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Abstract 1 

Depending on the environment, sunlight can positively or negatively affect litter 2 

decomposition, through the ensemble of direct and indirect processes constituting 3 

photodegradation. Which of these processes predominate depends on the ecosystem studied 4 

and on the spectral composition of sunlight received.  To examine the relevance of 5 

photodegradation for litter decomposition in forest understoreys, we filtered ultraviolet 6 

radiation (UV) and blue light from leaves of Fagus sylvatica and Betula pendula at two 7 

different stages of senescence in both a controlled-environment experiment and outdoors in 8 

four different forest stands (Picea abies, Fagus sylvatica, Acer platanoides, Betula pendula).  9 

Controlling for leaf orientation and initial differences in leaf chlorophyll and flavonol 10 

concentrations; we measured mass loss at the end of each experiment and characterised the 11 

phenolic profile of the leaf litter following photodegradation.  In most forest stands, less mass 12 

was lost from decomposing leaves that received solar UV radiation compared with those 13 

under UV-attenuating filters, while in the controlled environment UV-A radiation either 14 

slightly accelerated or had no significant effect on photodegradation, according to species 15 

identity.  Only a few individual phenolic compounds were affected by our different filter 16 

treatments, but photodegradation did affect the phenolic profile.  We can conclude that 17 

photodegradation has a small stand- and species- specific effect on the decomposition of 18 

surface leaf litter in forest understoreys during the winter following leaf fall in southern 19 

Finland.  Photodegradation was wavelength-dependent and modulated by the canopy species 20 

filtering sunlight and likely creating different combinations of spectral composition, moisture, 21 

temperature and snowpack characteristics.  22 
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Introduction 41 

Decomposition is a key ecological process in nutrient cycling, during which organic 42 

compounds are broken down and thus become available for primary producers.  In temperate 43 

and boreal forests, decomposition is controlled by many biotic and abiotic factors, such as 44 

temperature, moisture, frost, freeze-thaw cycles, soil pH, sunlight, microbial communities, 45 

soil fauna and fertility, etc. [1-6].  Litter traits, together with climatic variables, explain up to 46 

70% of the decomposition rates in terrestrial ecosystems on a global scale [7].  However, at a 47 

continental scale, the rate of decomposition is mainly controlled by litter chemistry [8].  48 

Moreover, canopy trees may impact decomposition directly through their leaf litter traits or 49 

indirectly by altering the microenvironment including solar radiation in the understorey; this 50 

effect at the local level may have a bigger impact on decomposition than large-scale climatic 51 

gradients [9].   52 

Solar radiation impacts decomposition, both directly and indirectly - through photochemical 53 

mineralization, photopriming, and microbial photoinhibition [10], together these processes 54 

are known as photodegradation.  In arid and semi-arid environments, photodegradation has 55 

been shown to play a key role in the control of litter decomposition rate and to be effected 56 

by UV radiation and the short-wavelength region of the visible spectrum (such as blue and 57 

green light) [11, 12].  However, worldwide studies have presented conflicting results 58 

regarding factors that enhance the photodegradation of plant litter [13, 14].  The variability 59 

of climatic conditions (cloud cover, rainfall, Ozone Layer thickness, pollutants concentration, 60 

etc.), impacting the total amount of incoming radiation, makes it hard to assess the role of 61 

photodegradation in global nutrient fluxes and how they might respond to climate change 62 

[15-18].  At mid-high latitudes, large seasonal differences in sunlight hours mean that, when 63 

overstorey canopies are open and there is no snow cover during the autumn and early spring, 64 
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high solar irradiances can transiently reach the understorey.  Nevertheless, the total 65 

irradiance received annually at the forest floor is still quite small compared with areas with 66 

no canopy cover [19]. 67 

While solar UV radiation can on balance enhance the rate of decomposition [20], its positive 68 

and negative effects may even out because UV-B and UV-A radiation differ in their effect on 69 

decomposition according to environmental conditions and litter chemistry [12].  Typically, 70 

traits associated with litter chemistry such as its concentration of lignin and phenolics (such 71 

as tannins), carbon to nitrogen ratio (C:N), lignin to nitrogen ratio (lig:N), etc., were thought 72 

to determine the rate of decomposition [21].  However, recent studies have found traditional 73 

indices of litter quality to poorly explain litter mass loss due to photodegradation in arid 74 

environments [22, 23].   75 

The morphology and biochemistry of living leaves determine their optical properties, but once 76 

senescent the continued capacity of these leaf traits to interact with sunlight, and potentially 77 

influence photodegradation, has not been widely studied.  Some of the phenolic compounds 78 

in the leaf epidermis, absorb UV radiation and consequently screen the interior of the leaf 79 

potentially interfering with photodegradation [24].  During leaf senescence, when plants 80 

remobilise the nutrients held in chlorophyll, the content of epidermal UV-screening phenolics 81 

is also known to change [25, 26].  Green leaves are rich in chlorophyll and photosynthetic 82 

enzymes which have a high nitrogen content, making them more palatable to decomposers 83 

and faster to decompose [27] than yellow leaves. 84 

To test how spectral composition affects photodegradation and identify its role in the initial 85 

phase of leaf litter decomposition in forest understoreys, we performed two parallel 86 

experiments using filters to create different light treatments.  We tested the effect of the blue 87 
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and UV portions of the spectrum on photodegradation of senescent leaves (1) in a controlled 88 

experiment in a growth room, and (2) whether these effects remained evident in equivalent 89 

leaves under the same set of filters in a decomposition experiment in forest stands.  We 90 

employed senescent leaves from two species with contrasting leaf morphological traits; 91 

Betula pendula which is light-demanding and produces leaves with an exploitative strategy, 92 

and Fagus sylvatica which grows in shadier stands and produces leaves with a conservative 93 

strategy expected to be more recalcitrant. We deployed these leaves in adjacent forest stands 94 

dominated by different canopy species designed to create continuum of understorey shade 95 

(from dark to light stands - Picea abies, Fagus sylvatica, Acer platanoides, Betula pendula).  In 96 

order to test whether differences in pigment contents affecting leaf optical properties can 97 

affect photodegradation, we employed leaf litter at two different stages of senescence (green 98 

and yellow leaves).  We expected green leaves to both photodegrade and decompose faster 99 

than yellow leaves because they contain more labile compounds.  We also placed leaves 100 

under our filters in two different orientations (adaxial leaf epidermis facing upwards or 101 

downwards): while leaf orientation has no ecological significance in itself, the penetration of 102 

UV radiation through the adaxial and abaxial epidermis differs due to UV-screening by 103 

epidermal flavonols.  Moreover, the abaxial side of the leaf is richer in stomata which favour 104 

light penetration [28].  Hence, leaf orientation will affect UV penetration into the leaf and 105 

may serve as a control for exposure of the targets of photodegradation in the mesophyll to 106 

UV radiation in otherwise similar leaves.  We expected mass lost from decomposing leaves to 107 

be affected by the spectrum of radiation received during photodegradation, with greater 108 

mass loss from leaves exposed to UV radiation than those under dark or partially-attenuated 109 

spectra.  We hypothesize that leaves with the abaxial epidermis facing upwards would 110 

decompose faster than leaves with the adaxial epidermis facing upwards, since the higher 111 
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phenolic content of the adaxial epidermis provides more effective screening of the mesophyll 112 

from UV-radiation; and that this interaction between filter treatments and epidermal 113 

phenolics would be visible in the phenolic profile of litter following photodegradation. 114 

Materials and Methods 115 

Sampling and preparation of leaves for controlled and forest experiments 116 

Leaves were harvested from six-year-old stands of Betula pendula and Fagus sylvatica, 117 

planted in Viikki experimental plots at the University of Helsinki in southern Finland 118 

(60°13'39.7'N, 25°01'09.5'E).  This vegetation zone is where the hemi-boreal borders the 119 

southern boreal region [29].  120 

Leaves that received full sun in the canopy (“sun leaves”) of approximately the same size (c 121 

20 cm2) were harvested in a systematic fashion, directly from the south-side and upper third 122 

of each tree, avoiding the leaves at the tip of the branch and those closest to the trunk.  Only 123 

leaves with no visible signs of herbivory or pathogens were collected and not more than four 124 

leaves per tree.  Green leaves of B. pendula and F. sylvatica were harvested on 29-09-2016 125 

during autumn leaf senescence; fully senescent yellow leaves of the same size and at the same 126 

location on the trees as the green leaves, were harvested 8-14 days later. 127 

Directly after leaf collection the petiole was removed, leaves were numbered and put into 128 

plastic bags to restrict moisture loss and keep them fresh.  Within 1 h of collection, the leaves 129 

were scanned for leaf area, which was calculated using imageJ [30] following the protocol 130 

from [31].  Leaves were then immediately weighed for fresh weight (FW) and optical 131 

measurements of leaf pigments taken with a Dualex Scientific+ device (Force-A, Paris, France) 132 

on both sides of the leaves.  These measurements give an index of epidermal flavonol content 133 

and leaf chlorophyll contents based on chlorophyll fluorescence and absorbance at various 134 
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wavelengths of the spectrum, described by [32] and [33].  Since some chlorophyll is required 135 

as a reference for the flavonol and anthocyanin measurements, those values where 136 

chlorophyll was very low (Dualex Index < 3.0) were not considered reliable and were removed 137 

from the analyses.  The same place on the lamina of all leaves was measured, two-thirds down 138 

from the tip to the side of the midrib. 139 

For the experiment in controlled conditions, for maximum realism in leaf traits and microbial 140 

communities, fresh leaves were deployed immediately after their harvest, whereas oven 141 

dried leaves were used for the field experiment as it was impractical to install the two 142 

experiments simultaneously.  For this field experiment, 576 leaves were dried at 37°C until 143 

they achieved a constant weight, which took 3 days for yellow leaves and 7 days for green 144 

leaves.  Following the measurement of their dry mass, leaf area was remeasured and Dualex 145 

Scientific+ measurements repeated as mentioned above, to test whether the epidermal 146 

flavonol values for both sides of the leaf, as well as leaf chlorophyll content, were affected by 147 

drying (the relationships between these values for fresh and dried leaves are given in Fig. S1). 148 

The very tight relationship between the FW and dry weight (DW) for green and yellow leaves 149 

of each species was used to obtain a conversion factor for calculations of mass loss involving 150 

fresh leaves used in the controlled experiment (Fig. S2). 151 

Filter treatments attenuating light and UV radiation  152 

In the controlled and forest experiments, four different plastic films were used to create the 153 

different filter treatments.  These were: a solid black/white polyester (0.07 mm thick, 154 

Siemenliike Siren, Helsinki, Finland) attenuating the full spectrum (“Dark”); transparent 155 

polyethene (0.05 mm thick, 04 PE-LD; Etola, Jyväskylä, Finland) transmitting >95% of radiation 156 

throughout the spectrum (“Full-Spectrum”); Rosco #226 (0.2 mm thick, Supergel; Foiltek Oy, 157 
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Vantaa, Finland) attenuating UV-A and UV-B radiation (“No-UVA” in controlled experiment 158 

and “No-UV” in field experiment), and Rosco #312 Canary Yellow (0.2 mm thick, Supergel; 159 

Foiltek Oy, Vantaa, Finland) attenuating UV-A and UV-B radiation and blue light (“No-160 

UV/Blue”).  Each filter was cut into 8-×-8-cm squares and attached to a leaf by a staple through 161 

the base of the midrib and to a Teflon mosquito net (mesh size 1.5 mm).  Half of the leaves 162 

were arranged with their adaxial epidermis facing upwards and the other half with the abaxial 163 

epidermis facing upwards, in 16 randomised complete blocks in the controlled environment 164 

(Fig. S3A, B).  A similar arrangement with 16 blocks per stand was employed in the forest 165 

stands (Fig. S3C, D). The spectral transmittance of all filter materials was found not to differ 166 

between before and after a period of exposure in the field exceeding the duration of the 167 

experiments (data from Qing-Wei Wang - not shown). 168 

Controlled Photodegradation Experiment 169 

The controlled experiment tested the effects of photodegradation on senescent leaves with 170 

and without UV-A radiation and blue light under a broad LED spectrum (Fig. 1) containing 171 

those spectral regions present in a forest understorey [34, 35].  A total of 256 fresh leaves 172 

were divided among the treatments: 2 species × 2 leaf colours × 4 filter types × 16 replicate 173 

leaves with either the adaxial or abaxial side facing upwards.  Leaves were positioned on 174 

mosquito netting on a metal shelf 40 cm beneath the light sources: UV-A LEDs (Z1-00UV00 175 

365 nm GEN2 emittor, LED Engin, San Jose, CA, USA, 15 μmol m-2 s-1) and broad-spectrum 176 

visible LED light (AP67, Valoya, Helsinki, Finland).  Leaves received 168 μmol m-2 s-1 (6.04 mol 177 

m-2 d-1) of photosynthetically active radiation (400-750 nm, PAR) plus 32 μmol m-2 s-1 (1.15 178 

mol m-2 d-1) of far red radiation; a similar exposure to those in the forest understoreys 179 

between October and February (Fig. S4).  The lamps were illuminated in a cycle on for 10 180 

hours from 08:00-18:00 and off for 14 hours.  The irradiance under each lamp treatment and 181 
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filter combination was measured with a Maya 2000 Pro array spectrometer (Ocean Optics 182 

Inc., Florida, USA), which had been calibrated for measurements of the UV-visible spectrum 183 

following [36] and [19] (Fig. 1).  The temperature in the chamber was thermostatically 184 

controlled to 20°C day/ 18 °C night and monitored in each compartment with i-button sensors 185 

