159 research outputs found

    Spectral Composition of Sunlight Affects the Microbial Functional Structure of Beech Leaf Litter During the Initial Phase of Decomposition

    Get PDF
    Aims This study tests whether different spectral regions of sunlight affect the microbial decomposer assemblage in surface leaf litter in a beech understorey over the first 6 months following leaf senescence. Methods We performed a litterbag experiment employing filters attenuating combinations of UV-B, UV-A, blue, and green light as well as the whole spectrum of sunlight. We measured changes in microbial biomass and community structure, litter mass loss and litter chemistry during the first 6 months of decomposition. Results Fungal and total microbial biomass were highest in the treatment excluding UV radiation, blue and green light. Exclusion of UV-B radiation decreased the fungal:bacterial biomass ratio and litter nitrogen content. Bacterial biomass was lower in the dark treatment compared to treatments receiving at least part of the solar spectrum. Our filter treatments affected microbial functional structure from the beginning of the experiment, whereas mass loss was only significantly affected after 6 months of decomposition and no effect was found on litter carbon content. Conclusions This study proves that sunlight, in a spectrally dependent manner, affects both microbial functional structure and biomass in temperate deciduous forests early in the decomposition process, with bacteria tending to dominate in sunlight and fungi in dark conditions. We found sunlight to be important in the decomposition in temperate forest understoreys despite the low irradiance characterizing these environments. However, long-term studies are required to estimate the relative contribution of sunlight among factors affecting the eventual incorporation of decomposing leaf litter into forest soils.Peer reviewe

    Solar UV-A radiation and blue light enhance tree leaf litter decomposition in a temperate forest

    Get PDF
    Sunlight can accelerate the decomposition process through an ensemble of direct and indirect processes known as photodegradation. Although photodegradation is widely studied in arid environments, there have been few studies in temperate regions. This experiment investigated how exposure to solar radiation, and specifically UV-B, UV-A, and blue light, affects leaf litter decomposition under a temperate forest canopy in France. For this purpose, we employed custom-made litterbags built using filters that attenuated different regions of the solar spectrum. Litter mass loss and carbon to nitrogen (C:N) ratio of three species: European ash (Fraxinus excelsior), European beech (Fagus sylvatica) and pedunculate oak (Quercus robur), differing in their leaf traits and decomposition rate, were analysed over a period of 7–10 months. Over the entire period, the effect of treatments attenuating blue light and solar UV radiation on leaf litter decomposition was similar to that of our dark treatment, where litter lost 20–30% less mass and had a lower C:N ratio than under the full-spectrum treatment. Moreover, decomposition was affected more by the filter treatment than mesh size, which controlled access by mesofauna. The effect of filter treatment differed among the three species and appeared to depend on litter quality (and especially C:N), producing the greatest effect in recalcitrant litter (F. sylvatica). Even under the reduced irradiance found in the understorey of a temperate forest, UV radiation and blue light remain important in accelerating surface litter decomposition.Peer reviewe

    Functional Assemblages of Collembola Determine Soil Microbial Communities and Associated Functions

    Get PDF
    Soil processes such as decomposition are mainly performed by soil biota. Although soils worldwide are extremely biodiverse, the relationship between decomposers (fauna and microorganisms), and ecosystem function is poorly understood. Collembola are abundant and ubiquitous microarthropods that are found in terrestrial ecosystems. They can affect the amount of biomass and the activity of microbial communities, either directly through selectively feeding on fungi and bacteria, or indirectly by dissemination of microbial propagules, and the alteration of nutrient availability. However, despite the functional role they play in belowground food webs, the interactions between natural assemblages of soil microbes and Collembola receive little attention. This study, conducted in microcosm conditions, examines the effects of two distinct natural assemblages of functional groups of Collembola (ep- and euedaphic) upon microbial communities using PLFA markers and their associated soil functions (e.g., enzymatic activities and C mineralization rate) over a 2-month period. Our principal objective was to determine whether different functional groups of Collembola had varying effects on microbial soil community abundance, structure and activity, resulting in potentially important effects on ecosystem processes. Our findings show that the interactions of the functional groups of Collembola with microbial communities vary significantly whether they are alone or combined. A distinct response in the composition of the microbial communities was found at the end of the 2-month period. The communities were significantly different from each other in terms of PLFA marker composition. We found that the epedaphic species were related to and promoted Gram+ bacteria whereas euedaphic species were related to Gram- bacterial markers. This had further repercussions on soil function, such as nutrient recycling. Combining both functional groups did not lead to a complementary effect on soil microbial properties, with a drastically different outcome between the first and the second month of the experiment. Additional research dealing with the interactions between decomposers using natural assemblages will help to predict the functional outcomes of soil biota structure and composition

