)
shows illustrative results obtained for ng ¼ 30 by averag-

ing over 1000 independent random waveguide realizations.
In a log-scale, the PhCW (red-dashed curve) attenuation is
linear in the length, right fromN ¼ 5 toN ¼ 103, and even
further (not shown) up to the maximum length 104a con-
sidered in the computation. In contrast, one cannot define
an attenuation-rate coefficient for the GNW. The latter
exhibits a nonlinear damping, with an initial rapid falloff
followed by an essentially linear variation starting only for
L > 500a, a length roughly equal to 5 times the damping
length. The energy-dependent damping rate observed at
large L‘s will be denoted by �1 hereafter. This first
numerical example invalidates the common belief that
the attenuation coefficient of periodic waveguides is a
constant that is independent of the waveguide length. We
have repeated the calculations, systematically varying the
group index and the disorder level. Figures 2(b) and 2(c)
summarize the main useful results obtained for � ¼ 2 nm
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FIG. 1 (color online). Dispersion relation of the waveguide
geometries considered in the present Letter. The PhCW has a
periodicity constant a ¼ 420 nm and a membrane thickness h ¼
220 nm. The segment dimensions of the GNWare cx ¼ 300 nm,
cy ¼ 260 nm and cz ¼ 300 nm, and the period is a ¼ 400 nm,

corresponding to a SiO2 100-nm-gap length. The band edges
(ng ! 1) of the PhCW and GNW are located at � ¼ 1:57 and

1:33 �m, respectively. Note that the SiO2 host medium of the
GNW is not depicted in the inset.
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FIG. 2 (color online). Testing the validity of the exponential-damping law. (a) hlnðTNÞi as a function of the waveguide length L for
ng ¼ 30. (b) and (c) The normalized local attenuation-rate �loc=�1 from L ¼ 5a (� 2 �m) to 1000a (� 500 �m) for several ng, see

the legend in (c). (b) PhCW. (c) GNW. The inset in (b) is an enlarged view essentially showing that the exponential damping is satisfied
for PhCWs and that � � �1 for all ng. Note that �1 indeed depends on ng and �, �1 / ð�ngÞ2 [6,8]. All plots are obtained for

� ¼ 2 nm. The rapid oscillations in (b) and (c) are artifacts resulting from an ensemble averaging over a finite number of 103

independent realizations.
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and show the local damping rate �loc, defined as �loc ¼
�dhlnðTNÞi=dL. We have normalized �loc by �1 to
rescale our data and to better evidence deviation from
an exponential damping. For the PhCW case shown in
Fig. 2(b), �loc is essentially equal to �1 for all L values
ranging from 5a to 1000a and for all ng’s ranging from 5 to

70, the small statistical fluctuations of j�loc=�1j around 1
in the inset being due to the finite number of independent
realizations used for averaging. This implies that hlnðTNÞi
undergoes a linear variation in L for all ng’s, legitimating

the definition of a frequency-dependent attenuation-rate
coefficient �, which may even be used as a figure-of-merit
to evaluate the performance of PhCWs, as has been done in
previous works [2–6,8–11]. Although this can be some-
what expected from earlier works on localization in 1D
systems [12,13], in no way can the exponential damping be
considered as a triviality, especially for large ng. In our

opinion, it is even surprising. The GNW case in Fig. 2(b)
offers radically different perspectives: hlnðTÞi is no longer
linear in L. The case is striking for large ng’s; at ng ¼ 70,

�loc=�1 is as large as 4 for L ¼ 40a, which corresponds to
a 3-dB attenuation on average, and keeps on decreasing
over a few hundreds of periods, virtually preventing the
observation of a stationary damping rate at typical scales
encountered in integrated circuits. Note that similar results
leading to similar conclusions have been obtained for other
disorder levels, � ¼ 1 or 3 nm, and for other PhCW
disorder models with hole roughness instead of hole-size
variation.