(Maxim Integrated, San Jose, United States) (Fig. S5).  Leaf temperature was monitored with 186 

a micro-epsilon high-precision infra-red thermometer (Optris, Berlin, Germany) and was 187 

about 5°C above the ambient daytime temperature when illuminated (Fig. S6).  These data 188 

showed that temperature was on average 0.8°C lower under the dark filter than the other 189 

filter treatments, and that the green B. pendula leaves were 1.0°C cooler than the other leaves 190 

on average, but otherwise there were no differences among leaves. 191 

To account for any uncontrolled gradients in temperature and irradiance in the controlled 192 

environment, leaves were rotated under each set of lamps every 2 weeks throughout the 193 

experiment.  After 6 weeks (44-50 days) of filter treatments the first half of the leaves were 194 

removed (average daily mass loss 0.540 %) and after 10 weeks (75-77 days) the remaining 195 

leaves were collected (average daily mass loss 0.534 %). The two harvest dates were 196 

normalised to mean daily relative mass loss as there was no significant different (or 197 

interaction with other factors) between the two harvested cohorts (data not shown). 198 

Forest Decomposition Experiment 199 

Senescing leaves were arranged in four different forest stands in Viikki, Helsinki (60°13'39.7'N, 200 

25°01'09.5'E), as described above, on 07-10-2016 for F. sylvatica leaves and 19-10-2016 for 201 

B. pendula leaves, and collected on 11-04-2017 (6 months after the beginning of the 202 

experiment) for both species.  The canopy trees in the four different stands of differing leaf 203 

area index (LAI) were 10-year-old B. pendula and 6-year-old F. sylvatica, and mature (>60 204 
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years old) A. platanoides and P. abies trees.  Before starting the experiment, any ground 205 

vegetation (minimal) was removed from directly under and surrounding the leaves, and a thin 206 

litter layer consisting only of the surrounding leaf litter at each stand was placed between the 207 

ground and the mosquito net holding the leaves and filters to ensure conditions were natural 208 

and homogeneous (Fig. S2C, D).  The mosquito net was anchored to the ground using nails.  A 209 

fine bird net, minimally affecting the irradiance received by the experiment, was placed like a 210 

wigwam over the leaves to deflect any falling or blown leaves, which might otherwise build-211 

up on the filters obscuring the sunlight.  Any leaves stuck on the net were cleaned away every 212 

few days but any snow that was not intercepted by the canopy was allowed to accumulate 213 

and melt naturally on the filters over winter. 214 

The spectral irradiance was measured in all the forest stands using an array 215 

spectroradiometer (Maya2000 Pro Ocean Optics, Dunedin, FL, USA; D7-H-SMA cosine 216 

diffuser, Bentham Instruments Ltd, Reading, UK) that had been calibrated within the previous 217 

12 months for measurements spanning the regions of solar UV radiation and PAR (see 218 

Hartikainen et al 2018 for details of the calibration), [37, 38] (Table S1 and S2).  Hemispherical 219 

photos were taken at the same locations as spectral irradiance, to characterize canopy cover 220 

by calculation of the global light index (GLI) and the leaf area index (LAI) with the software 221 

Hemisfer [39, 40] following the protocol from Hartikainen et al 2018.  Above-canopy PAR was 222 

obtained from the Viikki Fields Weather Station of the University of Helsinki located within 223 

the experimental site (60°13'39.7'N, 25°01'09.5'E).  UV radiation was obtained from the 224 

Finnish Meteorological Institute (FMI) weather station located in the adjacent suburb of 225 

Kumpula (60°12'00.0"N, 24°57'36.0"E), Helsinki [41, 42].  Below-canopy irradiance was 226 

modelled from above-canopy irradiance data, whereby GLI and LAI estimated from 227 

hemispherical photos were used to model selective filtration by the different canopies, 228 
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validated against understorey spectroradiometer measurements following the protocol in 229 

[43]. 230 

Mass loss, HPLC and C:N Analyses of Leaf Litter 231 

Following collection of the experimental leaf litter at the end of their decomposition and 232 

photodegradation periods, leaves were separated from their filters taking care not to lose any 233 

fragments of leaf.  They were placed in paper bags and dried at 37°C in a ventilated desiccating 234 

oven until reaching a constant weight (after 13 days) to obtain their DW.  Worm casts and dirt 235 

were carefully removed from leaves that had decomposed outdoors using a small paintbrush, 236 

in order to reduce the error due to contamination from inorganic particles. 237 

Biochemical analyses were done on litter samples from the controlled environment.  To 238 

prepare leaves for biochemical analyses, first the midrib was cut out of the leaf, as was the 239 

small mark on the lamina used to number the leaf prior to decomposition.  The remaining leaf 240 

lamina material was placed into a 1.5-ml Eppendorf tube.  To grind the leaf material, 25 glass 241 

beads of 1 mm diameter (#22.222.0005, Retsch GmbH, Haan, Germay) were added to each 242 

tube, and tubes were shaken for 1.5 to 2 minutes in a Silamat S6 mixer (Ivoclar Vivadent, 243 

Amherst, USA) at rotation speed of 4500 rpm.  Dry powdered samples were stored in the dark 244 

at room temperature between grinding and analysis.  245 

For the elemental analysis, 5-6 mg of ground leaf material was used. The total nitrogen (N) 246 

and carbon (C), and the C:N ratio per leaf dry-mass were determined using a Vario Micro Cube 247 

(Elemental Analysis Systems GmbH, Hanau, Germany).  For the analysis of phenolic 248 

compounds by HPLC (high-performance liquid chromatography), 10 mg of leaf material was 249 

used.  Leaf extraction and HPLC analysis was performed as in [44].  Compounds were 250 

identified by comparing the absorbance spectrum (270 - 320 nm) to commercially available 251 
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standards.  Flavonoid glycosides were identified down to their respective aglycones, and 252 

numbered (e.g. quercetin glyc1, quercetin glyc2) if we were not able to identify the type and 253 

position of glycosylation. 254 

The same samples run for the HPLC analysis were used two-days later to determine the 255 

condensed tannin content by acid-butanol assay following the protocol of [45].  The content 256 

of MeOH-insoluble condensed-tannin residues from phenolic compound extraction were 257 

mixed with methanol to give a total sample volume of 0.5 ml.  Afterwards 3 ml of butyric acid 258 

(95% butanol, 5% hydrochloric acid) and 100 µl Fe reagent (2 M HCL with 2 % ferric 259 

ammonium sulphate) were added and mixed.  The sealed sample tubes were placed in boiling 260 

water for 50 min and once cooled their absorbance at 550 nm was measured with an UV-261 

1800 spectrophotometer (Shimadzu Corp., Kyoto, Japan). 262 

Data Analysis 263 

We first tested the effect of species (Betula pendula and Fagus sylvatica) and phase of 264 

senescence (green and yellow coloured leaves) on the rate of mass loss and on the 265 

biochemistry of leaf litter from the controlled experiments with a mixed-model ANOVA using 266 

the function lmer from package lme4 (https://CRAN.R-project.org/package=nlme). 267 

The effects of our different filter treatments (Dark, No-UVA/Blue, No-UVA, Full-Spectrum) and 268 

leaf orientation were tested separately for each species and leaf colour, using a split-plot 269 

mixed-model ANOVA.  Filter treatment was the main fixed effect, while orientation (adaxial 270 

or abaxial epidermis up) was the split-plot effect, and harvest cohort was a random factor.  271 

Function glht from Multcomp package was used to obtain individual pair-wise comparisons, 272 

and Holm’s adjustment was applied between treatments to account for multiple 273 

comparisons. 274 
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For the forest experiment, a three-way mixed model ANOVA was used, with stand an 275 

additional fixed effects factor in the models, otherwise the model was described above for 276 

mass loss in the controlled experiment.  To better visualise the effects of filter treatments on 277 

mass loss and leaf chemistry in both experiments against a fixed baseline that is normalised 278 

for differences due to species and leaf colour, these data were plotted as response ratios for 279 

each filter type compared with the results under the dark filter. 280 

When analysing HPLC data for birch leaves, because of insufficient leaf mass remaining from 281 

all levels of treatments at both leaf orientations, orientation could not be included as a fixed 282 

factor in the ANOVA model.  As well as the ANOVA, patterns in the composition of the 283 

phenolic profile were mapped against explanatory variables for each species’ litter by 284 

nonmetric multidimensional scaling using function metaMDS from community ecology 285 

package, vegan [46]. 286 

Relationships between abaxial and adaxial flavonols and anthocyanins, chlorophyll content 287 

and nitrogen balance index, as well as fresh weight and leaf area, were examined by 288 

determining correlation coefficients.  Linear regression models were tested using R function 289 

lm.  To plot non-linear relationships, i.e. between leaf nitrogen content and leaf 290 

carbon/nitrogen ratio, we used ggplot2 package [47] and package ggpmisc version 0.2.15 [48] 291 

fitting a GAM smoother (stat_smooth).  Irradiance spectra measured with the Maya 2000 Pro 292 

spectrometer were pre-processed using the R packages Ooacquire and Photobiology [49].  All 293 

data were analysed in R core version 3.3.3 [50]. 294 
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Results 295 

Spectral irradiance in the Forest Experiment 296 

The spectral irradiance differed among the forest stands (Fig. 1C and 1D, Fig. S4).  The leaf 297 

litter in the B. pendula stand received the highest PAR and UV radiation over the study period 298 

(Table S3 Fig. S4) since this stand transmitted about 69% and 66% of above-canopy PAR and 299 

UV, respectively.  The Acer platanoides stand transmitted 46% of above-canopy PAR, 51% of 300 

UV radiation and 52% of blue light, followed by the Fagus sylvatica stand (19% of PAR,  16% 301 

of UV, 13% blue) and the Picea abies stand (13% of PAR and UV, 14% blue: Fig. S4 and Table 302 

S3). 303 

Effect of species, senescence stage and leaf orientation on harvested leaf traits. 304 

The traits of sampled green and yellow leaves from F. sylvatica and B. pendula are given in 305 

table S4.  In both species, epidermal flavonol content, as measured by Dualex, decreased 306 

during leaf senescence (from green to yellow leaves), in addition to the expected drop in 307 

chlorophyll and water contents (Table S4).  Epidermal flavonols were higher for B. pendula 308 

than F. sylvatica leaves at the equivalent stage of senescence. 309 

The relationship between upper epidermal and lower epidermal flavonols differed, similarly 310 

in both species, between green and yellow senescent leaves (Fig. S7).  In green leaves, there 311 

was no correlation between the adaxial and abaxial flavonol content in F. sylvatica (R2
adj =0.01 312 

p = 0.101) or B. pendula (R2
adj <0.01, p = 0.339), whereas in yellow leaves there was a strong 313 

positive correlation between flavonols measured on either side of the leaves in both species 314 

(F. sylvatica R2
adj=0.40 p < 0.001 and B. pendula R2

adj =0.54, p < 0.001; Fig. S7).  This appears 315 

primarily to be due to a decrease in adaxial epidermal flavonols during leaf senescence which 316 

brought them down to similar levels as the abaxial flavonols (Fig. S7). 317 
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Mass Loss from Litter in the Controlled Experiment 318 

During incubation, green leaves of both B. pendula and F. sylvatica lost more mass than yellow 319 

leaves (49% vs. 34%, F = 225, p = 0.003, Table 1).  When response ratios to the dark treatments 320 

were compared for each species and leaf colour there was an overall effect of filter treatment 321 

on mass loss (Fig. 2, Table 2), but when compared separately the filter treatment only had a 322 

marginally non-significant effect on mass loss of green leaves of F. sylvatica (F= 2.6, p = 0.062, 323 

Table 1).  In this case, leaves receiving the full spectrum in the chambers lost mass faster than 324 

those in the dark or under treatments where UV-A radiation and blue light were attenuated 325 

(Fig. 2, Table 1).  Yellow leaves of B. pendula followed a similar pattern even though the effect 326 

was marginally non-significant (F = 2.3, p = 0.085, Fig. 2, Table 1). 327 

Only yellow B. pendula leaves differed in mass loss according to leaf orientation (F= 11.05, p 328 

= 0.002, Fig. 2): leaves orientated with their abaxial epidermis facing the light source lost mass 329 

faster (0.05 - 0.10 % higher daily mass loss depending on the filter treatment) than leaves with 330 

their adaxial epidermis facing the light source (Fig. 2). 331 

Mass Loss from Litter in the Forest Experiment 332 

During decomposition in the forest stands green leaves of both B. pendula and F. sylvatica 333 

lost more mass than yellow leaves (65.0% against 34.2% and 35.2% against 16.2% 334 

respectively, F = 702, p = 0.001, Table 3), as was consistent with green and yellow leaves in 335 

the controlled experiment.  The rate of mass loss was also slower in F. sylvatica than B. 336 

pendula (Fig. 3, species-by-colour interaction, F = 114, p = 0.009, Table 3).  There were no 337 

differences in mass loss according to leaf orientation for either of the species and there was 338 

no interaction between the effects of filter treatments and leaf orientation (not shown).  The 339 

filter treatment affected mass loss of (green-and-yellow) leaves of F. sylvatica and of green 340 
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leaves of B. pendula, and this effect differed according to the stand (significant Filter 341 

treatment-by-stand interactions; Fig 3, Table 3).   342 

The effects of filter treatment were small and inconsistent among the stands.  In green leaves 343 

of F. sylvatica, an effect of the filter treatment was found only in the F. sylvatica stand; where 344 

the No-UV treatment had a higher mass loss than the Full-spectrum treatment (pairwise 345 

comparison: No-UV – Full-spectrum p = 0.031, Table S5).  For yellow leaf litter of F. sylvatica, 346 

there was no effect of filter treatment in the A. platanoides stand (Fig. 3, Table S5), while the 347 

other three stands presented contrasting results.  In the P. abies and F. sylvatica stands, leaves 348 

exposed to Dark and No-UV/Blue treatments had higher daily mass loss then F. sylvatica litter 349 

exposed to the Full-spectrum and No-UV treatments (Fig. 3, Table S5), whereas in the B. 350 

pendula stand, the F. sylvatica litter exposed to the No-UV/Blue treatment had the highest 351 

mass loss (Fig. 3, Table S5). 352 

For green leaf litter of B. pendula there was no effect of filter treatment in the A. platanoides 353 

stand (Fig. 3, Table S5).  In the F. sylvatica stand, B. pendula litter exposed to the Dark 354 

treatment had higher daily mass loss then litter exposed to the Full-spectrum and No-UV 355 

treatments (Fig. 3, Table S5).  In the P. abies stand, B. pendula litter exposed to Dark and Full-356 

spectrum treatments had higher daily mass loss then litter exposed to the No-UV/Blue and 357 

