812 research outputs found

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for flavor-changing neutral current interactions of the top quark and the Higgs boson decaying to a bottom quark-antiquark pair at √ s = 13 TeV

    Get PDF
    A preprint version of the article is available at arXiv (https://arxiv.org/abs/2112.09734).Copyright © CERN, for the benefit of the CMS Collaboration. A search for flavor-changing neutral current interactions of the top quark (t) and the Higgs boson (H) is presented. The search is based on a data sample corresponding to an integrated luminosity of 137 fb−1 recorded by the CMS experiment at the LHC in proton-proton collisions at s√ = 13 TeV. Events containing exactly one lepton (muon or electron) and at least three jets, among which at least two are identified as originating from the hadronization of a bottom quark, are analyzed. A set of deep neural networks is used for kinematic event reconstruction, while boosted decision trees distinguish the signal from the background events. No significant excess over the background predictions is observed, and upper limits on the signal production cross sections are extracted. These limits are interpreted in terms of top quark decay branching fractions (B) to the Higgs boson and an up (u) or a charm quark (c). Assuming one nonvanishing extra coupling at a time, the observed (expected) upper limits at 95% confidence level are B(t → Hu) < 0.079 (0.11)% and B(t → Hc) < 0.094 (0.086)%.SCOAP3

    Biocatalysts based on papain associates with chitosan nanoparticles

    No full text
    The research purpose was to develop and study biocatalysts based on papain associates with chitosan nanoparticles. We obtained medium and high molecular weight chitosan nanoparticles, both with and without ascorbic acid . When the papainna-noparticles complexes with ascorbic acid were formed, the catalytic activity of the enzyme increased by 3 % for medium molecular weight chitosan and by 16 % for high molecular weight chitosan. After 168 hours of incubation in 0.05 M of Tris-HCl buffer (pH 7.5) at 37 °C, the free enzyme retained 15 % of its catalytic activity, whereas its associates with chitosan nanoparticles exhibited ~ 30 %. The papain complex with chitosan nanoparticles and ascorbic acid exhibited 40 % of the enzyme catalytic activity. We simulated the bonds and interactions within the chitosan-ascorbic acid-papain complex. The proposed biocatalysts have high prospects for effective use in cosmetology, biomedicine, and pharmacy

    Carboxymethyl Cellulose-Based Polymers as Promising Matrices for Ficin Immobilization

    No full text
    The present work is devoted to research on the interaction between carboxymethyl cellulose sodium salt and its derivatives (graft copolymer of carboxymethyl cellulose sodium salt and N,N-dimethyl aminoethyl methacrylate) with cysteine protease (ficin). The interaction was studied by FTIR and by flexible molecular docking, which have shown the conjugates&rsquo; formation with both matrices. The proteolytic activity assay performed with azocasein demonstrated that the specific activities of all immobilized ficin samples are higher in comparison with those of the native enzyme. This is due to the modulation of the conformation of ficin globule and of the enzyme active site by weak physical interactions involving catalytically valuable amino acids. The results obtained can extend the practical use of ficin in biomedicine and biotechnology

    In Silico Study of the Interactions of Anle138b Isomer, an Inhibitor of Amyloid Aggregation, with Partner Proteins

    No full text
    Herein, we aimed to highlight current “gaps” in the understanding of the potential interactions between the Anle138b isomer ligand, a promising agent for clinical research, and the intrinsically disordered alpha-synuclein protein. The presence of extensive unstructured areas in alpha-synuclein determines its existence in the cell of partner proteins, including the cyclophilin A chaperone, which prevents the aggregation of alpha-synuclein molecules that are destructive to cell life. Using flexible and cascaded molecular docking techniques, we aimed to expand our understanding of the molecular architecture of the protein complex between alpha-synuclein, cyclophilin A and the Anle138b isomer ligand. We demonstrated the possibility of intricate complex formation under cellular conditions and revealed that the main interactions that stabilize the complex are hydrophobic and involve hydrogen

