114 research outputs found

    AIDS virus–specific CD8+ T lymphocytes against an immunodominant cryptic epitope select for viral escape

    Get PDF
    Cryptic major histocompatibility complex class I epitopes have been detected in several pathogens, but their importance in the immune response to AIDS viruses remains unknown. Here, we show that Mamu-B*17+ simian immunodeficiency virus (SIV)mac239-infected rhesus macaques that spontaneously controlled viral replication consistently made strong CD8+ T lymphocyte (CD8-TL) responses against a cryptic epitope, RHLAFKCLW (cRW9). Importantly, cRW9-specific CD8-TL selected for viral variation in vivo and effectively suppressed SIV replication in vitro, suggesting that they might play a key role in the SIV-specific response. The discovery of an immunodominant CD8-TL response in elite controller macaques against a cryptic epitope suggests that the AIDS virus–specific cellular immune response is likely far more complex than is generally assumed

    Heterogeneity in outcomes of treated HIV-positive patients in Europe and North America: relation with patient and cohort characteristics

    Get PDF
    Background HIV cohort collaborations, which pool data from diverse patient cohorts, have provided key insights into outcomes of antiretroviral therapy (ART). However, the extent of, and reasons for, between-cohort heterogeneity in rates of AIDS and mortality are unclear. Methods We obtained data on adult HIV-positive patients who started ART from 1998 without a previous AIDS diagnosis from 17 cohorts in North America and Europe. Patients were followed up from 1 month to 2 years after starting ART. We examined between-cohort heterogeneity in crude and adjusted (age, sex, HIV transmission risk, year, CD4 count and HIV-1 RNA at start of ART) rates of AIDS and mortality using random-effects meta-analysis and meta-regression. Results During 61 520 person-years, 754/38 706 (1.9%) patients died and 1890 (4.9%) progressed to AIDS. Between-cohort variance in mortality rates was reduced from 0.84 to 0.24 (0.73 to 0.28 for AIDS rates) after adjustment for patient characteristics. Adjusted mortality rates were inversely associated with cohorts' estimated completeness of death ascertainment [excellent: 96-100%, good: 90-95%, average: 75-89%; mortality rate ratio 0.66 (95% confidence interval 0.46-0.94) per category]. Mortality rate ratios comparing Europe with North America were 0.42 (0.31-0.57) before and 0.47 (0.30-0.73) after adjusting for completeness of ascertainment. Conclusions Heterogeneity between settings in outcomes of HIV treatment has implications for collaborative analyses, policy and clinical care. Estimated mortality rates may require adjustment for completeness of ascertainment. Higher mortality rate in North American, compared with European, cohorts was not fully explained by completeness of ascertainment and may be because of the inclusion of more socially marginalized patients with higher mortality ris

    CD8+ T Cells from SIV Elite Controller Macaques Recognize Mamu-B*08-Bound Epitopes and Select for Widespread Viral Variation