No-UV treatments (Fig. 3, Table S5).  In the B. pendula stand, the B. pendula litter exposed to 358 

the Full-Spectrum treatment had higher daily mass loss then litter exposed to the No-UV 359 

treatment (Fig. 3, Table S5). 360 

Carbon and Nitrogen Content of Litter in the Controlled Experiment 361 

Leaf C:N ratio as well as C and N concentration (henceforth [C] and [N]) significantly differed 362 

between species at the end of the photodegradation experiment (Table 2).  There was a 363 
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significant interaction effect (Species x Leaf Colour) for [C], [N], and C:N ratio, meaning that 364 

the response of yellow and green leaves varied with species (Table 2).  At the end of our 365 

photodegradation experiment, [C] was higher in yellow than green leaves of B. pendula, as 366 

was the C:N ratio in leaves of both species.  The difference between [N] of green and yellow 367 

B. pendula leaves was much larger than that of F. sylvatica (Table 2).  However, there was no 368 

general response of leaf [N] to our filter treatments (Table 1), an effect was only apparent in 369 

yellow leaves (F = 4.71, p = 0.048), where leaf orientation was also a significant factor (F = 370 

3.41, p = 0.027, Fig. 4).  Here, [N] was higher in yellow leaves of B. pendula with the adaxial 371 

epidermis facing up (N = 1.25 % of dry weight, Fig. 4) than those leaves with the abaxial 372 

epidermis facing up (N = 1.13 % of dry weight, Fig. 4).  Considering pairwise interactions for 373 

this effect, the [N] under the Full-Spectrum treatment was lower in those yellow leaves of B. 374 

pendula with the abaxial epidermis facing up than those under the dark treatment (Table 2, 375 

Fig. 4, p = 0.012). 376 

Phenolic compounds from Leaf Litter after the Controlled Experiment 377 

We identified 29 phenolic compounds from green and yellow leaves of Fagus sylvatica and 378 

16 from green and yellow leaves of Betula pendula.  A comprehensive comparison of the 379 

phenolic concentration and composition is given in Table S6 in the supplementary material, 380 

while those compounds which responded to our treatments are illustrated in Fig. 5.  At the 381 

end of the experiment under controlled-irradiance treatments, the phenolic concentration 382 

varied most with leaf colour and orientation (Table S7).  Likewise, MDS mapping showed that 383 

the composition of the phenolics profile of both species segregated primarily according to 384 

leaf colour and then with leaf orientation, but not with filter treatment (Fig 6).   385 
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In F. sylvatica leaves, only three compounds were affected by our filter treatments: 386 

kaempferol 3-rhamnoside (F = 2.88, p = 0.046); neochlorogenic acid (F = 3.40, p = 0.025) and 387 

methanol (MeOH)-soluble condensed tannins in yellow leaves (F = 5.52, p = 0.002) (Table S7).  388 

The effect of filter treatment on the concentration of MeOH-soluble condensed tannins 389 

varied with the leaf colour (filter treatment x leaf colour interaction: F = 2.81, p = 0.049), being 390 

evident only in yellow leaves (Fig. 5).  In this case, yellow leaves exposed to the Full-spectrum 391 

treatment had a lower content of MeOH-soluble condensed tannins than leaves expose to 392 

No-UVA/Blue treatment (pairwise comparison No-UVA/Blue - Full-Spectrum p = 0.009, Fig.5, 393 

Table S8).  Kaempferol 3-rhamnoside was lower in leaves of F. sylvatica exposed to treatments 394 

excluding UV-A radiation and blue light than in leaves exposed to the full spectrum or under 395 

filters only excluding UV-A (pairwise comparisons: No-UVA/Blue - Full-Spectrum p = 0.037, 396 

No-UVA/Blue – No-UVA p = 0.042, Fig. 5, Table S8).  Neochlorogenic acid was lower in leaves 397 

of F. sylvatica exposed to the Dark treatment than those exposed to the Full-spectrum 398 

treatment (pairwise comparisons: Dark – Full-spectrum p = 0.042, Fig. 5, Table S8). 399 

In B. pendula leaves, only chlorogenic acid was affected by our filter treatments (F = 2.80, p = 400 

0.050, Table S7), being lower in leaves exposed to the Dark and No-UVA/Blue treatments than 401 

treatments excluding only UV-A radiation (pairwise comparisons: Dark – No-UVA p = 0.029; 402 

No-UVA/Blue - No-UVA p = 0.035, Fig. 5, Table S9). 403 

Discussion  404 

In our study, species and stage of senescence were the main factors affecting litter 405 

decomposition.  Compared to these factors, filter treatments had a minor effect both on mass 406 

loss and litter chemistry.  The effects of our filter treatments on photodegradation in the 407 

controlled environments differed from their effects on decomposition in forest stands.  While 408 
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the exclusion of solar UV radiation enhanced mass loss from leaf litter decomposing in the 409 

forest stands, the presence of UV-A radiation in the controlled environment tended to 410 

accelerate photodegradation.  An increase in mass loss due to photodegradation in controlled 411 

environments has also been reported for rice and wheat straws exposed to enhanced UV-A 412 

[51] and UV-B radiation [52].  The effect of UV radiation did not transfer to decomposition 413 

under equivalent filters in forest stands, a distinction that would be consistent with any effect 414 

of sunlight photoinhibition on decomposers predominating over photochemical 415 

mineralization during the initial 6 months of decomposition following leaf fall.  An inhibitory 416 

effect of sunlight on litter decomposition has also been reported for grass-litter 417 

decomposition in sub-arctic environments [53].  However, in that environment when 418 

equivalent litter was monitored in the same field site over a longer period of time (12-17 419 

months), the effect of UV-B radiation on litter mass loss changed from negative to positive 420 

[54].  Such a transition, attributed to a shift in the relative importance of different antagonistic 421 

processes affected by UV radiation [52], may also occur in our forest stands over a longer 422 

period of decomposition, but this remains untested.  However, in a filter experiment in a 423 

temperate forest, solar UV radiation accelerated decomposition of leaf litter from Quercus 424 

robur and F. sylvatica over a 10-month period, but not of litter from Fraxinus excelsior over 7 425 

months, under similar experimental treatments to ours but implemented later after leaf 426 

senescence [55].  The treatment effects in our study may have differed over a longer period, 427 

not only due to a changing role of photodegradation during different phases of decomposition 428 

[53, 54], but also because of seasonal environmental changes including canopy closure which 429 

reduces irradiance in the understorey and alters its spectral composition.  In forest 430 

environments, where decomposers principally determine the rate of decomposition, the 431 

effect of direct photo-mineralization might be overridden by the capability of UV-B radiation 432 
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to inhibit microbial activity (photoinhibition) [20, 56].  In general, micro- and meso-fauna tend 433 

to prefer darker environments [58, 59]; this is one likely reason for the high mass loss under 434 

our dark treatment.  This effect of filter treatments is consistent with that reported for F. 435 

excelsior leaf litter under a similar combination of spectral-attenuation treatments in a moist-436 

temperate F. sylvatica forest [55].  The higher decomposition rates with increasing canopy 437 

cover among our four stands, also supports this assertion (Table 3).  On the other hand, the 438 

lack of a UV-B radiation treatment in our controlled experiment could explain why we didn’t 439 

find an inhibitory effect of UV radiation on litter mass loss as reported elsewhere, e.g. with 440 

Pinus radiata litter exposed to UV-B radiation [60].  While the radiation exposures in the two 441 

experiments were largely well matched, there were greater fluctuations in temperature and 442 

PAR in the forest environment due to sunflecks, especially during March and April. Sunlight is 443 

relatively enriched in the green region (500-570 nm) in forest understoreys compared with 444 

open environments (Fig.1C & 1D), which may have stimulated photomineralization or 445 

photopriming while having few consequences on photoinhibition [12]. These differences in 446 

exposure and the lack of interactive effects between different wavelengths might partially 447 

explain the different results obtained in the two experiments.  Moreover, temperature 448 

conditions in the forest stands and in the controlled experiment differed, with the forest 449 

environment presenting a higher temperature fluctuation daily, and over the 6 months of the 450 

experiment (Fig. S9), while in the controlled environment the temperature was kept constant 451 

during the experiment with only small day-night variations (Fig, S5). 452 

Leaf biochemistry and photodegradation 453 

The results of both experiments confirmed our expectations that green leaves would 454 

decompose faster than yellow leaves in both species.  The higher content of N-rich Rubisco, 455 

chlorophyll and other photosynthetic pigments in green leaf litter makes it more palatable 456 
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[61] for decomposers than fully senesced leaves, allowing faster decomposition[27].  457 

Senescent and green leaves differ in their nutrients content due to the process of nutrient 458 

reabsorption, which takes place during leaf senescence [62, 63].  This results in fewer low 459 

molecular phenolics and accumulation of tannins in senescent leaves [64, 65].  A result 460 

consistent with the higher concentration of condensed tannins and fewer low-molecular 461 

phenolics in senescent leaves than leaves that were harvested when still green in our study.  462 

Tannins reduce the rate of litter decomposition in various woody species, by binding proteins 463 

and simple polymers making them unavailable for microbial decomposition [66-68].  It is 464 

worth noting, however, that flavonoids isolated through HPLC after photodegradation, were 465 

higher in F. sylvatica leaves harvested when yellow than those harvested when green.  This 466 

might suggest an increase in flavonoid concentration during leaf senescence, as recently 467 

reported for several tree species by [25].  However, it contradicts the decrease in upper 468 

epidermal flavonols measured with the Dualex before the experiment in yellow leaves 469 

compared with green leaves of F. sylvatica (Fig. S7).  This change, specific to the adaxial 470 

epidermis, might suggest that flavonols are translocated from the vacuoles of epidermal cells 471 

elsewhere in the leaf rather than broken down during senescence.   472 

The exposure of leaves to UV radiation during the growing season causes the accumulation 473 

of photoprotective pigments, mainly flavonoids, in leaf adaxial epidermis which reduces the 474 

penetration of sunlight and particularly UV radiation into leaf tissues [69-71], potentially 475 

protecting the mesophyll from photodegradation effects [14].  The accumulation of these 476 

photoprotective pigments, as a consequence of UV exposure, has been reported to alter litter 477 

chemistry of Alnus sp. and Betula sp. and consequently impact decomposition through an 478 

effect on microbial communities and soil respiration [24].  By taking Dualex measurements of 479 

the same leaves before and after drying, we confirmed that differences in optical properties 480 
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attributed to epidermal flavonols were conserved in dried leaves (Fig. S1), meaning that the 481 

differences between upper and lower epidermal screening are likely to alter the penetration 482 

of UV within the leaf during photodegradation.  However, we only found an effect of leaf 483 

orientation on mass loss and [N] in yellow leaves of B. pendula in the controlled environment 484 

experiment.  This effect would be consistent with reduced microbial colonisation on these 485 

leaves, which we also considered a viable explanation for the filter effect found in the forest 486 

stands. However, lack of association between effects on [N] and mass loss in the controlled 487 

experiment would imply that direct photodegradation is the dominant process. Nevertheless, 488 

the phenolic profile of leaves recorded after the photodegradation experiment segregated 489 

clearly with leaf orientation, and orientation had an effect on the content of some of the 490 

flavonoids isolated with the HPLC analysis in F. sylvatica leaves (Figs. 5 and 6).  Taken together, 491 

these results suggest that the spatial distribution of flavonoids within the leaves, affecting 492 

their optical properties and the penetration of UV radiation, can have an effect on 493 

photodegradation.  However, these effects were too small, or the duration of exposure to our 494 

irradiance treatments was insufficient, to produce an effect of orientation that could be 495 

quantified in terms of mass loss, [N] or [C]. Such a test might be more informative with clonal 496 

leaf material from plants grown under fully standardised conditions, where comparable initial 497 

phenolic profiles would provide a consistent baseline prior to decomposition. 498 

The role of photodegradation in initial decomposition in the forest understorey 499 

After 6 months of decomposition in the forest, the mass loss was about 35.2% and 16.2% for 500 

green and yellow leaves of Fagus sylvatica, and 65.0% and 34.2% for green and yellow leaves 501 

of Betula pendula respectively.  This scale of mass loss from senescent leaves was reasonable, 502 

compared with that reported in other studies in similar environments after 6 months of 503 

decomposition: 15-20% for F. sylvatica litter and 40-45% for B. pendula litter [72, 73].  In our 504 
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forest decomposition experiment, where adjacent stands were selected to form a gradient of 505 