    Atomic Simulation of the Binding of JAK1 and JAK2 with the Selective Inhibitor Ruxolitinib

    No full text
    Rheumatoid arthritis belongs to the group of chronic systemic autoimmune diseases characterized by the development of destructive synovitis and extra-articular manifestations. Cytokines regulate a wide range of inflammatory processes involved in the pathogenesis of rheumatoid arthritis and contribute to the induction of autoimmunity and chronic inflammation. Janus-associated kinase (JAK) and signal transducer and activator of transcription (STAT) proteins mediate cell signaling from cytokine receptors, and are involved in the pathogenesis of autoimmune and inflammatory diseases. Targeted small-molecule drugs that inhibit the functional activity of JAK proteins are used in clinical practice for the treatment of rheumatoid arthritis. In our study, we modeled the interactions of the small-molecule drug ruxolitinib with JAK1 and JAK2 isoforms and determined the binding selectivity using molecular docking. Molecular modeling data show that ruxolitinib selectively binds the JAK1 and JAK2 isoforms with a binding affinity of &minus;8.3 and &minus;8.0 kcal/mol, respectively. The stabilization of ligands in the cavity of kinases occurs primarily through hydrophobic interactions. The amino acid residues of the protein globules of kinases that are responsible for the correct positioning of the drug ruxolitinib and its retention have been determined

    Novel Biocatalysts Based on Bromelain Immobilized on Functionalized Chitosans and Research on Their Structural Features

    No full text
    Enzyme immobilization on various carriers represents an effective approach to improve their stability, reusability, and even change their catalytic properties. Here, we show the mechanism of interaction of cysteine protease bromelain with the water-soluble derivatives of chitosan—carboxymethylchitosan, N-(2-hydroxypropyl)-3-trimethylammonium chitosan, chitosan sulfate, and chitosan acetate—during immobilization and characterize the structural features and catalytic properties of obtained complexes. Chitosan sulfate and carboxymethylchitosan form the highest number of hydrogen bonds with bromelain in comparison with chitosan acetate and N-(2-hydroxypropyl)-3-trimethylammonium chitosan, leading to a higher yield of protein immobilization on chitosan sulfate and carboxymethylchitosan (up to 58 and 65%, respectively). In addition, all derivatives of chitosan studied in this work form hydrogen bonds with His158 located in the active site of bromelain (except N-(2-hydroxypropyl)-3-trimethylammonium chitosan), apparently explaining a significant decrease in the activity of biocatalysts. The N-(2-hydroxypropyl)-3-trimethylammonium chitosan displays only physical interactions with His158, thus possibly modulating the structure of the bromelain active site and leading to the hyperactivation of the enzyme, up to 208% of the total activity and 158% of the specific activity. The FTIR analysis revealed that interaction between N-(2-hydroxypropyl)-3-trimethylammonium chitosan and bromelain did not significantly change the enzyme structure. Perhaps this is due to the slowing down of aggregation and the autolysis processes during the complex formation of bromelain with a carrier, with a minimal modification of enzyme structure and its active site orientation

    Measurements of jet multiplicity and jet transverse momentum in multijet events in proton-proton collisions at 1a<i>s</i>=13 TeV

    No full text
    Abstract: Multijet events at large transverse momentum (p(T)) are measured at root s = 13 TeV using data recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 36.3 fb(-1). The multiplicity of jets with p(T) > 50 GeV that are produced in association with a high-p(T) dijet system is measured in various ranges of the p(T) of the jet with the highest transverse momentum and as a function of the azimuthal angle difference Delta phi(1,2) between the two highest p(T) jets in the dijet system. The differential production cross sections are measured as a function of the transverse momenta of the four highest p(T) jets. The measurements are compared with leading and next-to-leading order matrix element calculations supplemented with simulations of parton shower, hadronization, and multiparton interactions. In addition, the measurements are compared with next-to-leading order matrix element calculations combined with transverse-momentum dependent parton densities and transverse-momentum dependent parton shower
    corecore