225 research outputs found

    Development of Natural-Based Bone Cement for a Controlled Doxorubicin-Drug Release

    Get PDF
    Osteosarcoma (OS) accounts for 60% of all global bone cancer diagnoses. Intravenous administration of Doxorubicin Hydrochloride (DOXO) is the current form of OS treatment, however, systemic delivery has been linked to the onset of DOXO induced cardiomyopathy. Biomaterials including calcium phosphate cements (CPCs) and nanoparticles (NPs) have been tested as localized drug delivery scaffolds for OS cells. However, the tumor microenvironment is critical in cancer progression, with mesenchymal stem cells (MSCs) thought to promote OS metastasis and drug resistance. The extent of MSC assisted survival of OS cells in response to DOXO delivered by CPCs is unknown. In this study, we aimed at investigating the effect of DOXO release from a new formulation of calcium phosphate-based bone cement on the viability of OS cells cocultured with hMSC in vitro. NPs made of PLGA were loaded with DOXO and incorporated in the formulated bone cement to achieve local drug release. The inclusion of PLGA-DOXO NPs into CPCs was also proven to increase the levels of cytotoxicity of U2OS cells in mono- and coculture after 24 and 72 h. Our results demonstrate that a more effective localized DOXO delivery can be achieved via the use of CPCs loaded with PLGA-DOXO NPs compared to CPCs loaded with DOXO, by an observed reduction in metabolic activity of U2OS cells in indirect coculture with hMSCs. The presence of hMSCs offer a degree of DOXO resistance in U2OS cells cultured on PLGA-DOXO NP bone cements. The consideration of the tumor microenvironment via the indirect inclusion of hMSCs in this study can act as a starting point for future direct coculture and in vivo investigations

    Alternating block copolymer-based nanoparticles as tools to modulate the loading of multiple chemotherapeutics and imaging probes

    Get PDF
    Abstract Cancer therapy often relies on the combined action of different molecules to overcome drug resistance and enhance patient outcome. Combined strategies relying on molecules with different pharmacokinetics often fail due to the lack of concomitant tumor accumulation and, thus, to the loss of synergistic effect. Due to their ability to enhance treatment efficiency, improve drug pharmacokinetics, and reduce adverse effects, polymer nanoparticles (PNPs) have been widely investigated as co-delivery vehicles for cancer therapies. However, co-encapsulation of different drugs and probes in PNPs requires a flexible polymer platform and a tailored particle design, in which both the bulk and surface properties of the carriers are carefully controlled. In this work, we propose a core-shell PNP design based on a polyurethane (PUR) core and a phospholipid external surface. The modulation of the hydrophilic/hydrophobic balance of the PUR core enhanced the encapsulation of two chemotherapeutics with dramatically different water solubility (Doxorubicin hydrochloride, DOXO and Docetaxel, DCTXL) and of Iron Oxide Nanoparticles for MRI imaging. The outer shell remained unchanged among the platforms, resulting in un-modified cellular uptake and in vivo biodistribution. We demonstrate that the choice of PUR core allowed a high entrapment efficiency of all drugs, superior or comparable to previously reported results, and that higher core hydrophilicity enhances the loading efficiency of the hydrophilic DOXO and the MRI contrast effect. Moreover, we show that changing the PUR core did not alter the surface properties of the carriers, since all particles showed a similar behavior in terms of cell internalization and in vivo biodistribution. We also show that PUR PNPs have high passive tumor accumulation and that they can efficient co-deliver the two drugs to the tumor, reaching an 11-fold higher DOXO/DCTXL ratio in tumor as compared to free drugs. Statement of Significance Exploiting the synergistic action of multiple chemotherapeutics is a promising strategy to improve the outcome of cancer patients, as different agents can simultaneously engage different features of tumor cells and/or their microenvironment. Unfortunately, the choice is limited to drugs with similar pharmacokinetics that can concomitantly accumulate in tumors. To expand the spectrum of agents that can be delivered in combination, we propose a multi-compartmental core-shell nanoparticles approach, in which the core is made of biomaterials with high affinity for drugs of different physical properties. We successfully co-encapsulated Doxorubicin Hydrochloride, Docetaxel, and contrast agents and achieved a significantly higher concomitant accumulation in tumor versus free drugs, demonstrating that nanoparticles can improve synergistic cancer chemotherapy

    Glycosylation of a CNS-specific extracellular matrix glycoprotein, tenascin-R, is dominated by O-linked sialylated glycans and "brain-type” neutral N-glycans