LAI, litter mass loss was affected by stand type.  This might suggest that even in southern 506 

Finland, where winter irradiances are low, the light environment created by different 507 

canopies can affect litter decomposition.  Mass loss was highest from the Picea abies stand in 508 

our experiment (Table S10).  But since the understorey in this stand received both the lowest 509 

irradiance and the highest amount of blue light (Table S3) over the 6 months of the 510 

experiment, either spectral composition or total irradiance or both, could be responsible for 511 

this result.  This would be in agreement with previous studies that proved the importance of 512 

blue light in the process of photodegradation [12, 43].  Stands with high canopy density also 513 

intercept more precipitation in the form of snow, leading to smaller snow depths and 514 

consequently modifying soil temperature and moisture [74-76].  Since forest canopies also 515 

affect a variety of micro-environmental conditions such as temperature, water availability, 516 

soil characteristics and decomposer assemblages, any effect of light environment on 517 

decomposition will operate in combination with these factors [77-79].  We found no evidence 518 

for home-field advantage; the theory that litter from a particular forest decomposes fastest 519 

in its own stand irrespective of conditions because of its specialised decomposer assemblage 520 

[80, 81], e.g. Betula pendula litter in the Betula pendula stand.  However, further investigation 521 

is needed, both in controlled and forest environments, to assess the relative importance of 522 

photodegradation compared with other environmental factors in litter decomposition at high 523 

latitudes and over longer experimental periods. 524 

Conclusions 525 

This study revealed that photodegradation can play a role in surface leaf litter decomposition 526 

in forest ecosystems at high latitudes, but this role was not consistent with photodegradation 527 

produced by UV-A radiation and blue light under controlled conditions.  There, UV-A radiation 528 
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and blue light accelerated mass loss, while in forest stands decomposition was generally 529 

slightly slower under filters transmitting UV radiation and blue light.  The contribution of 530 

photodegradation to decomposition was relatively small, and varied according to the canopy 531 

tree species, the leaf litter species and leaf traits related to stage of leaf senescence.  532 
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Figures 751 

Figure 1: Spectral treatments created by selective attenuation of radiation by plastic filters in experiments under (A) controlled and (B) sunlight 752 

conditions. Measurements (B) in full sun between 9:00-9:25 a.m. on October 4th 2016 in Viikki field site. Measurements of (C) sunfleck and (D) 753 

shade spectra from each of the forest stands. 754 

755 
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Figure 2: The response ratio of average daily % mass loss from leaves under each filter treatment over the duration of the controlled environment.  Panels 756 

separate for green and yellow leaves of B. pendula and F. sylvatica.  Table 2 gives ANOVA results and means values. Leaf orientation, (adaxial [▲] or abaxial 757 

[∎] epidermis facing upwards toward the lamps) had no significant effect apart from in Yellow Leaves of Betula pendula (F = 11.05, p = 0.002), for which 758 

significant pair-wise interactions between filters for “lower up” leaves are distinguished with lower case letters. Upper case letters denote significant pairwise 759 

interactions among filter treatments for green leaves of F. sylvatica. 760 

 761 

 762 

  763 
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Figure 3: The response ratio of average daily mass loss of leaf litter under each filter treatment, decomposing in different forest stands.  Table 3 gives ANOVA 764 

results and means values.  Lower case letters denote significant differences between filter treatments within the same stand for those three species-by-leaf-765 

colour combinations where there was a significant effect of filter treatment. 766 
 767 

 768 
  769 



34 
 

Figure 4: The response ratio of N content of leaf litter under each filter treatment at the end of the controlled conditions photodegradation experiment. Table 770 

2 gives ANOVA results and means values. Leaf orientation, (adaxial [▲] or abaxial [◼] epidermis facing upwards toward the lamps) had no significant effect 771 

apart from in Yellow Leaves of Betula pendula (F = 4.71, p = 0.048), for which significant differences between pairs of filters for “lower up” leaves are 772 

distinguished with lower case letters. The equivalent response ratios of C content and C:N ratio are given in Fig. S8. 773 

 774 

 775 
776 
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Figure 5: Phenolic compounds in senescent yellow and green leaves of Fagus sylvatica and Betula pendula following 10 weeks of photdegradation under our 777 

filter treatments. Mean and SE are shown. Upper case letters show significant difference between pairs of filter treatments, “ns” stands for “non-significant, 778 

lower case letters indicate significant differences between pairs of filter treatments in yellow leaves (filter treatment x leaf colour interaction). Only compounds 779 

which responded to our treatment are displayed here, the complete leaf phenolic profiles are given in Table S7. 780 
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Figure 6: Patterns of leaf phenolics compound composition following the controlled photodegradation 782 

experiment, mapped against explanatory variables for each species using nonmetric multidimensional 783 

scaling (MDS). Fagus sylvatica MDS had a stress of 0.125 and clear segregation according to (A) leaf colour 784 

along MDS1 (vs MDS2) and (B) leaf orientation along MDS2 (vs MDS3), but not according to (C) filter 785 

treatment. Betula pendula MDS had a stress of 0.219, and similar patterns of segregation according to the 786 

explanatory variables, (D) leaf colour along MDS1 (vs MDS2) and (E) leaf orientation along MDS2 (vs MDS1). 787 
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Tables 789 

Table 1: Mean (± 1 SE) values and ANOVA table for average daily mass loss, C and N content and C:N in yellow and green leaves of F. sylvatica and B. pendula 790 

in the controlled photodegradation experiment (up to 77 days). p < 0.05 are in bold face, and 0.05 < p < 0.10 underlined. 791 
Species  F. sylvatica B. pendula ANOVA 

Leaf colour  Green  Yellow  Green  Yellow  Colour ( C ) Species (S) C × S  

Mass Loss 
(% day-1) 

0.62 ± 0.02 0.47 ± 0.02 0.66 ± 0.02 0.41 ± 0.02 
F =  224 
p = 0.003 

F = 1.04 
p =  0.370 

F = 17.7 
p = 0.052 

C content  
(% g g-1)  

45.45 ± 0.12  45.41 ± 0.15  48.32 ± 0.11  49.47 ± 0.15  
F = 15.8  
p = 0.058  

F = 665  
p = 0.001  

F = 19.5  
p = 0.048  

N content  
(% g g-1)  

2.26 ± 0.03  1.40 ± 0.02  3.01 ± 0.04  1.18 ± 0.03  
F = 1581  
p < 0.001  

F = 55.7  
p = 0.017  

F = 204  
p = 0.005  

C:N Ratio  20.38 ± 0.31  32.47 ± 0.41  16.29 ± 0.26  43.61 ± 1.37  
F = 882  
p = 0.001  

F = 31.9  
p = 0.030  

F = 135  
p = 0.007  

Species  F. sylvatica ANOVA B. pendula ANOVA 

Filter 
Treatment  

Dark No UVA / 
Blue 

No UVA Full 
Spectrum 

Filter 
Treatment 

Dark No UVA / 
Blue 

No UVA Full 
Spectrum 

Filter 
Treatments 

Green leaves 

Mass Loss 
(% day-1) 

0.58 ± 0.03 0.60 ± 0.02 0.62 ± 0.02 0.68 ± 0.02 
F = 2.59 
p = 0.062 

0.64 ± 0.02 0.65 ± 0.02 0.67 ± 0.02 0.68 ± 0.01 
F = 1.49 
p = 0.226 

C content  
(% g g-1)  

45.34±0.41 44.95±0.27 45.36±0.16 45.54±0.20 
F = 0.08 
p = 0.777 

48.58±0.23 47.99± 0.27 47.99±0.23 48.24±0.33 
F = 0.38 
p = 0.541 

N content  
(% g g-1)  

2.21 ± 0.06 2.25 ± 0.06 2.30 ± 0.06 2.28 ± 0.07 
F = 0.19 
p = 0.828 

3.00 ± 0.10 3.09 ± 0.09 2.96 ± 0.07 2.91 ± 0.10 
F = 0.72 
p = 0.484 

C:N Ratio  20.77± 0.59 20.28±0.59 19.96±0.61 20.34±0.70 
F = 0.10 
p = 0.903 

16.47±0.61 15.67±0.44 16.30±0.39 16.87±0.65 
F = 0.87 
p = 0.359 

Yellow leaves 

Mass Loss 
(% day-1) 

0.46 ± 0.02 0.46 ± 0.03 0.47 ± 0.02 0.47 ± 0.02 
F = 0.09 
p = 0.965 

0.39 ± 0.03 0.40 ± 0.03 0.39 ± 0.02 0.45 ± 0.03 
F = 2.31 
p = 0.085 

C content  
(% g g-1)  

45.57±0.32 45.43± 0.36 45.54±0.28 44.91±0.26 
F = 1.13 
p = 0.332 

49.41±0.30 49.94±0.34 49.34±0.35 48.99± 0.24 
F = 1.67 
p = 0.424 

N content  
(% g g-1)  

1.41 ± 0.04 1.41 ± 0.04 1.43 ± 0.04 1.39 ± 0.03 
F = 0.33 
p = 0.719 

1.27 ± 0.08 1.16 ± 0.04 1.18 ± 0.07  1.13 ± 0.08  
F = 4.71 
p = 0.048 

C:N Ratio  32.64±0.89 32.54±0.85 31.95±0.77 32.45±0.84 
F = 0.15 
p = 0.869 

41.9±2.82 44.74±2.08 43.87±2.13 46.09±2.61 
F = 4.15 
p = 0.061 
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Table 2: Mixed model ANOVA giving overall effects of filter treatments on mass loss, [C], [N], and C:N ratio from the controlled photodegradation experiment. 793 
Response  Dark No UVA / 

Blue 
No UVA Full 

Spectrum 
ANOVA 
Filter 
Treatments 

Controlled 
Mass Loss 
(% day-1) 

0.52 ± 0.02 0.53 ± 0.02 0.54 ± 0.02 0.57 ± 0.02 
F = 4.28 
p = 0.028 

C content  
(% g g-1)  

47.22 ±0.31 47.08 ±0.31 47.06 ±0.25 46.92 ±0.26 
F = 0.55 
p = 0.657 

N content  
(% g g-1)  

1.97 ± 0.07 1.98 ± 0.06 1.97 ± 0.06 1.93 ± 0.07 
F = 0.32 
p = 0.812 

C:N Ratio  27.9 ± 1.2 28.3 ± 1.0 28.0 ± 1.0 28.9 ± 1.2 
F = 0.42 
p = 0.739 
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Table 3: Mean (± 1 SE) rate of mass loss from leaf litter in each stand (up to 186 days).  Baseline differences between the stands are exemplified by value from 795 

the dark litter bags, and filter treatment effects shown in Fig. 3 as response ratios. ANOVA table for daily mass loss in the forest decomposition experiment for 796 

each filter treatment and stand and the interaction between them. p < 0.05 are in bold face. 797 

 798 
Mass Loss (% day-1) Forest Stands 

(mean ± 1 SE under dark filter treatment) 

Species F. sylvatica litter B. pendula litter 

Leaf colour Green  Yellow  Green  Yellow  

Picea abies stand 0.16 ± 0.01 0.10 ± 0.01 0.48 ± 0.01 0.23 ± 0.03 

Fagus sylvatica stand 0.16 ± 0.01 0.11 ± 0.01 0.36 ± 0.04 0.17 ± 0.02 

Acer platanoides stand 0.14 ± 0.01 0.10 ± 0.01 0.27 ± 0.02 0.18 ± 0.01 

Betula pendula stand  0.13 ± 0.01 0.10 ± 0.01 0.29 ± 0.01 0.17 ± 0.01 

ANOVA (Forest stands) 

Filter Treatment (F) 
F = 1.91  
p < 0.001 

F = 4.79  
p < 0.001 

F = 4.07  
p < 0.001 

F = 0.32  
p = 0.807 

Stand  
(St) 

F = 23.14  
p < 0.001 

F = 2.97  
p < 0.001 

F = 22.45  
p < 0.001 

F = 13.77  
p < 0.001 

F x St 
F = 0.51  
p < 0.001 

F = 1.23  
p < 0.001 

F = 2.02  
p < 0.001 

F = 1.25  
p = 0.258 

ANOVA 

Colour ( C ) Species ( S ) C × S  

F = 317  
p = 0.003 

F = 702 
p = 0.001 

F = 114 
p = 0.009 
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Figure S1 The relationship between (A) chlorophyll content and (B & C) epidermal flavonoids for individual fresh vs. dried leaves of each species. The same leaf 

was measured with Dualex before and after drying.  The Dualex measurements of chlorophyll content of fresh and air-dried green leaves of both species were 

strongly positively correlated (F. sylvatica R2adj =0.70 or B. pendula R2adj = 0.45; Fig. S1), whereas in yellow leaves the relationship was weaker (F. sylvatica 

R2adj =0.15 or B. pendula R2adj = 0.02 NS; Fig. S1), possibly due in part to less-even pigmentation across the leaf lamina during senescence.  Similarly, leaf 

flavonol readings were consistent between fresh and dry green leaves and to some extent yellow F. sylvatica leaves, but highly variable in yellow B. pendula 

leaves (Fig. S1).  Since the flavonol index is dependent on chlorophyll as a reference, higher variability in the two indices at low values of chlorophyll would be 

expected.   

 

A 



 

B 



 

*FW Lower Epidermal Flavonoid data were not collected from Betula pendula green leaves. 

C 



Figure S2 Scatterplot and linear regressions of the relationship between fresh weight and dry weight of B. pendula and F. sylvatica, green and 

yellow leaves. Leaves were weighed before and after drying. 