To gain insight, the plan is to derive a recursive relation-
ship between the ensemble-averaged attenuation of wave-
guides of length L and Lþ a. This is possible only if the
multiple scattering of radiated waves, which could be first
excited by a scatterer and then recycled back into the
waveguide by another nearby scatterer, is neglected. With
this approximation, the energy transport is solely due to the
fundamental Bloch mode of the periodic waveguide and a
2� 2 scattering-matrix formalism can be used. Knowing
the transmission and rear-reflection coefficients tN and rN

of a disordered waveguide of lengthNa and the elementary
scattering coefficients�Nþ1 and�Nþ1 of the unit cellN þ 1,
see Fig. 3, the law of composition of scattering
matrices [19] leads to the recursive formula tNþ1 ¼
tN�Nþ1=ð1� �Nþ1r

NÞ. Taking the logarithm and averag-
ing, one straightforwardly obtains the master relationship
for TN ¼ jtNj2

hlnðTNþ1Þi � hlnðTNÞi ¼ hlnj�Nþ1j2i
� hlnj1� �Nþ1r

Nj2i: (1)

Equation (1) straightforwardly supports our main find-
ing, i.e., the initial nonlinear behavior followed at large L‘s
by an essentially linear variation with a constant damping
rate �1. For short-range and uniform disorders, all unit
cells belong to the same population and the probability

distributions of �Nþ1 and �Nþ1 are independent of N. In
contrast, the coefficient rN in the rightmost term does
depend on N. Thus the damping rate is not constant as it
depends on L. However, as L increases, a stationary regime
appears: adding new unit cells just lowers the transmission
but no longer impacts the reflected light (rN saturates
to a value r1 independent of N, as shown later on),
and the damping rate becomes constant, �1 ¼
�a�1hlnj�Nþ1=½1� �Nþ1r

1�j2i.
The remaining part of the Letter is devoted to explaining

why the waveguides have different attenuation behavior,
why the PhCW exhibits a fully linear behavior, and
under which condition one may observe such a behavior
that allows for a straight measurement and definition of
attenuation rates. To this end, it is advisable to start by
considering the asymptotic case in which the disorder is
very small. In the perturbation regime, because jrNj< 1
and j�Nþ1j � 1 for all N’s, j�Nþ1r

Nj � 1, and with a
first-order Taylor expansion, the L-dependent term on the
right side of Eq. (1) becomes �hlnj1� �Nþ1r

Nj2i �
h�Nþ1r

N þ ð�Nþ1r
NÞ�i. The rear-reflection coefficient rN

of the waveguide of length L ¼ Na depends on all the
elementary scattering coefficients �n, n ¼ 1; 2; . . . ; N. As
mentioned before, for short-range and uniform disorders,
all the �n‘s have the same probability distribution and are
independent from each other, so

hlnðTNþ1Þi � hlnðTNÞi � hlnj�Nþ1j2i þ h�ihrNi
þ h��ihðrNÞ�i; (2)

where the average value of �Nþ1 is denoted h�i since it is
independent of N. Consistently, hlnj�Nþ1j2i in Eq. (1)
is denoted by hlnj�j2i. Still in the perturbation regime,
� is known analytically, � ¼ R

dr �ðrÞ�lðrÞ [20], where
the integral runs over the perturbed boundaries r of the unit
cell, �ðrÞ is a complex function that depends on the Bloch-
mode electric-field distribution and that takes into account
local field corrections, and �lðrÞ is the deformation. Since
h�lðrÞi ¼ 0 for any r by definition, we straightforwardly
obtain that h�i ¼ 0, and Eq. (1) becomes

hlnðTÞi ¼ hlnj�j2iL; (3)

for any L. Actually, we conclude that waveguide attenu-
ations are linear in their lengths in the perturbation regime.