    Get PDF
    As a member of the tenascin family of extracellular matrix glycoproteins, tenascin-R is located exclusively in the CNS. It is believed to play a role in myelination and axonal stabilization and, through repulsive properties, may contribute to the lack of regeneration of CNS axons following damage. The contrary functions of the tenascins have been localized to the different structural domains of the protein. However, little is known concerning the influence of the carbohydrate conjugated to the many potential sites for N- and O-glycosylation (10-120% by weight). As a first analytical requirement, we show that >80% of the N-glycans in tenascin-R are neutral and dominated by complex biantennary structures. These display the "brain-type” characteristics of outer-arm- and core-fucosylation, a bisecting N-acetylglucosamine and, significantly, an abundance of antennae truncation. In some structures, truncation resulted in only a single mannose residue remaining on the 3-arm, a particularly unusual consequence of the N-glycan processing pathway. In contrast to brain tissue, hybrid and oligomannosidic N-glycans were either absent or in low abundance. A high relative abundance of O-linked sialylated glycans was found. This was associated with a significant potential for O-linked glycosylation sites and multivalent display of the sialic acid residues. These O-glycans were dominated by the disialylated structure, NeuAcα2-3Galβ1-3(NeuAcα2-6)GalNAc. The possibility that these O-glycans enable tenascin-R to interact in the CNS either with the myelin associated glycoprotein or with sialoadhesin on activated microglia is discusse

    MicroRNA delivery through nanoparticles

    Get PDF
    MicroRNAs (miRNAs) are attracting a growing interest in the scientific community due to their central role in the etiology of major diseases. On the other hand, nanoparticle carriers offer unprecedented opportunities for cell specific controlled delivery of miRNAs for therapeutic purposes. This review critically discusses the use of nanoparticles for the delivery of miRNA-based therapeutics in the treatment of cancer and neurodegenerative disorders and for tissue regeneration. A fresh perspective is presented on the design and characterization of nanocarriers to accelerate translation from basic research to clinical application of miRNA-nanoparticles. Main challenges in the engineering of miRNA-loaded nanoparticles are discussed, and key application examples are highlighted to underline their therapeutic potential for effective and personalized medicine

    Dipping-Induced Azimuthal Helix Orientation in Langmuir-Blodgett Monolayers of α-Helical Amphiphilic Diblock Copolypeptides

    Get PDF
    The azimuthal helix orientation of the rigid-rod amphiphilic diblock copolypeptides (PLGA-b-PMLGSLGs) of poly(α-L-glutamic acid) (PLGA) and poly(γ-methyl-L-glutamate-ran-γ-stearyl-L-glutamate) with 30 mol % of stearyl substituents (PMLGSLG) in Langmuir-Blodgett (LB) monolayers was investigated using polarized transmission Fourier transform infrared spectroscopy. The relative position of dipping with respect to the previous transfer position can be used to manipulate the azimuthal orientation of the helices parallel to or tilted by an angle of 45° with respect to the dipping direction in the transferred films. The study of the azimuthal order for the LB monolayers of PLGA-b-PMLGSLGs of various block lengths revealed that the observed effect arises mainly from the deformation of the PMLGSLG top brush layer, induced by the flow orientation around the transfer region. In those cases where the PMLGSLG block is tilted by a sufficiently large angle with respect to the surface normal, high azimuthal order parameters of 0.5-0.75 were obtained.

    Effects of acute variation of dialysate calcium concentrations on arterial stiffness and aortic pressure waveform

    Get PDF
    Background. Abnormal mineral metabolism in chronic kidney disease plays a critical role in vascular calcification and arterial stiffness. The impact of presently used dialysis calcium concentration (DCa) on arterial stiffness and aortic pressure waveform has never been studied. The aim of the present study is to evaluate, in haemodialysis (HD) patients, the impact of acute modification of DCa on arterial stiffness and central pulse wave profile (cPWP)

    Effects of pH and low density lipoprotein (LDL) on PCSK9-dependent LDL receptor regulation

    Get PDF
    Mutations within PCSK9 (proprotein convertase subtilisin/kexin type 9) are associated with dominant forms of familial hyper- and hypocholesterolemia. Although PCSK9 controls low density lipoprotein (LDL) receptor (LDLR) levels post-transcriptionally, several questions concerning its mode of action remain unanswered. We show that purified PCSK9 protein added to the medium of human endothelial kidney 293, HepG2, and Chinese hamster ovary cell lines decreases cellular LDL uptake in a dose-dependent manner. Using this cell-based assay of PCSK9 activity, we found that the relative potencies of several PCSK9 missense mutants (S127R and D374Y, associated with hypercholesterolemia, and R46L, associated with hypocholesterolemia) correlate with LDL cholesterol levels in humans carrying such mutations. Notably, we found that in vitro wild-type PCSK9 binds LDLR with an 3c150-fold higher affinity at an acidic endosomal pH (KD = 4.19 nM) compared with a neutral pH (KD = 628 nM). We also demonstrate that wild-type PCSK9 and mutants S127R and R46L are internalized by cells to similar levels, whereas D374Y is more efficiently internalized, consistent with their affinities for LDLR at neutral pH. Finally, we show that LDL diminishes PCSK9 binding to LDLR in vitro and partially inhibits the effects of secreted PCSK9 on LDLR degradation in cell culture. Together, the results of our biochemical and cell-based experiments suggest a model in which secreted PCSK9 binds to LDLR and directs the trafficking of LDLR to the lysosomes for degradation