 



Figure S3 A & B. Arrangement of leaves in the controlled environment experiment, C. in the 

forest decomposition experiment (Acer stand), and D. during installation to show a thin layer 

of leaf litter from the stand between the net and the soil (Betula stand). 

 

 

 

  



Figure S4 Time series of (A) photosynthetically active radiation (PAR), (B) blue light and (C) UV 

radiation in the stands at Viikki (Helsinki) during the experiment. 

  



Figure S5 Plot showing average diurnal time courses of (A) leaf surface temperature (red) and 

relative humidity (blue) in the experimental chamber, and (B) air temperature in different 

parts of the chamber (centre - orange , side - red, and edge - yellow ). 



Figure S6 Leaf temperature under controlled conditions according to leaf colour and light exposure treatment.  Data measured in the growth 

room compartments under controlled conditions on 13th October 2016.  Leaves under the dark filter are 0.8 °C cooler on average than under the 

other filters (Effect of Filter p < 0.001).  Green leaves of silver birch are also 1.0°C cooler on average than the yellow leaves of silver birch and 

both coloured leaves of beech (Effect of Leaf Colour, p = 0.001; Colour x Species p = 0.005). 

 

  



Figure S7 The relationship between epidermal flavonoids for the upper (adaxial) vs. lower (abaxial) epidermis of each species.  The same leaf 

was measured with Dualex on either side.  

 

  



Figure S8 The response ratio of (A) C content and (B) C:N ratio of leaf litter under each filter treatment at the end of the controlled conditions 

photodegradation experiment. Table 1 gives ANOVA results and means values. Scatterplots of C:N ratio against [N] for leaf from (C) the controlled 

experiment, and (D) forest stands. 

 



 



 

Scatterplot and fitted function of the relationship between leaf nitrogen content (as percentage of dry weight) and leaf carbon/nitrogen ratio 

of B. pendula and F. sylvatica, green and yellow leaves after light exposure treatments in controlled conditions for total time of six weeks. Each 

coloured equation shows corresponding groups’ fit and adjusted R2 value. Leaf phase of senescence is represented either with circle and 

continuous line (green leaves) or triangle and dotted line (yellow leaves). 

C 



 

Scatterplot and fitted function of the relationship between leaf nitrogen content (as percentage of dry weight) and leaf carbon/nitrogen ratio 

of B. pendula and F. sylvatica leaves that senesced in the stand (collected in December). Each coloured equation shows the fitted function and 

adjusted R2 value for the corresponding species. The best fit in each case was to a 3rd order polynomial function. DW- dry weight.



Figure S9 Plot showing daily average temperature (red) ± 1 SE (grey) at the experimental study 

site in Viikki (Helsinki). 
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Table S1 The spectral energy irradiance in the controlled experiment growth room under each 

treatment combination (mean  SE of measurements from four blocks). 

Treatment PAR Blue UV-A 

Full Spectrum  
and UV-A 

76.3  1.2 W m-2 13.3  0.2 W m-2 10.19   2.47 W m-2 

Full Spectrum  
No UV-A 

74.7  1.2 W m-2 13.0  0.2 W m-2 0.02  <0.001 W m-2 

No Blue  
and UV-A 

51.8  1.2 W m-2 0.09  0.008 W m-2 12.14  2.49 W m-2 

No Blue  
No UV-A 

48.9  1.0 W m-2 0.11  W m-2 0.02  0.003 W m-2 

 

 

 

 



Table S2 Examples of the light environment in the forest stands compared with a nearby open area.  The mean photon irradiance (μmol m-2 s-1) and standard 

error are shown.  Measurements were done using an array spectroradiometer (Maya2000 Pro Ocean Optics, Dunedin, FL, USA; D7-H-SMA cosine diffuser, 

Bentham Instruments Ltd, Reading, UK) in clear sky conditions on 5th December 2016 at four measuring points in each stand where the leaf litter was placed. 

R:FR ratio is defined according to Sellaro. Only one measurements was taken in the open where direct sunlight was occluded from the cosine diffusor to create 

the shade measurement. 

 

Treatment 
Stand 

Position PAR (PPFD) Blue UV-A UV-B UV:PAR B:G R:FR 

Open 
Sun 93.9 0.4 24.6  0.1 11.1  0.1 0.032  0.002 0.119  0.027 1.08  0.01 1.19  0.01 
Shade 69.9  21.9 10.9 0.029 0.156 1.27 1.46 

Betula 
Sunfleck 64.0  10.3 15.0  1.3 6.4  0.10 0.012  0.001 0.101  0.029 0.99  0.07 1.13  0.01 
Shade 59.6  2.2 14.3  0.1 6.4  0.11 0.017  0.004 0.107  0.011 1.02  0.03 0.89  0.01 

Acer 
Sunfleck 28.1  0.2 7.5  0.1 3.4  0.10 0.009  0.002 0.122  0.013 1.11  0.01 1.19  0.01 
Shade 25.7  0.9 8.3   0.1 4.2  0.11 0.012  0.003 0.164  0.004 1.30  0.02 1.46  0.03 

Fagus 
Sunfleck 50.8  11.3 11.4  1.5 5.0  0.10 0.013  0.001 0.099  0.027 0.98  0.08 1.02  0.02 
Shade 31.2  0.8 8.7  0.0 4.5  0.02 0.017  0.001 0.145  0.004 1.20  0.01 1.00  0.01 

Picea 
Sunfleck 5.4  1.4 1.4  0.2 0.84  0.06 0.061  0.052 0.166  0.080 1.16  0.26 0.94  0.11 
Shade 3.3  0.3 1.0   0.0 0.46  0.03 0.001  0.001 0.141   0.008 1.19  0.01 1.04  0.09 

 

  



 

Table S3 Cumulative daily irradiance doses received by the litter at the end of the experiment (6 months) in the forest stands and a nearby open area, under 

different filter treatments and in unfiltered conditions.   

Stand 

Cumulative 
mean daily 
Irradiance  
Filter treatment 
/unfiltered 

Photon Irradiance  
(mol m-2) 

Energy Irradiance  
(W m-2) 

UV 
Blue 
light 

PAR UV Blue light PAR 

Open 

Dark 0.06 0.39 2.02 0.21 20.62 107.47 

No-UV/blue 0.24 4.92 903.21 0.91 261.84 48087.31 

No-UV 32.17 353.70 1370.51 120.11 18831.32 72967.01 

Full-Spectrum 81.91 356.62 1379.85 306.23 18986.74 73464.12 

Unfiltered 88.58 372.32 1427.92 331.18 19822.76 76023.59 

Betula 
pendula 

Dark 0.04 0.25 1.40 0.14 13.08 74.31 

No-UV/blue 0.16 3.18 624.55 0.61 166.03 33251.60 

No-UV 21.34 229.04 947.69 79.68 11940.77 50455.51 

Full-Spectrum 54.31 230.93 954.14 203.02 12039.32 50799.25 

Unfiltered 58.73 241.10 987.38 219.56 12569.43 52569.08 

Acer 
platanoides 

Dark 0.03 0.20 0.93 0.11 10.59 49.69 

No-UV/blue 0.12 2.58 417.64 0.46 134.48 22235.49 

No-UV 16.25 185.58 633.72 60.69 9671.98 33739.83 

Full-Spectrum 41.37 187.11 638.04 154.66 9751.81 33969.69 

Unfiltered 44.74 195.35 660.27 167.26 10181.20 35153.18 

Fagus 
sylvatica 

Dark 0.01 0.05 0.39 0.03 2.60 20.88 

No-UV/blue 0.04 0.63 175.45 0.14 32.96 9341.11 

No-UV 5.05 45.37 266.23 18.86 2370.21 14174.07 

Full-Spectrum 12.87 45.75 268.04 48.12 2389.77 14270.63 

Unfiltered 13.92 47.76 277.38 52.05 2495.00 14767.81 

Picea abies 

Dark 0.01 0.05 0.26 0.03 2.86 13.79 

No-UV/blue 0.03 0.69 115.88 0.12 36.29 6169.54 

No-UV 4.20 49.93 175.83 15.67 2610.16 9361.57 

Full-Spectrum 10.61 50.35 177.03 39.90 2631.70 9425.35 

Unfiltered 11.54 52.56 183.20 43.15 2747.58 9753.73 



Table S4 The leaf traits between species and phase of senescence measured prior to the experiment.  Irradiance and temperature in each 

treatment combination (mean  SE of four compartments). LMA is estimated for leaves used in the experiment from the calibration with the 

pool of dried leaves. Adaxial Epi refers to the upper epidermis, and abaxial epi the lower epidermis. 

Species Fagus 
sylvatica 

Fagus 
sylvatica 

Betula 
pendula 

Betula 
pendula 

ANOVA   

Senescence Green Yellow  Green Yellow Colour Species Interaction 

Leaf Area 
(LA cm2) 

21.12 ± 
0.33 

18.35 ± 
0.32 

18.36 ± 
0.24 

16.26 ± 
0.32 

F = 375 
P = 0.015 

F = 378 
P = 0.015 

F = 1.3 
P = 0.372 

Leaf Fresh Mass 
Area (LFMA mg 
cm-2) 

17.71 ± 
0.54 

14.85 ± 
0.51 

18.54 ± 
0.43 

14.12 ± 
0.41 

F = 172 
P = 0.006 

F = 0.03 
P = 0.886 

F = 7.93 
P =0.106 

Leaf Mass Area 
(LMA mg cm-2) 

9.82 ± 
0.26 

7.20 ± 
0.31 

7.44 ± 
0.23 

5.94 ± 
0.21 

   

Leaf Water 
Content (g g-1) 

0.278 ± 
0.008 

0.132 ± 
0.003 

0.149 ± 
0.008 

0.123 ± 
0.005 

F = 175 
P = 0.006 

F = 109 
P = 0.009 

F = 85 
P = 0.012 

Adaxial Epi 
Flavonoids (OI) 

1.87 ± 
0.01 

1.38 ± 
0.03 

1.93 ± 
0.02 

1.54 ± 
0.03 

F = 12.0 
P = 0.003 

F = 22.1 
P = 0.042 

F = 4.21 
P = 0.176 

Abaxial Epi 
Flavonoids (OI) 

1.31 ± 
0.04 

1.19 ± 
0.02 

1.74 ± 
0.01 

1.45 ± 
0.03 

F = 49.3 
P = 0.020 

F = 162 
P = 0.006 

F = 6.44 
P = 0.126 

Chlorophyll 
Contents (OI) 

31.48 ± 
0.66 

5.64 ± 
0.20 

35.37 ± 
0.53 

8.01 ± 
0.44 

F = 3238 
P < 0.001 

F = 40.7 
P = 0.024 

F = 2.9 
P = 0.230 

 

 



Table S5 List of relevant pairwise comparisons for daily mass loss of green and yellow leaves 

of Fagus sylvatica and Betula pendula in the forest experiment: t- tests, with the Holm’s 

correction for multiple comparisons, were used to calculate the P values. Significant contrasts 

are shown in bold. 

 

Fagus sylvatica – green leaves 

Stand x Filter treatment (t-value, p-value) 

Dark,Picea abies - No-Blue/UV,Picea abies                       1.24930529 2.152424e-01 

Dark,Picea abies - No-UV,Picea abies                           -0.49398333 6.226887e-01 

Dark,Picea abies - Full-Spectrum,Picea abies                    0.26791392 7.894639e-01 

No-Blue/UV,Picea abies - No-UV,Picea abies                     -1.74328862 8.517377e-02 

No-Blue/UV,Picea abies - Full-Spectrum,Picea abies             -0.98139137 3.293958e-01 

No-UV,Picea abies - Full-Spectrum,Picea abies                   0.76189724 4.483900e-01 

 

Dark,Fagus sylvatica - No-Blue/UV,Fagus sylvatica               0.21259091 8.321937e-01 

Dark,Fagus sylvatica - No-UV,Fagus sylvatica                   -0.69640809 4.882173e-01 

Dark,Fagus sylvatica - Full-Spectrum,Fagus sylvatica            1.49555538 1.387538e-01 

No-Blue/UV,Fagus sylvatica - No-UV,Fagus sylvatica             -0.90899900 3.661155e-01 

No-Blue/UV,Fagus sylvatica - Full-Spectrum,Fagus sylvatica      1.28296447 2.032557e-01 

No-UV,Fagus sylvatica - Full-Spectrum,Fagus sylvatica           2.19196347 3.132651e-02 

 

Dark,Acer platanoides - No-Blue/UV,Acer platanoides             0.41194061 6.814986e-01 

Dark,Acer platanoides - No-UV,Acer platanoides                 -0.12324782 9.022239e-01 

Dark,Acer platanoides - Full-Spectrum,Acer platanoides          0.81294549 4.186925e-01 

No-Blue/UV,Acer platanoides - No-UV,Acer platanoides           -0.53518843 5.940229e-01 

No-Blue/UV,Acer platanoides - Full-Spectrum,Acer platanoides    0.40100488 6.894991e-01 

No-UV,Acer platanoides - Full-Spectrum,Acer platanoides         0.93619331 3.520268e-01 

 

Dark,Betula pendula - No-Blue/UV,Betula pendula                 0.86312693 3.906805e-01 

Dark,Betula pendula - No-UV,Betula pendula                      0.09855178 9.217438e-01 

Dark,Betula pendula - Full-Spectrum,Betula pendula              0.03605694 9.713279e-01 

No-Blue/UV,Betula pendula - No-UV,Betula pendula               -0.76457515 4.468024e-01 