FIG. 3 (color online). Definition of the main scattering
coefficients involved in the 1D model. tN and rN denote the
transmission and rear-reflection coefficients of a disordered
waveguide of length Na, and �Nþ1 and �Nþ1 are the elementary
scattering coefficients of the unit cell N þ 1. For short-range and
uniform disorders, the �m‘s (or �m‘s) all belong to the same
population and are all independent.
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Indeed this result, that holds for any length (i.e., smaller,
equal or larger than the damping length), provides a theo-
retical support for our common belief. We believe that,
except if an intentional disorder is provided, classical
z-invariant waveguides, such as high-index-contrast nano-
wires, operate in the perturbation regime and obey the
classical linear damping law. From Figs. 2(b) and 2(c), it
is reasonable to expect similar conclusions for fast-light
transport in periodic waveguides manufactured with state-
of-the-art fabrication processes.

In view of the above, the nonlinear behavior of the GNW
at large ng’s testifies to the breakdown of the perturbative

regime, manifesting itself in a deviation of h�i from zero.
However, the marked contrast between the GNW and
PhCW responses is not simply due to a difference in h�i
since the two waveguides have comparable �’s: As ng
increases from 10 to 30, and then to 70, jh�ij ¼ 0:001,
0.017 and 0.097 for the PhCW and 0.002, 0.017 and 0.055
for the GNW. These values all remain much smaller than 1,
legitimating the use of the approximate Eq. (2) out of the
perturbation regime. We now argue that the exponential-
damping law breaks down for the GNW because jhrNij is
much larger for the GNW than for the PhCW, see the blue
(dark gray) and red (medium gray) curves in Fig. 4.
Although multiple scattering significantly impacts the
complex oscillatory behavior of jhrNij, the essence of
the effect can be simply captured by neglecting the
denominator term in the classical formula, rNþ1 ¼
�Nþ1 þ rN�Nþ1

2=ð1þ �Nþ1r
NÞ [19]. In this way one

readily obtains the series hrNþ1i � h�i þ hrNih�2i, show-
ing that hrNi ¼ 0 in the perturbation regime. Beyond this
regime, the solution hrNi of the recursive equation follows
a spiral-like path in the complex plane, which explains
the oscillatory behavior in Fig. 4. It tends to hr1i ¼ h�i=
ð1� h�2iÞ, whose magnitude can be much larger than h�i
for h�2i � 1. Since the GNW slow modes lie much closer
to the first Brillouin-zone boundary, where kz ¼ �=a and
hence h�2i � expð2ikzaÞ ¼ 1, than those of the PhCW,
hr1i is expected to be larger for the GNW than for the
PhCW, consistently with Fig. 4. Physically, this implies

that, in the vicinity of the Brillouin-zone boundary, because
the elementary backscattered waves are all essentially in
phase (intuitively, this still holds if multiple scattering is
considered), hrNi takes large values and hlnðTNÞi exhibits a
spatial transient regime until the mean and the higher mo-
ments of rN converge. Finally, let us stress that a small
value of jhrNij does not imply that the backreflected inten-
sity hjrNj2i is small. Actually, the attenuation of the PhCW
is smaller than that of the GNW for small ng’s, is equal for

ng ¼ 30 [Fig. 2(a)], and is larger at lower group velocities.

In summary, the transport of fast light in monomode
periodic waveguides manufactured with state-of-the-
art fabrication tools is likely to obey the classical
exponential-damping law. This classical property does
not remain valid as one continuously lowers the speed of
light in the waveguide. Before reaching a stationary
damping-rate regime as N ! 1, a transient regime with
much larger local damping rates is first observed in gen-
eral. The transient length strongly depends on the scatter-
ing processes and on the waveguide geometry, and may
reach a few hundreds of periods even for moderately small
slowdown factors of 20 ðng � 70Þ. We therefore conclude

that the estimation of the attenuation rate or even the
localization length of periodic waveguides should be
handled with caution, especially if intentional disorder is
introduced to study strong perturbation cases.
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