    Galectin-8 in IgA Nephritis: Decreased Binding of IgA by Galectin-8 Affinity Chromatography and Associated Increased Binding in Non-IgA Serum Glycoproteins

    Get PDF
    Background Immunoglobulin A nephritis (IgAN) is the most common primary glomerulonephritis worldwide. It is caused by accumulation of IgA1-containing immune complexes in the kidney resulting in renal failure, which is thought to be due to altered glycosylation of IgA with a decrease of 2-3-sialylated galactosides (NeuAc alpha 2-3Gal). less thanbrgreater than less thanbrgreater thanPurpose The purpose of this study was to analyze whether altered glycosylation of IgA would lead to an altered binding to galectin-8, an endogenous lectin with strong affinity for 2-3-sialylated galactosides. Galectins are a family of beta-galactoside-binding proteins; by binding various glycoproteins, they play important roles in the regulation of cellular functions in inflammation and immunity. Hence, an altered binding of IgA to galectin-8 could lead to pathologic immune functions, such as glomerulonephritis. less thanbrgreater than less thanbrgreater thanMethods Affinity chromatography of serum glycoproteins on the human sialogalactoside-binding lectin galectin-8N permitted quantitation of bound and unbound fractions, including IgA. less thanbrgreater than less thanbrgreater thanResults Analysis of similar to 100 IgA nephritis sera showed that the galectin-8N unbound fraction of IgA increased compared to similar to 100 controls, consistent with the known loss of galactosylation. A subgroup of similar to 15% of the IgAN patients had a ratio of galectin-8 bound/unbound IgA andlt;0.09, not found for any of the controls. Unexpectedly, the galectin-8N-binding fraction of serum glycoproteins other than IgA increased in the sera of IgAN patients but not in controls, suggesting a previously unrecognized change in this disease. less thanbrgreater than less thanbrgreater thanConclusion This is the first study that relates a galectin, an endogenous lectin family, to IgA nephritis and thus should stimulate new avenues of research into the pathophysiology of the disease.Funding Agencies|Swedish Research Council (Vetenskapsradet)|2008-3356|Swedish Foundation for Swedish Research|FFL4|Swedish Healthcare System (ALF)||Region Skane||</p

    RAS gene polymorphisms, classical risk factors and the advent of coronary artery disease in the Portuguese population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several polymorphisms within the renin-angiotensin system cluster of genes have been associated with the advent of coronary artery disease (CAD) or related pathologies. We investigated the distribution of 5 of these polymorphisms in order to find any association with CAD development and distinguish if any of the biochemical and behavioural factors interact with genetic polymorphisms in the advent of the disease.</p> <p>Methods</p> <p><it>ACE </it>I/D (rs4340), <it>ACE </it>A11860G (rs4343), <it>AT1R </it>A1166C (rs5186), <it>AGT </it>T174M (rs4762) and <it>AGT </it>M235T (rs699) gene polymorphisms were PCR-RFLP analysed in 298 CAD patients and 510 controls from Portugal. Several biochemical and behavioural markers were obtained.</p> <p>Results</p> <p><it>ACE </it>I/D DD and <it>ACE</it>11860 GG genotypes are risk factors for CAD in this population. The simultaneous presence of <it>ACE </it>I/D I and <it>ACE</it>11860 A alleles corresponds to a significant trend towards a decrease in CAD incidence. We found several synergistic effects between the studied polymorphisms and classical risk factors such as hypertension, obesity, diabetes and dyslipidaemia: the presence of the DD genotype of <it>ACE </it>I/D (and also <it>ACE</it>11860 GG) increases the odds of developing CAD when associated to each one of these classical risk factors, particularly when considering the male and early onset CAD subgroup analysis; <it>AGT</it>235 TT also increases the CAD risk in the presence of hypertension and dyslipidaemia, and <it>AT1R</it>1166 interacts positively with hypertension, smoking and obesity.</p> <p>Conclusion</p> <p><it>ACE </it>polymorphisms were shown to play a major role in individual susceptibility to develop CAD. There is also a clear interaction between RAS predisposing genes and some biochemical/environmental risk factors in CAD onset, demonstrating a significant enhancement of classical markers particularly by <it>ACE </it>I/D and <it>ACE</it>11860.</p
    corecore