No-Blue/UV,Betula pendula - Full-Spectrum,Betula pendula       -0.82706999 4.106886e-01 

No-UV,Betula pendula - Full-Spectrum,Betula pendula            -0.06249485 9.503266e-01 

 

Fagus sylvatica – yellow leaves 

Stand x Filter treatment (t-value, p-value) 

Dark,Picea abies - No-Blue/UV,Picea abies                       1.26264965 2.104770e-01 

Dark,Picea abies - No-UV,Picea abies                            2.75920256 7.217062e-03 

Dark,Picea abies - Full-Spectrum,Picea abies                    0.47660336 6.349771e-01 

No-Blue/UV,Picea abies - No-UV,Picea abies                      1.49655291 1.385452e-01 

No-Blue/UV,Picea abies - Full-Spectrum,Picea abies             -0.78604629 4.342218e-01 

No-UV,Picea abies - Full-Spectrum,Picea abies                  -2.28259919 2.517847e-02 

 

Dark,Fagus sylvatica - No-Blue/UV,Fagus sylvatica               1.86078307 6.654329e-02 

Dark,Fagus sylvatica - No-UV,Fagus sylvatica                    2.82017952 6.083044e-03 

Dark,Fagus sylvatica - Full-Spectrum,Fagus sylvatica            2.40656798 1.846848e-02 

No-Blue/UV,Fagus sylvatica - No-UV,Fagus sylvatica              0.95939645 3.403236e-01 

No-Blue/UV,Fagus sylvatica - Full-Spectrum,Fagus sylvatica      0.54578491 5.867714e-01 

No-UV,Fagus sylvatica - Full-Spectrum,Fagus sylvatica          -0.41361154 6.802936e-01 

 

Dark,Acer platanoides - No-Blue/UV,Acer platanoides            -0.24813209 8.046843e-01 

Dark,Acer platanoides - No-UV,Acer platanoides                 -0.31972135 7.500344e-01 



Dark,Acer platanoides - Full-Spectrum,Acer platanoides         -1.09820665 2.754928e-01 

No-Blue/UV,Acer platanoides - No-UV,Acer platanoides           -0.08324621 9.338690e-01 

No-Blue/UV,Acer platanoides - Full-Spectrum,Acer platanoides   -0.85007457 3.978855e-01 

No-UV,Acer platanoides - Full-Spectrum,Acer platanoides        -0.72689288 4.694676e-01 

 

Dark,Betula pendula - No-Blue/UV,Betula pendula                 1.54454363 1.265044e-01 

Dark,Betula pendula - No-UV,Betula pendula                      1.82655375 7.159287e-02 

Dark,Betula pendula - Full-Spectrum,Betula pendula             -0.25172631 8.019147e-01 

No-Blue/UV,Betula pendula - No-UV,Betula pendula                0.28201011 7.786827e-01 

No-Blue/UV,Betula pendula - Full-Spectrum,Betula pendula       -1.79626994 7.632351e-02 

No-UV,Betula pendula - Full-Spectrum,Betula pendula            -2.07828006 4.097235e-02 

 

Betula pendula – green leaves 

Stand x Filter treatment (t-value, p-value) 

Dark,Picea abies - No-Blue/UV,Picea abies                       1.67299895 9.879132e-02 

Dark,Picea abies - No-UV,Picea abies                            2.91698599 4.746742e-03 

Dark,Picea abies - Full-Spectrum,Picea abies                    2.49144685 1.509522e-02 

No-Blue/UV,Picea abies - No-UV,Picea abies                      1.24398704 2.176540e-01 

No-Blue/UV,Picea abies - Full-Spectrum,Picea abies              0.81844790 4.158790e-01 

No-UV,Picea abies - Full-Spectrum,Picea abies                  -0.42553914 6.717492e-01 

 

Dark,Fagus sylvatica - No-Blue/UV,Fagus sylvatica              -0.56665471 5.727613e-01 

Dark,Fagus sylvatica - No-UV,Fagus sylvatica                    2.22376770 2.939263e-02 

Dark,Fagus sylvatica - Full-Spectrum,Fagus sylvatica            1.40955961 1.630972e-01 

No-Blue/UV,Fagus sylvatica - No-UV,Fagus sylvatica              2.55256242 1.287703e-02 

No-Blue/UV,Fagus sylvatica - Full-Spectrum,Fagus sylvatica      1.82740315 7.190158e-02 

No-UV,Fagus sylvatica - Full-Spectrum,Fagus sylvatica          -0.88039355 3.816588e-01 

 

Dark,Acer platanoides - No-Blue/UV,Acer platanoides             0.11758821 9.067307e-01 

Dark,Acer platanoides - No-UV,Acer platanoides                  0.37922330 7.056700e-01 

Dark,Acer platanoides - Full-Spectrum,Acer platanoides          0.18980308 8.500128e-01 

No-Blue/UV,Acer platanoides - No-UV,Acer platanoides            0.26163508 7.943711e-01 

No-Blue/UV,Acer platanoides - Full-Spectrum,Acer platanoides    0.07221486 9.426369e-01 

No-UV,Acer platanoides - Full-Spectrum,Acer platanoides        -0.18942022 8.503116e-01 

 

Dark,Betula pendula - No-Blue/UV,Betula pendula                -2.55463288 1.280733e-02 

Dark,Betula pendula - No-UV,Betula pendula                     -1.46579052 1.471831e-01 

Dark,Betula pendula - Full-Spectrum,Betula pendula              0.27198974 7.864305e-01 

No-Blue/UV,Betula pendula - No-UV,Betula pendula                1.15426290 2.523179e-01 

No-Blue/UV,Betula pendula - Full-Spectrum,Betula pendula        2.86922806 5.435928e-03 

No-UV,Betula pendula - Full-Spectrum,Betula pendula             1.77909839 7.956495e-02 



Table S6 Phenolic compounds isolated from leaf litter of B. pendula and F. sylvatica by HLPC follow the controlled-conditions experiment. Each point shows 

mean  SE expressed in mg g-1 DW. 