    Get PDF
    Background. It is generally accepted that CD8(+) T cell responses play an important role in control of immunodeficiency virus replication. the association of HLA-B27 and -B57 with control of viremia supports this conclusion. However, specific correlates of viral control in individuals expressing these alleles have been difficult to define. We recently reported that transient in vivo CD8(+) cell depletion in simian immunodeficiency virus (SIV)-infected elite controller (EC) macaques resulted in a brief period of viral recrudescence. SIV replication was rapidly controlled with the reappearance of CD8(+) cells, implicating that these cells actively suppress viral replication in ECs. Methods and Findings. Here we show that three ECs in that study made at least seven robust CD8(+) T cell responses directed against novel epitopes in Vif, Rev, and Nef restricted by the MHC class I molecule Mamu-B*08. Two of these Mamu-B*08-positive animals subsequently lost control of SIV replication. Their breakthrough virus harbored substitutions in multiple Mamu-B*08-restricted epitopes. Indeed, we found evidence for selection pressure mediated by Mamu-B*08-restricted CD8(+) T cells in all of the newly identified epitopes in a cohort of chronically infected macaques. Conclusions. Together, our data suggest that Mamu-B*08-restricted CD8(+) T cell responses effectively control replication of pathogenic SIV(mac)239. All seven regions encoding Mamu-B*08-restricted CD8(+) T cell epitopes also exhibit amino acid replacements typically seen only in the presence of Mamu-B*08, suggesting that the variation we observe is indeed selected by CD8(+) T cell responses. SIVmac239 infection of Indian rhesus macaques expressing Mamu-B*08 may therefore provide an animal model for understanding CD8(+) T cell-mediated control of HIV replication in humans.National Institutes of Health (NIH)National Center for Research Resources (NCRR)Japan Health Sciences FoundationKent State University Research CouncilOhio Board of Regents Research ChallengeResearch Facilities ImprovementUniv Wisconsin, WNPRC, Madison, WI 53706 USAUniversidade Federal de São Paulo, Div Infect Dis, São Paulo, BrazilUniv Wisconsin, Dept Pathol & Lab Med, Madison, WI USALa Jolla Inst Allergy & Immunol, Div Vaccine Discovery, La Jolla, CA USAUniv Oxford, John Radcliffe Hosp, Weatherall Inst Mol Med, Oxford OX3 9DU, EnglandKent State Univ, Dept Biol Sci, Kent, OH 44242 USAUniv S Carolina, Dept Biol Sci, Columbia, SC 29208 USAUniversidade Federal de São Paulo, Div Infect Dis, São Paulo, BrazilNational Institutes of Health (NIH): HHSN266200400088CNational Institutes of Health (NIH): R01 AI049120National Institutes of Health (NIH): R01 AI052056National Institutes of Health (NIH): R24 RR015371National Institutes of Health (NIH): R24 RR016038National Institutes of Health (NIH): R21 AI068586National Center for Research Resources (NCRR): P51 RR000167Japan Health Sciences Foundation: GM43940Research Facilities Improvement: RR15459-01Research Facilities Improvement: RR020141-01Web of Scienc

    AIDS virus-specific CD8+T lymphocytes against an immunodominant cryptic epitope select for viral escape

    Get PDF
    Cryptic major histocompatibility complex class I epitopes have been detected in several pathogens, but their importance in the immune response to AIDS viruses remains unknown. Here, we show that Mamu-B*17+ simian immunodeficiency virus (SIV)mac239-infected rhesus macaques that spontaneously controlled viral replication consistently made strong CD8+ T lymphocyte (CD8-TL) responses against a cryptic epitope, RHLAFKCLW (cRW9). Importantly, cRW9-specific CD8-TL selected for viral variation in vivo and effectively suppressed SIV replication in vitro, suggesting that they might play a key role in the SIV-specific response. The discovery of an immunodominant CD8-TL response in elite controller macaques against a cryptic epitope suggests that the AIDS virus–specific cellular immune response is likely far more complex than is generally assumed

    Neurodevelopmental and Epilepsy Phenotypes in Individuals With Missense Variants in the Voltage-Sensing and Pore Domains of KCNH5

    Get PDF
    Background and Objectives KCNH5 encodes the voltage-gated potassium channel EAG2/Kv10.2. We aimed to delineate the neurodevelopmental and epilepsy phenotypic spectrum associated with de novo KCNH5 variants.Methods We screened 893 individuals with developmental and epileptic encephalopathies for KCNH5 variants using targeted or exome sequencing. Additional individuals with KCNH5 variants were identified through an international collaboration. Clinical history, EEG, and imaging data were analyzed; seizure types and epilepsy syndromes were classified. We included 3 previously published individuals including additional phenotypic details.Results We report a cohort of 17 patients, including 9 with a recurrent de novo missense variant p.Arg327His, 4 with a recurrent missense variant p.Arg333His, and 4 additional novel missense variants. All variants were located in or near the functionally critical voltage-sensing or pore domains, absent in the general population, and classified as pathogenic or likely pathogenic using the American College of Medical Genetics and Genomics criteria. All individuals presented with epilepsy with a median seizure onset at 6 months. They had a wide range of seizure types, including focal and generalized seizures. Cognitive outcomes ranged from normal intellect to profound impairment. Individuals with the recurrent p.Arg333His variant had a self-limited drug-responsive focal or generalized epilepsy and normal intellect, whereas the recurrent p.Arg327His variant was associated with infantile-onset DEE. Two individuals with variants in the pore domain were more severely affected, with a neonatal-onset movement disorder, early-infantile DEE, profound disability, and childhood death.Discussion We describe a cohort of 17 individuals with pathogenic or likely pathogenic missense variants in the voltage-sensing and pore domains of Kv10.2, including 14 previously unreported individuals. We present evidence for a putative emerging genotype-phenotype correlation with a spectrum of epilepsy and cognitive outcomes. Overall, we expand the role of EAG proteins in human disease and establish KCNH5 as implicated in a spectrum of neurodevelopmental disorders and epilepsy.</p

    Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies BCL2 and FAM19A2 as Novel Insulin Sensitivity Loci

    Get PDF
    Genome-wide association studies (GWAS) have found few common variants that influence fasting measures of insulin sensitivity. We hypothesized that a GWAS of an integrated assessment of fasting and dynamic measures of insulin sensitivity would detect novel common variants. We performed a GWAS of the modified Stumvoll Insulin Sensitivity Index (ISI) within the Meta-Analyses of Glucose and Insulin-Related Traits Consortium. Discovery for genetic association was performed in 16,753 individuals, and replication was attempted for the 23 most significant novel loci in 13,354 independent individuals. Association with ISI was tested in models adjusted for age, sex, and BMI and in a model analyzing the combined influence of the genotype effect adjusted for BMI and the interaction effect between the genotype and BMI on ISI (model 3). In model 3, three variants reached genome-wide significance: Rs13422522 (NYAP2; P = 8.87 × 10-11), rs12454712 (BCL2; P = 2.7 × 10-8), and rs10506418 (FAM19A2; P = 1.9 × 10-8). The association at NYAP2 was eliminated by conditioning on the known IRS1 insulin sensitivity locus; the BCL2 and FAM19A2 associations were independent of known cardiometabolic loci. In conclusion, we identified two novel loci and replicated known variants associated with insulin sensitivity. Further studies are needed to clarify the causal variant and function at the BCL2 and FAM19A2 loci

    A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance

    Get PDF
    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and beta-cell dysfunction, but contributed little to our understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways may be uncovered by accounting for differences in body mass index (BMI) and potential interaction between BMI and genetic variants. We applied a novel joint meta-analytical approach to test associations with fasting insulin (FI) and glucose (FG) on a genome-wide scale. We present six previously unknown FI loci at P<5×10−8 in combined discovery and follow-up analyses of 52 studies comprising up to 96,496non-diabetic individuals. Risk variants were associated with higher triglyceride and lower HDL cholesterol levels, suggestive of a role for these FI loci in insulin resistance pathways. The localization of these additional loci will aid further characterization of the role of insulin resistance in T2D pathophysiology

    Creative destruction in science

    Get PDF
    Drawing on the concept of a gale of creative destruction in a capitalistic economy, we argue that initiatives to assess the robustness of findings in the organizational literature should aim to simultaneously test competing ideas operating in the same theoretical space. In other words, replication efforts should seek not just to support or question the original findings, but also to replace them with revised, stronger theories with greater explanatory power. Achieving this will typically require adding new measures, conditions, and subject populations to research designs, in order to carry out conceptual tests of multiple theories in addition to directly replicating the original findings. To illustrate the value of the creative destruction approach for theory pruning in organizational scholarship, we describe recent replication initiatives re-examining culture and work morality, working parents\u2019 reasoning about day care options, and gender discrimination in hiring decisions. Significance statement It is becoming increasingly clear that many, if not most, published research findings across scientific fields are not readily replicable when the same method is repeated. Although extremely valuable, failed replications risk leaving a theoretical void\u2014 reducing confidence the original theoretical prediction is true, but not replacing it with positive evidence in favor of an alternative theory. We introduce the creative destruction approach to replication, which combines theory pruning methods from the field of management with emerging best practices from the open science movement, with the aim of making replications as generative as possible. In effect, we advocate for a Replication 2.0 movement in which the goal shifts from checking on the reliability of past findings to actively engaging in competitive theory testing and theory building. Scientific transparency statement The materials, code, and data for this article are posted publicly on the Open Science Framework, with links provided in the article

    A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    Get PDF
    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways
    corecore