    Alien palm invasion leads to selective biotic filtering of resident plant communities towards competitive functional traits

    Get PDF
    Biological invasions drive biodiversity loss and ecosystem change on tropical islands. However, we know little about the implications of species losses on the functional structure of both resident and novel communities. Herein, we examined the potential effect of a non-native palm species, Pinanga coronata, on the taxonomic and functional assemblages of understory plant species in a Fijian rainforest. We predicted that competition from this invasive species would lead to trait convergence according to the competitive hierarchy hypothesis. Using a trait-based approach, we sampled plant communities in 280 plots across a gradient of P. coronata densities. We measured five functional traits, including height and leaf traits related to nutrient acquisition. We found that an increase in P. coronata density is strongly correlated with a decrease in taxonomic diversity (i.e., about − 50% for species richness and − 33% for Shannon diversity index) and a decrease in functional richness. Community-weighted mean values of traits of resident species (i.e., excluding P. coronata) converged toward competitive strategies such as higher leaf nitrogen content (LNC), lower carbon-to-nitrogen (C:N) ratios and leaf dry matter content (LDMC), a pattern that is significantly non-random for LDMC and C:N. This study demonstrates that P. coronata might act as a strong biotic filter responsible for species loss and functional changes. Our findings suggest that in response to increasing competition with this invasive plant, resident and novel plant communities shift toward less diverse and more competitive assemblages. Nevertheless, the intensity of this filtering is habitat dependent (e.g. less filtering effect under mahogany trees). Lastly, changes in resource acquisition strategies (mainly nutrient-based) in particular in low nutrient status of rainforest soils, could lead to long-term impacts on tree regeneration, in turn causing large-scale changes in ecosystem properties

    Ultraviolet radiation accelerates photodegradation under controlled conditions but slows the decomposition of senescent leaves from forest stands in southern Finland

    Get PDF
    Depending on the environment, sunlight can positively or negatively affect litter decomposition, through the ensemble of direct and indirect processes constituting photodegradation. Which of these processes predominate depends on the ecosystem studied and on the spectral composition of sunlight received. To examine the relevance of photodegradation for litter decomposition in forest understoreys, we filtered ultraviolet radiation (UV) and blue light from leaves of Fagus sylvatica and Bettda pendula at two different stages of senescence in both a controlled-environment experiment and outdoors in four different forest stands (Picea abies, Pagus sylvatica, Acer platanoides, Betula pendula). Controlling for leaf orientation and initial differences in leaf chlorophyll and flavonol concentrations; we measured mass loss at the end of each experiment and characterised the phenolic profile of the leaf litter following photodegradation. In most forest stands, less mass was lost from decomposing leaves that received solar UV radiation compared with those under UV-attenuating filters, while in the controlled environment UV-A radiation either slightly accelerated or had no significant effect on photodegradation, according to species identity. Only a few individual phenolic compounds were affected by our different filter treatments, but photodegradation did affect the phenolic profile. We can conclude that photodegradation has a small stand- and species-specific effect on the decomposition of surface leaf litter in forest understoreys during the winter following leaf fall in southern Finland. Photodegradation was wavelength-dependent and modulated by the canopy species filtering sunlight and likely creating different combinations of spectral composition, moisture, temperature and snowpack characteristics.Peer reviewe

    Globally invariant metabolism but density-diversity mismatch in springtails.

    Get PDF
    Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning
    • 

    corecore