Fagus sylvatica  

Green leaves Yellow leaves 

Adaxial up Abaxial up Adaxial up Abaxial up 

Dark 
No-

UVA/ 
Blue 

No-
UVA 

Full-
spectrum 

Dark 
No-

UVA/ 
Blue 

No-
UVA 

Full-
spectrum 

Dark 
No-

UVA/ 
Blue 

No-
UVA 

Full-
spectrum 

Dark 
No-

UVA/ 
Blue 

No-UVA 
Full-

spectrum 

STILBENES 

Taxifolin  
xyloside 

0.94 ± 
0.04 

0.85 ± 
0.19 

0.98 ± 
0.26 

0.90 ± 
0.15 

1.28 ± 
0.31 

1.21 ± 
1.05 

1.13 ± 
0.33 

1.16 ± 
0.25 

0.99 ± 
0.28 

0.54 ± 
0.14 

0.81 ± 
0.42 

1.66 ± 
0.58 

0.56 ± 
0.08 

0.92 ± 
0.19 

0.60 ± 
0.03 

0.58 ± 
0.13 

Taxifolin  
glucoside 

1.17 ± 
0.35 

0.95 ± 
0.21 

0.90 ± 
0.20  

0.62 ± 
0.32 

0.91 ± 
0.16 

0.61 ± 
0.41 

0.96 ± 
0.26 

0.99 ± 
0.31 

0.88 ± 
0.20 

0.88 ± 
0.20 

1.23 ± 
0.42 

1.35 ± 
0.42 

1.19 ± 
0.04 

1.37 ± 
0.29 

1.47 ± 
0.14 

1.30 ± 
0.24 

Taxifolin  
aglycon 

1.83 ± 
0.88 

0.75 ± 
0.16 

0.96 ± 
0.37 

0.59 ± 
0.17 

0.68 ± 
0.09 

0.46 ± 
0.46 

0.18 ± 
0.22 

0.46 ± 
0.23 

0.80 ± 
0.06 

0.71 ± 
0.24 

1.11 ± 
0.22 

0.97 ± 
0.13 

0.90 ± 
0.05 

1.12 ± 
0.37 

1.09 ± 
0.08 

1.12 ± 
0.16 

Sum, stilbenes 
3.94 ± 
1.20 

2.56 ± 
0.37 

2.85 ± 
0.74 

2.11 ± 
0.07 

2.88 ± 
0.37 

2.28 ± 
1.93 

3.26 ± 
0.71 

3.57 ± 
0.95 

2.67 ± 
0.38 

2.47 ± 
0.75 

3.27 ± 
0.97 

3.86 ± 
0.66 

2.64 ± 
0.13 

3.40 ± 
0.76 

3.16 ± 
0.10 

3.00 ± 
0.48 

FLAVONOIDS 

Myricetin  
3-rhamnoside 

0.72 ± 
0.19 

0.53 ± 
0.31 

1.29 ± 
0.40 

1.12 ± 
0.21 

0.59 ± 
0.24 

0.56 ± 
0.08 

0.79 ± 
0.19 

1.14 ± 
0.17 

1.08 ± 
0.15 

0.80 ± 
0.41 

1.32 ± 
0.40 

1.40 ± 
0.34 

1.66 ± 
0.08 

1.76 ± 
0.32 

1.51 ± 
0.08 

1.59 ± 
0.31 

Quercetin  
3-rhamnoside 

12.38 
± 2.23 

13.40 ± 
2.31 

14.79 
± 1.87 

15.76 ± 
0.64 

10.46 ± 
2.80 

7.72 ± 
0.52 

9.88 ± 
2.19 

7.54 ± 
0.60 

20.61 
± 3.68 

14.68 ± 
4.63 

16.90 
± 3.49 

21.63 ± 
4.44 

22.37 ± 
5.03 

15.07 ± 
1.26 

18.25 ± 
5.39 

17.80 ± 
5.53 

Quercetin  
3-galactoside 

10.54 
± 3.47 

11.84 ± 
2.69 

12.37 
± 2.24 

13.04 ± 
2.05 

9.34 ± 
1.53 

7.76 ± 
5.30 

9.23 ± 
2.31 

8.56 ± 
1.30 

14.44 
± 3.43 

11.00 ± 
1.92 

11.23 
± 2.03 

15.03 ± 
4.97 

19.62 ± 
3.24 

11.40 ± 
0.85 

20.03 ± 
6.47 

15.17 ± 
3.54 

Quercetin  
3-glucoside 

4.70 ± 
1.70 

4.98 ± 
1.34 

5.16 ± 
1.10 

5.59 ± 
1.25 

2.73 ± 
0.46 

1.65 ± 
0.74 

4.19 ± 
0.94 

1.81 ± 
0.42 

6.52 ± 
1.06 

5.60 ± 
0.64 

4.51 ± 
0.61 

8.16 ± 
2.26 

7.28 ± 
2.04 

4.21 ± 
0.43 

5.08 ± 
0.72 

6.31 ± 
1.14 

Quercetin 
 7-glycoside 

0.35 ± 
0.35 

0.10 ± 
0.10 

0.25 ± 
0.15 

0.24 ± 
0.24 

0.72 ± 
0.11 

0.27 ± 
0.01 

0.53 ± 
0.21 

0.59 ± 
0.28 

0.82 ± 
0.25 

0.82 ± 
0.18 

0.23 ± 
0.15 

0.91 ± 
0.46 

0.96 ± 
0.22 

0.45 ± 
0.26 

1.01 ± 
0.35 

1.15 ± 
0.49 

Kaempferol  
3-galactoside 

4.57 ± 
1.24 

3.72 ± 
0.63 

4.09 ± 
0.28 

4.10 ± 
0.64 

3.23 ± 
0.43 

1.78 ± 
0.99 

3.46 ± 
0.59 

2.76 ± 
0.44 

3.85 ± 
0.90 

3.78 ± 
0.56 

3.63 ± 
0.18 

4.67 ± 
1.73 

4.50 ± 
1.42 

3.70 ± 
0.52 

4.56 ± 
0.63 

4.91 ± 
1.13 

Kaempferol  
3-glucoside 

11.49 
± 4.24 

9.25 ± 
1.43 

10.42 
± 1.76 

10.80 ± 
2.98 

14.87 ± 
1.97 

15.86 
± 3.05 

11.03 
± 2.12 

12.57 ± 
3.87 

9.72 ± 
1.40 

9.61 ± 
1.64 

9.09 ± 
1.95 

12.49 ± 
0.47 

18.15 ± 
3.00 

9.58 ± 
2.05 

11.38 ± 
2.78 

12.16 ± 
1.10 

Kaempferol  
3-arabinoside 

3.62 ± 
0.47 

3.47 ± 
0.47 

3.64 ± 
0.13 

4.49 ± 
1.54 

2.92 ± 
0.76 

1.80 ± 
1.31 

2.89 ± 
0.54 

2.47 ± 
0.34 

4.53 ± 
0.39 

4.38 ± 
0.30 

3.50 ± 
0.55 

5.51 ± 
0.58 

4.33 ± 
1.00 

3.33 ± 
0.37 

4.02 ± 
0.18 

4.67 ± 
0.45 

Kaempferol  
3-rhamnoside 

1.26 ± 
0.62 

0.65 ± 
0.12 

0.97 ± 
0.22 

1.23 ± 
0.44 

1.07 ± 
0.30 

0.32 ± 
0.09 

1.36 ± 
0.25 

1.25 ± 
0.34 

0.77 ± 
0.18 

0.86 ± 
0.41 

0.89 ± 
0.17 

1.17 ± 
0.32 

2.22 ± 
0.25 

0.96 ± 
0.05 

1.66 ± 
0.15 

1.55 ± 
0.21 

Monocoumaroyl- 
astragallin 1 

0.28 ± 
0.28 

0.35 ± 
0.21 

0.53 ± 
0.27 

0.30 ± 
0.15 

- 
0.33 ± 
0.33 

0.11 ± 
0.11 

0.06 ± 
0.06 

- - - - - - - - 

Monocoumaroyl- 
astragallin 2 

0.65 ± 
0.18 

0.51 ± 
0.27 

0.77 ± 
0.28 

0.47 ± 
0.07 

0.41 ± 
0.25 

0.17 ± 
0.17 

0.23 ± 
0.10 

0.45 ± 
0.28 

1.03 ± 
0.41 

0.87 ± 
0.15 

0.83 ± 
0.55 

2.31 ± 
0.57 

1.19 ± 
0.04 

0.87 ± 
0.10 

1.05 ± 
0.33 

0.83 ± 
0.34 

Monocoumaroyl- 
astragallin 3 

0.40 ± 
0.03 

0.15 ± 
0.09 

0.53 ± 
0.32 

0.28 ± 
0.05 

0.29 ± 
0.18  

0.46 ± 
0.46 

0.19 ± 
0.13 

0.37 ± 
0.16 

1.38 ± 
0.22 

1.28 ± 
0.30 

0.80 ± 
0.22 

1.34 ± 
0.12 

1.04 ± 
0.06 

1.07 ± 
0.16 

1.14 ± 
0.30 

0.84 ± 
0.20 

Monocoumaroyl- 
astragallin 4 

0.11 ± 
0.11 

0.29 ± 
0.15 

0.65 ± 
0.23 

0.46 ± 
0.23 

0.31 ± 
0.16 

0.21 ± 
0.11 

0.39 ± 
0.12 

0.41 ± 
0.17 

1.08 ± 
0.23 

0.93 ± 
0.20 

0.64 ± 
0.21 

2.08 ± 
0.01 

0.64 ± 
0.64 

0.50 ± 
0.17 

1.62 ± 
0.38 

0.52 ± 
0.26 

Dicoumaroyl- 
astragallin 1 

0.10 ± 
0.10 

0.18 ± 
0.13 

0.23 ± 
0.10 

0.19 ± 
0.10 

0.21 ± 
0.13 

0.20 ± 
0.12 

0.34 ± 
0.05 

0.17 ± 
0.14 

0.57 ± 
0.12 

0.67 ± 
0.16 

0.41 ± 
0.18 

0.96 ± 
0.25 

0.93 ± 
0.22 

0.39 ± 
0.30 

0.69 ± 
0.27 

0.44 ± 
0.29 



Dicoumaroyl- 
astragallin 2 

0.20 ± 
0.20 

0.06 ± 
0.06 

0.21 ± 
0.14 

0.17 ± 
0.17 

0.11 ± 
0.08 

0.26 ± 
0.26 

0.14 ± 
0.14 

0.14 ± 
0.14 

0.44 ± 
0.11 

0.44 ± 
0.14 

0.14 ± 
0.04 

0.76 ± 
0.36 

0.92 ± 
0.10 

0.23 ± 
0.08 

0.69 ± 
0.35 

0.59 ± 
0.22 

Sum, flavonoids 
51.40 
± 0.74 

49.51 ± 
6.95 

55.92 
± 5.71 

58.24 ± 
8.31 

47.28 ± 
4.17 

39.37 
± 
13.37 

44.76 
± 6.68 

40.32 ± 
7.57 

66.86 
± 8.55 

55.73 ± 
8.10 

54.15 
± 6.38 

78.43 ± 
13.19 

85.83 ± 
10.63 

53.55 ± 
3.68 

73.41 ± 
18.12 

68.53 ± 
12.50 

PHENOLIC ACIDS 

Hydroxycinnamic  
acid (HCA) 

0.86 ± 
0.21 

0.51 ± 
0.26 

0.51 ± 
0.11 

0.57 ± 
0.22 

1.15 ± 
0.25 

0.96 ± 
0.77 

0.63 ± 
0.23 

1.39 ± 
0.43 

0.68 ± 
0.22 

0.53 ± 
0.20 

1.03 ± 
0.30 

0.49 ± 
0.20 

0.49 ± 
0.18 

0.41 ± 
0.11 

0.84 ± 
0.19 

0.95 ± 
0.22 

Neochlorogenic 
acid 

0.38 ± 
0.13 

0.83 ± 
0.31 

0.89 ± 
0.14 

0.75 ± 
0.07 

0.62 ± 
0.19 

0.27 ± 
0.22 

0.50 ± 
0.13 

0.90 ± 
0.21 

0.31 ± 
0.14 

0.52 ± 
0.21 

0.72 ± 
0.13 

0.48 ± 
0.15 

0.21 ± 
0.04 

0.47 ± 
0.15 

0.47 ± 
0.05 

0.61 ± 
0.09 

Chlorogenic acid 
3.25 ± 
3.00 

1.42 ± 
0.46 

1.26 ± 
0.42 

1.32 ± 
0.43 

11.24 ± 
3.45 

12.39 
± 
11.42 

7.82 ± 
3.87 

10.46 ± 
3.87 

1.97 ± 
0.32 

1.87 ± 
0.62 

1.90 ± 
0.40 

2.50 ± 
0.36 

1.72 ± 
0.33 

2.58 ± 
0.92 

3.99 ± 
0.80 

2.66 ± 
0.72  

Chlorogenic acid 
derivative 1 

3.57 ± 
0.22 

4.28 ± 
1.48 

2.98 ± 
0.94 

4.89 ± 
2.57 

1.73 ± 
0.40 

1.25 ± 
1.25 

1.39 ± 
0.64 

2.01 ± 
1.04 

0.30 ± 
0.05 

0.21 ± 
0.07 

0.51 ± 
0.15 

0.71 ± 
0.43 

1.97 ± 
0.26 

0.27 ± 
0.11 

0.62 ± 
0.39 

0.46 ± 
0.19 

Chlorogenic acid 
derivative 2 

0.12 ± 
0.12 

0.18 ± 
0.08 

0.37 ± 
0.07 

0.34 ± 
0.03 

0.22 ± 
0.04 

0.21 ± 
0.10 

0.22 ± 
0.07 

0.23 ± 
0.08 

0.54 ± 
0.02 

0.47 ± 
0.13 

0.52 ± 
0.13 

0.59 ± 
0.05 

0.55 ± 
0.04 

0.61 ± 
0.02 

0.63 ± 
0.05 

0.54 ± 
0.12 

Chlorogenic acid 
derivative 3 

0.45 ± 
0.12 

0.36 ± 
0.12 

0.44 ± 
0.10 

0.47 ± 
0.14 

0.28 ± 
0.07 

0.23 ± 
0.10 

0.39 ± 
0.08 

0.44 ± 
0.06 

0.62 ± 
0.78 

0.78 ± 
0.17 

0.58 ± 
0.07 

0.61 ± 
0.18 

0.87 ± 
0.03 

0.74 ± 
0.01 

0.89 ± 
0.13 

0.64 ± 
0.13 

Chlorogenic acid 
derivative 4 

0.43 ± 
0.04 

0.37 ± 
0.13 

0.46 ± 
0.08 

0.48 ± 
0.08 

0.27 ± 
0.06 

0.25 ± 
0.05 

0.26 ± 
0.05 

0.36 ± 
0.11 

0.47 ± 
0.11 

0.23 ± 
0.08 

0.43 ± 
0.17 

0.68 ± 
0.14 

- 
0.38 ± 
0.22 

0.19 ± 
0.19 

0.28 ± 
0.20 

Chlorogenic acid 
derivative 5 

0.41 ± 
0.11 

0.28 ± 
0.05 

0.27 ± 
0.03 

0.11 ± 
0.06 

0.39 ± 
0.06 

0.15 ± 
0.15 

0.30 ± 
0.06 

0.37 ± 
0.06 

0.32 ± 
0.09 

0.43 ± 
0.11 

0.35 ± 
0.02 

0.29 ± 
0.16 

0.48 ± 
0.14 

0.38 ± 
0.04 

0.38 ± 
0.05 

0.30 ± 
0.02 

Chlorogenic acid 
derivative 6 

- - - - - - - - 
0.04 ± 
0.04 

0.29 ± 
0.29 

0.12 ± 
0.09 

- 
0.44 ± 
0.04 

0.36 ± 
0.05 

0.51 ± 
0.02 

0.52 ± 
0.13 

Sum,  
phenolic acids 

9.48 ± 
2.85 

8.24 ± 
1.95 

7.20 ± 
1.39 

8.95 ± 
2.93 

15.89 ± 
3.67 

15.71 
± 
14.06 

11.52 
± 4.62 

16.17 ± 
4.19 

5.25 ± 
0.45 

5.34 ± 
1.70 

6.17 ± 
0.81 

6.35 ± 
1.18 

6.74 ± 
0.62 

6.21 ± 
1.12 

8.53 ± 
1.19 

6.98 ± 
1.07 

OTHERS 

Sum,  
low molecular 
phenolics 

64.83 
± 3.31 

60.31 ± 
7.92 

65.96 
± 7.44 

69.31 ± 
11.09 

66.05 ± 
4.79 

57.37 
± 
29.37 

59.54 
± 9.67 

60.06 ± 
21.61 

74.78 
± 8.51 

63.54 ± 
10.51 

63.59 
± 8.03 

88.63 ± 
14.98 

95.21 ± 
10.15 

63.17 ± 
4.62 

85.11 ± 
18.96 

78.51 ± 
13.55 

CONDENSED TANNINS 

MeOH soluble 
32.89 
± 0.25 

28.74 ± 
2.07 

24.33 
± 1.82 

19.65 ± 
1.83 

24.84 ± 
2.39 

12.67 
± 3.79 

19.41 
± 2.47 

22.50 ± 
3.30 

35.64 
± 2.16 

35.53 ± 
8.91 

27.76 
± 2.49 

22.46 ± 
0.82 

31.32 ± 
1.93 

43.29 ± 
4.40 

28.00 ± 
0.61 

26.84 ± 
4.31 

MeOH insoluble 
100.72 
± 
70.20 

50.76 ± 
14.80 

35.60 
± 4.67 

23.57 ± 
1.92 

30.22 ± 
7.34 

39.37 
± 
12.41 

22.77 
± 2.51 

56.57 ± 
16.09 

203.37 
± 
179.01 

31.71 ± 
11.49 

39.07 
± 6.59 

32.31 ± 
6.34 

13.40 ± 
4.69 

20.76 ± 
2.66 

19.87 ± 
4.26 

28.24 ± 
6.33 

Sum, 
condensed  
tannins 

133.61 
± 
70.45 

79.50 ± 
12.73 

59.93 
± 5.86 

43.22 ± 
2.68 

55.06 ± 
8.78 

52.04 
± 
16.21 

42.18 
± 1.59 

79.07 ± 
15.30 

239.02 
± 
178.50 

67.25 ± 
20.16 

66.82 
± 7.24 

54.76 ± 
5.55 

44.72 ± 
4.52 

64.05 ± 
6.39 

47.88 ± 
3.71 

55.08 ± 
9.35 

Betula pendula Green leaves Yellow leaves 



Dark No-UVA/Blue No-UVA Full-spectrum Dark No-UVA/Blue No-UVA Full-spectrum 

FLAVONOIDS 

Quercetin 
glycoside 1 9.71 ± 0.99 13.30 ± 1.87 7.87 ± 0.94 13.28 ± 3.21 7.04 ± 0.92 7.80 ± 1.25 7.75 ± 0.83 5.23 ± 0.84 
Quercetin 
glycoside 2 1.92 ± 0.80 3.18 ± 0.72 0.85 ± 0.40 1.74 ± 0.63 2.11 ± 0.43 3.01 ± 0.45 2.29 ± 0.56 1.51 ± 0.35 
Quercetin 
glycoside 3 1.07 ± 0.19 0.83 ± 0.16 0.81 ± 0.15 0.79 ± 0.24 0.49 ± 0.10 0.53 ± 0.14 0.57 ± 0.11 0.70 ± 0.12 
Quercetin 
glycoside 4 0.22 ± 0.17 0.87 ± 0.30 0.18 ± 0.14 0.93 ± 0.45 1.69 ± 0.34 1.37 ± 0.20 1.20 ± 0.13 1.02 ± 0.20 
Quercetin 
glycoside 5 3.22 ± 1.11 4.94 ± 0.90 2.93 ± 1.11 4.08 ± 1.33 2.43 ± 0.95 2.19 ± 0.96 1.34 ± 0.47 1.47 ± 0.27 
Quercetin 
glycoside 6 26.03 ± 1.83 28.09 ± 2.44 25.01 ± 2.58 25.93 ± 3.57 21.40 ± 1.52 21.64 ± 2.57 24.05 ± 3.06 23.03 ± 3.53 
Quercetin 
glycoside 7 8.46 ± 1.44 9.19 ± 1.09 6.33 ± 1.71 7.01 ± 1.44 7.53 ± 0.71 8.36 ± 0.80 8.58 ± 0.92 7.54 ± 1.46 
Quercetin 
glycoside 8 0.64 ± 0.12 0.76 ± 0.24 0.58 ± 0.14 0.64 ± 0.21 1.96 ± 0.65 2.78 ± 0.83 1.02 ± 0.26 2.45 ± 0.64 
Quercetin 
glycoside 9 6.04 ± 0.47 6.94 ± 0.73 6.02 ± 0.72 6.30 ± 0.87 4.62 ± 0.62 3.23 ± 0.77 5.44 ± 0.56 4.50 ± 1.24 
Quercetin 
aglycon 1.09 ± 0.36 0.76 ± 0.14 0.72 ± 0.06 0.77 ± 0.05 0.85 ± 0.20 0.83 ± 0.20 0.61 ± 0.14 0.53 ± 0.13 
Apigenin 
glycoside 1 2.14 ± 0.56 2.41 ± 0.35 2.18 ± 0.42 1.88 ± 0.27 1.22 ± 0.37 1.28 ± 0.30 1.14 ± 0.51 1.59 ± 0.25 
Apigenin 
glycoside 2 0.72 ± 0.16 0.87 ± 0.12 0.92 ± 0.33 0.73 ± 0.16 0.67 ± 0.23 1.01 ± 0.37 0.66 ± 0.21 0.86 ± 0.40 

