10 research outputs found

    Electrical and Gas Sensor Properties of Nb(V) Doped Nanocrystalline β-Ga<sub>2</sub>O<sub>3</sub>

    No full text
    A flame spray pyrolysis (FSP) technique was applied to obtain pure and Nb(V)-doped nanocrystalline β-Ga2O3, which were further studied as gas sensor materials. The obtained samples were characterized with XRD, XPS, TEM, Raman spectroscopy and BET method. Formation of GaNbO4 phase is observed at high annealing temperatures. Transition of Ga(III) into Ga(I) state during Nb(V) doping prevents donor charge carriers generation and hinders considerable improvement of electrical and gas sensor properties of β-Ga2O3. Superior gas sensor performance of obtained ultrafine materials at lower operating temperatures compared to previously reported thin film Ga2O3 materials is shown

    Effect of AuPd Bimetal Sensitization on Gas Sensing Performance of Nanocrystalline SnO<sub>2</sub> Obtained by Single Step Flame Spray Pyrolysis

    No full text
    Improvement of sensitivity, lower detection limits, stability and reproducibility of semiconductor metal oxide gas sensor characteristics are required for their application in the fields of ecological monitoring, industrial safety, public security, express medical diagnostics, etc. Facile and scalable single step flame spray pyrolysis (FSP) synthesis of bimetal AuPd sensitized nanocrystalline SnO2 is reported. The materials chemical composition, structure and morphology has been studied by XRD, XPS, HAADFSTEM, BET, ICP-MS techniques. Thermo-programmed reduction with hydrogen (TPR-H2) has been used for materials chemical reactivity characterization. Superior gas sensor response of bimetallic modified SnO2 towards wide concentration range of reducing (CO, CH4, C3H8, H2S, NH3) and oxidizing (NO2) gases compared to pure and monometallic modified SnO2 is reported for dry and humid gas detection conditions. The combination of facilitated oxygen molecule spillover on gold particles and electronic effect of Fermi level control by reoxidizing Pd-PdO clusters on SnO2 surface is proposed to give rise to the observed enhanced gas sensor performance

    New Allosteric Modulators of AMPA Receptors: Synthesis and Study of Their Functional Activity by Radioligand-Receptor Binding Analysis

    No full text
    The synthetic approaches to three new AMPA receptor modulators—derivatives of 1,11-dimethyl-3,6,9-triazatricyclo[7.3.1.13,11]tetradecane-4,8,12-trione—had been developed and all steps of synthesis were optimized. The structures of the compounds contain tricyclic cage and indane fragments necessary for binding with the target receptor. Their physiological activity was studied by radioligand-receptor binding analysis using [3H]PAM-43 as a reference ligand, which is a highly potent positive allosteric modulator of AMPA receptors. The results of radioligand-binding studies indicated the high potency of two synthesized compounds to bind with the same targets as positive allosteric modulator PAM-43 (at least on AMPA receptors). We suggest that the Glu-dependent specific binding site of [3H]PAM-43 or the receptor containing this site may be one of the targets of the new compounds. We also suggest that enhanced radioligand binding may indicate the existence of synergistic effects of compounds 11b and 11c with respect to PAM-43 binding to the targets. At the same time, these compounds may not compete directly with PAM-43 for its specific binding sites but bind to other specific sites of this biotarget, changing its conformation and thereby causing a synergistic effect of cooperative interaction. It can be expected that the newly synthesized compounds will also have pronounced effects on the glutamatergic system of the mammalian brain

    Microporous Materials Based on Norbornadiene-Based Cross-Linked Polymers

    No full text
    New microporous homopolymers were readily prepared from norbornadiene-2,5, its dimer and trimer by addition (vinyl) polymerization of the corresponding monomers with 60&#8315;98% yields. As a catalyst Pd-N-heterocyclic carbene complex or Ni(II) 2-ethylhexanoate activated with Na+[B(3,5-(CF3)2C6H3)4]&#8722; or methylaluminoxane was used. The synthesized polynorbornenes are cross-linked and insoluble. They are glassy and amorphous polymers. Depending on the nature of the catalyst applied, BET surface areas were in the range of 420&#8315;970 m2/g. The polymers with the highest surface area were obtained in the presence of Pd-catalysts from the trimer of norbornadiene-2,5. The total pore volume of the polymers varies from 0.39 to 0.79 cm3/g, while the true volume of micropores was 0.14&#8315;0.16 cm3/g according to t-plot. These polymers gave CO2 uptake from 1.2 to 1.9 mmol/g at 273 K and 1 atm. The porous structure of new polymers was also studied by means of wide-angle X-ray diffraction and positron annihilation lifetime spectroscopy

    9-ING-41, a Small Molecule Inhibitor of GSK-3β, Potentiates the Effects of Chemotherapy on Colorectal Cancer Cells

    No full text
    Colorectal cancer (CRC) is one of the most common and lethal types of cancer. Although researchers have made significant efforts to study the mechanisms underlying CRC drug resistance, our knowledge of this disease is still limited, and novel therapies are in high demand. It is urgent to find new targeted therapy considering limited chemotherapy options. KRAS mutations are the most frequent molecular alterations in CRC. However, there are no approved K-Ras targeted therapies for these tumors yet. GSK-3β is demonstrated to be a critically important kinase for the survival and proliferation of K-Ras–dependent pancreatic cancer cells. In this study, we tested combinations of standard-of-care therapy and 9-ING-41, a small molecule inhibitor of GSK-3β, in CRC cell lines and patient-derived tumor organoid models of CRC. We demonstrate that 9-ING-41 inhibits the growth of CRC cells via a distinct from chemotherapy mechanism of action. Although molecular biomarkers of 9-ING-41 efficacy are yet to be identified, the addition of 9-ING-41 to the standard-of-care drugs 5-FU and oxaliplatin could significantly enhance growth inhibition in certain CRC cells. The results of the transcriptomic analysis support our findings of cell cycle arrest and DNA repair deficiency in 9-ING-41–treated CRC cells. Notably, we find substantial similarity in the changes of the transcriptomic profile after inhibition of GSK-3β and suppression of STK33, another critically important kinase for K-Ras–dependent cells, which could be an interesting point for future research. Overall, the results of this study provide a rationale for the further investigation of GSK-3 inhibitors in combination with standard-of-care treatment of CRC.Title in Web of Science: 9-ING-41, a Small Molecule Inhibitor of GSK-3 beta, Potentiates the Effects of Chemotherapy on Colorectal Cancer Cells</p

    The Physicochemical Characterization of New “Green” Epoxy-Resin Hardener Made from PET Waste

    No full text
    “Green” thermally stable hardener was synthesized from a PET waste. The rigid molecular linear structure of the new hardener suggests that it will provide the polymer matrix with the necessary physical and mechanical characteristics. It also allows the expectation that cured matrix based on this hardener can provide increased toughness. New hardener was used as a curing agent for three epoxy resins—tetraglycidyl methylenedianiline (TGDMA, 111–117 EEW), diglycidylether of bisphenol A (DGEBA, 170-192 EEW) and solid epoxy resin (SER)—with a medium molecular weight (860–930 EEW) based on DGEBA. The mixtures were found to have the highest Tg for the DGEBA resin, and high of that for TGDMA and SER. According to the DMA analysis for two cured matrices, the hardener proved to be no worse than the standard ones, and made it possible to obtain cured matrices with excellent mechanical properties, which allows us to hope for further application of new hardener cured epoxy matrices in appropriate composite materials at high temperatures
    corecore