1,984 research outputs found

    Implications of Viking color data for evolution of the Amenthes Region, Mars

    Get PDF
    In the Eastern Hemisphere of Mars, where the hemispheric dichotomy is not overlain by relatively recent flows from the Tharsis volcanoes, the Mars cratered terrain boundary (CTB) now exists as highly fractured terrain juxtaposed with the smooth plains of the Northern Hemisphere. Based on Mariner 9 photography, the southern cratered terrain in the Amenthes region (0 to 30 deg N, 225 to 270 deg W) is approximately 3 to 4 km above the northern plains, and the transition zone is marked by both broad plateaus and knobby terrain. In the Amenthes Southest quadrangle, in particular, the continuum between large detached plateaus, smaller smooth topped plateaus and knobby hills can be seen. To define the previous position and evolution of the boundary, the distribution of cratered terrain, characteristic landforms (knobby terrain and detached plateaus) have been mapped, as well as structural features across the boundary. Structural mapping indicates that geological formations parallel the boundary in the Eastern Hemisphere with the conclusion that CTB evolution involved normal faulting through extension perpendicular to the boundary

    Geologic mapping of northern Lunae Planun, Mars

    Get PDF
    Lunae Planum is an elevated region east of the Tharsis rise, and ridged plains containing numerous Sacra Dorsa wrinkle ridges, cross-cutting Sacra Fossae grabens, and lobate scarps compose this Martian Plateau. Geologic mapping of the northern Lunae Planum region was undertaken to better understand to emplacement history of the ridge plains, the structural history of deformation, and the periods of fluvial processes that have modified the region. These investigations are important for several reasons: (1) the history of plains emplacement yields information valuable for understanding the evolution of Tharsis volcanism; (2) interpretation of structural deformation has implications on the lithology of the Martian crust; and (3) determining the history and fate of Martian volatiles is dependent upon knowing the periods of outflow activity. A discussion of the findings is presented

    Ancient fluvial processes in the equatorial highlands of Mars

    Get PDF
    Martian highland craters typically lack ejecta deposits, have no noticeable rim, and are flat floored. In addition, crater size frequency distribution curves show that highland craters have depleted populations less than 20 km in diameter. A variety of processes have been suggested to explain these observations including deposition of aeolian or volcanic materials up to the crater rim crests, thermal creep, terrain softening, and mass wasting. However, none of these processes adequately explains both the crater morphology and population distribution. In order to explain both the Martian highland crater morphology and population distribution, a fluvial process is proposed which is capable of removing the loose crater rim material. The resulting effect is to decrease the crater diameter, thereby causing the population curves to bendover. The eroded material is redistributed, burying or partially burying smaller diameter craters before complete erosion. This material may also be deposited into local topographic lows, creating the depositional basins observed. A fluvial process explains both sets of observations: crater morphology and crater population distribution curves

    Directory of research projects, 1991. Planetary geology and geophysics program

    Get PDF
    Information is provided about currently funded scientific research within the Planetary Geology and Geophysics Program. The directory consists of the proposal summary sheet from each proposal funded by the program during fiscal year 1991. Information is provided on the research topic, principal investigator, institution, summary of research objectives, past accomplishments, and proposed investigators

    Diet diversity in pastoral and agro-pastoral households in Ugandan rangeland ecosystems

    Get PDF
    We explore how diet diversity differs with agricultural seasons and between households within pastoral and agro-pastoral livelihood systems, using variety of foods consumed as a less complex proxy indicator of food insecurity than benchmark indicators like anthropometry and serum nutrients. The study was in the central part of the rangelands in Uganda. Seventy nine households were monitored for three seasons, and eight food groups consumed during a 24 hour diet recall period used to create a household diet diversity score (HDDS). Mean HDDS was 3.2, varied significantly with gender, age, livelihood system and season (p < .001, F = 15.04), but not with household size or household head’s education level. Agro-pastoralists exhibited lower mean diet diversity than pastoralists (p < .01, F = 7.84) and among agro-pastoralists, households headed by persons over 65 years were most vulnerable (mean HDDS 2.1). This exploratory study raises issues requiring further investigation to inform policies on nutrition security in the two communities

    Investigation of associations between retinal microvascular parameters and albuminuria in UK Biobank: a cross-sectional case-control study.

    Get PDF
    BACKGROUND: Associations between microvascular variation and chronic kidney disease (CKD) have been reported previously. Non-invasive retinal fundus imaging enables evaluation of the microvascular network and may offer insight to systemic risk associated with CKD. METHODS: Retinal microvascular parameters (fractal dimension [FD] - a measure of the complexity of the vascular network, tortuosity, and retinal arteriolar and venular calibre) were quantified from macula-centred fundus images using the Vessel Assessment and Measurement Platform for Images of the REtina (VAMPIRE) version 3.1 (VAMPIRE group, Universities of Dundee and Edinburgh, Scotland) and assessed for associations with renal damage in a case-control study nested within the multi-centre UK Biobank cohort study. Participants were designated cases or controls based on urinary albumin to creatinine ratio (ACR) thresholds. Participants with ACR ≥ 3 mg/mmol (ACR stages A2-A3) were characterised as cases, and those with an ACR < 3 mg/mmol (ACR stage A1) were categorised as controls. Participants were matched on age, sex and ethnic background. RESULTS: Lower FD (less extensive microvascular branching) was associated with a small increase in odds of albuminuria independent of blood pressure, diabetes and other potential confounding variables (odds ratio [OR] 1.18, 95% confidence interval [CI] 1.03-1.34 for arterioles and OR 1.24, CI 1.05-1.47 for venules). Measures of tortuosity or retinal arteriolar and venular calibre were not significantly associated with ACR. CONCLUSIONS: This study supports previously reported associations between retinal microvascular FD and other metabolic disturbances affecting the systemic vasculature. The association between retinal microvascular FD and albuminuria, independent of diabetes and blood pressure, may represent a useful indicator of systemic vascular damage associated with albuminuria

    Marketing as a means to transformative social conflict resolution: lessons from transitioning war economies and the Colombian coffee marketing system

    Get PDF
    Social conflicts are ubiquitous to the human condition and occur throughout markets, marketing processes, and marketing systems.When unchecked or unmitigated, social conflict can have devastating consequences for consumers, marketers, and societies, especially when conflict escalates to war. In this article, the authors offer a systemic analysis of the Colombian war economy, with its conflicted shadow and coping markets, to show how a growing network of fair-trade coffee actors has played a key role in transitioning the country’s war economy into a peace economy. They particularly draw attention to the sources of conflict in this market and highlight four transition mechanisms — i.e., empowerment, communication, community building and regulation — through which marketers can contribute to peacemaking and thus produce mutually beneficial outcomes for consumers and society. The article concludes with a discussion of implications for marketing theory, practice, and public policy

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress
    corecore