Sum, flavonoids 61.10 ± 4.34 72.30 ± 5.24 54.40 ± 3.33 63.98 ± 8.56 51.71 ± 2.28 53.83 ± 4.76 54.67 ± 5.33 50.77 ± 6.45 

PHENOLIC ACIDS 

Hydroxycinnamic 
acid (HCA) 0.57 ± 0.16 0.59 ± 0.14 0.53 ± 0.13 0.39 ± 0.14 0.40 ± 0.09 0.61 ± 0.12 0.42 ± 0.09 0.64 ± 0.13 
Neochlorogenic 
acid 12.86 ± 4.18 10.99 ± 3.10 9.38 ± 2.01 8.68 ± 0.94 14.68 ± 3.01 19.57 ± 4.36 17.21 ± 4.31 16.13 ± 2.12 

Chlorogenic acid 0.50 ± 0.13 0.77 ± 0.15 1.34 ± 0.62 1.11 ± 0.32 0.69 ± 0.07 0.59 ± 0.17 0.77 ± 0.16 0.68 ± 0.26 
Sum, phenolic 
acids 13.80 ± 4.28 12.30 ± 3.00 10.95 ± 1.84 10.78 ± 0.99 15.94 ± 2.96 20.67 ± 4.37 18.54 ± 4.22 17.12 ± 2.13 

OTHERS 

Sum, low 
molecular 
phenolics 74.91 ± 4.66 84.60 ± 6.08 65.35 ± 3.72 74.76 ± 8.10 67.65 ± 3.73 74.50 ± 8.24 73.21 ± 8.32 67.88 ± 6.15 

CONDENSED TANNINS 

MeOH soluble 2.42 ± 0.42 2.42 ± 0.36 3.22 ± 1.08 2.75 ± 0.47 7.33 ± 1.02 11.54 ± 2.40 6.13 ± 1.45 9.98 ± 2.94 

MeOH insoluble 17.95 ± 1.92 19.02 ± 2.74 21.64 ± 3.52 22.16 ± 2.69 18.26 ± 3.40 14.61 ± 1.08 19.45 ± 1.46 15.39 ± 2.37 



Sum, condensed 
tannins 20.37 ± 2.32 21.44 ± 2.74 24.87 ± 4.57 24.91 ± 2.91 25.60 ± 3.51 26.15 ± 2.73 25.58 ± 2.58 25.37 ± 4.76 

 
  



Table S7 ANOVA table for the phenolic compounds isolated from leaf litter of B. pendula and F. sylvatica by HLPC follow the controlled-conditions experiment. 

Fagus sylvatica  
Colour ( C ) Orientation (O) 

Filter 
treatment (F) 

C x O x F C x O C x F O x F 

F1,47 (p) F1,47 (p) F3,47 (p) F3,47 (p) F3,47 (p) F1,47 (p) F1,47 (p) 

STILBENES 

Taxifolin xyloside 3.53 (0.066) 0.02 (0.880) 0.38 (0.766) 1.10 (0.358) 1.72 (0.196) 0.20 (0.897) 0.87 (0.464) 

Taxifolin glucoside 4.61 (0.037) 0.06 (0.805) 0.16 (0.926) 0.21 (0.888) 1.13 (0.292) 0.59 (0.626) 0.10 (0.959) 

Taxifolin aglycon 0.17 (0.682) 1.64 (0.207) 0.81 (0.492) 2.24 (0.097) 0.02 (0.898) 0.29 (0.830) 1.81 (0.159) 

Sum, stilbenes 0.26 (0.613) 0.28 (0.601) 0.36 (0.780) 1.39 (0.257) 0.003 (0.954) 0.48 (0.699) 0.08 (0.969) 

FLAVONOIDS 

Myricetin 3-rhamnoside 12.38 (< 0.001) 0.67 (0.418) 2.32 (0.087) 0.24 (0.869) 2.88 (0.096) 0.74 (0.533) 1.69 (0.183) 

Quercetin 3-rhamnoside 13.47 (< 0.001) 4.41 (0.041) 0.46 (0.714) 0.04 (0.988) 3.69 (0.06) 0.42 (0.737) 0.44 (0.726) 

Quercetin 3-galactoside 6.99 (0.011) 0.17 (0.683) 0.40 (0.756) 0.21 (0.891) 6.37 (0.015) 0.29 (0.830) 0.41 (0.743) 

Quercetin 3-glucoside 18.87 (< 0.001) 9.78 (0.003) 0.57 (0.636) 0.03 (0.994) 8.97 (0.004) 1.81 (0.159) 2.04 (0.122) 

Quercetin 7-glycoside 5.50 (0.023) 5.59 (0.022) 1.33 (0.275) 1.04 (0.383) 0.55 (0.461) 0.36 (0.781) 1.07 (0.370) 

Kaempferol 3-galactoside 2.65 (0.110) 0.78 (0.381) 0.49 (0.693) 0.04 (0.988) 5.77 (0.020) 0.43 (0.731) 0.30 (0.822) 

Kaemperfol 3-glucoside 0.23 (0.629) 5.53 (0.023) 1.32 (0.279) 1.01 (0.395) 0.01 (0.936) 0.43 (0.729) 0.84 (0.481) 

Kaempferol 3-arabinoside 12.86 (< 0.001) 7.62 (0.008) 1.69 (0.182) 0.08 (0.972) 4.21 (0.046) 0.77 (0.519) 1.05 (0.381) 

Kaempferol 3-rhamnoside 2.31 (0.135) 6.80 (0.012) 2.88 (0.046) 0.94 (0.426) 6.03 (0.018) 0.43 (0.734) 0.97 (0.416) 

Monocoumaroylastragallin 1 18.24 (< 0.001) 4.75 (0.034) 0.76 (0.524) 0.37 (0.772) 5.14 (0.028) 0.40 (0.753) 0.43 (0.735) 

Monocoumaroylastragallin 2 10.27 (0.002) 2.77 (0.102) 0.54 (0.657) 1.80 (0.159) 2.02 (0.161) 0.37 (0.772) 0.57 (0.636) 

Monocoumaroylastragallin 3 50.66 (< 0.001) 2.76 (0.103) 0.76 (0.512) 1.40 (0.258) 0.03 (0.856) 0.52 (0.672) 0.51 (0.678) 

Monocoumaroylastragallin 4 11.93 (0.001) 5.07 (0.029) 1.03 (0.388) 3.77 (0.017) 1.84 (0.181) 0.05 (0.986) 1.40 (0.255) 

Dicoumaroylastragallin 1 4.14 (0.049) 0.07 (0.797) 0.86 (0.472) 0.64 (0.592) 0.02 (0.879) 0.23 (0.877) 1.81 (0.165) 

Dicoumaroylastragallin 2 31.47 (< 0.001) 0.07 (0.800) 0.81 (0.495) 2.45 (0.076) 2.25 (0.141) 0.37 (0.776) 0.49 (0.687) 

Sum, flavonoids 14.61 (< 0.001) 0.86 (0.359) 1.22 (0.313) 0.28 (0.840) 5.41 (0.024) 0.57 (0.636) 0.83 (0.482) 

PHENOLIC ACIDS 

Hydroxycinnamic acid (HCA) 0.31 (0.578) 2.48 (0.122) 1.25 (0.302) 0.06 (0.982) 1.92 (0.172) 1.79 (0.161) 1.11 (0.355) 

Neochlorogenic acid 5.34 (0.025) 0.96 (0.332) 3.40 (0.025) 0.86 (0.469) 0.21 (0.650) 0.62 (0.602) 1.86 (0.149) 

Chlorogenic acid 5.19 (0.027) 17.17 (< 0.001) 0.40 (0.750) 0.31 (0.818) 9.32 (0.004) 0.55 (0.652) 0.01 (0.998) 

Chlorogenic acid derivative 1 52.34 (< 0.001) 2.74 (0.105) 0.28 (0.842) 0.58 (0.628) 15.12 (< 0.001) 2.49 (0.072) 0.90 (0.447) 

Chlorogenic acid derivative 2 41.32 (< 0.001) 0.59 (0.448) 0.46 (0.709) 0.38 (0.765) 1.77 (0.190) 0.47 (0.705) 0.51 (0.675) 

Chlorogenic acid derivative 3 32.02 (< 0.001) 0.06 (0.809) 0.16 (0.923) 0.56 (0.641) 3.44 (0.070) 1.66 (0.188) 0.26 (0.853) 



Chlorogenic acid derivative 4 1.39 (0.255) 3.60 (0.066) 0.75 (0.530) 2.33 (0.111) 3.44 (0.071) 0.15 (0.997) 0.83 (0.485) 

Chlorogenic acid derivative 5 5.74 (0.021) 0.47 (0.497) 2.07 (0.117) 1.93 (0.139) 1.65 (0.206) 0.14 (0.936) 0.06 (0.980) 

Chlorogenic acid derivative 6 80.11 (< 0.001) 25.22 (< 0.001) 1.21 (0.317) 0.64 (0.595) 29.83 (< 0.001) 0.26 (0.850) 0.78 (0.513) 

Sum, phenolic acids 9.78 (0.003) 6.69 (0.013) 0.42 (0.740) 0.16 (0.923) 1.21 (0.276) 0.64 (0.592) 0.08 (0.969) 

OTHERS 

Sum, low molecular phenolics 4.79 (0.034) 0.01 (0.912) 1.21 (0.317) 0.30 (0.824) 2.00 (0.164) 0.20 (0.892) 0.55 (0.647) 

CONDENSED TANNINS 

MeOH soluble 20.39 (< 0.001) 2.20 (0.144) 5.52 (0.002) 2.41 (0.078) 4.54 (0.038) 2.81 (0.049) 0.92 (0.489) 

MeOH insoluble 0.29 (0.595) 2.60 (0.113) 0.92 (0.439) 0.15 (0.928) 0.73 (0.397) 0.12 (0.945) 1.68 (0.185) 

Sum, condensed tannins 0.22 (0.643) 3.97 (0.052) 1.01 (0.398) 0.30 (0.825) 0.11 (0.743) 0.05 (0.983) 2.36 (0.084) 

Betula pendula 
Colour ( C ) Filter treatment (F) C x F 

F1,55 (p) F3,55 (p) F1,55 (p) 

FLAVONOIDS 

Quercetin glycoside 1 16.71 (< 0.001) 1.60 (0.199) 2.48 (0.070) 

Quercetin glycoside 2 2.98 (0.092) 2.68 (0.060) 2.43 (0.079) 

Quercetin glycoside 3 4.68 (0.035) 0.15 (0.929) 0.44 (0.721) 

Quercetin glycoside 4 0.88 (0.353) 0.41 (0.745) 1.85 (0.154) 

Quercetin glycoside 5 10.98 (0.002) 0.88 (0.458) 0.83 (0.483) 

Quercetin glycoside 6 4.17 (0.046) 0.10 (0.957) 0.28 (0.837) 

Quercetin glycoside 7 0.27 (0.608) 0.79 (0.504) 0.74 (0.529) 

Quercetin glycoside 8 23.69 (< 0.001) 1.56 (0.209) 0.89 (0.454) 

Quercetin glycoside 9 13.24 (< 0.001) 0.32 (0.808) 1.50 (0.224) 

Quercetin aglycon 0.27 (0.608) 1.27 (0.294) 0.15 (0.923) 

Apigenin glycoside 1 11.30 (0.001) 0.80 (0.500) 0.69 (0.561) 

Apigenin glycoside 2 0.37 (0.542) 0.47 (0.705) 0.36 (0.779) 

Sum, flavonoids 7.18 (0.010) 1.19 (0.322) 0.85 (0.473) 

PHENOLIC ACIDS 

Hydroxycinnamic acid (HCA) 0.01 (0.929) 0.28 (0.837) 0.72 (0.544) 

Neochlorogenic acid 8.37 (0.005) 0.03 (0.992) 0.36 (0.779) 

Chlorogenic acid 2.78 (0.102) 2.80 (0.050) 1.88 (0.147) 

Sum, phenolic acids 7.61 (0.008) 0.02 (0.995) 0.25 (0.862) 

OTHERS 



Sum, low molecular phenolics 1.03 (0.315) 1.01 (0.394) 0.61 (0.611) 

CONDENSED TANNINS 

MeOH soluble 48.88 (< 0.001) 0.44 (0.721) 1.59 (0.203) 

MeOH insoluble 3.59 (0.063) 0.67 (0.573) 0.35 (0.790) 

Sum, condensed tannins 6.05 (0.017) 0.29 (0.830) 0.32 (0.810) 



Table S8 Pairwise comparisons for HPLC phenolics responding to filter treatments in Fagus 

sylvatica leaves in the controlled experiment: t- tests, with the Holm’s correction for multiple 

comparisons, were used to calculate the P values. Significant contrasts are shown in bold. 

Kaempferol 3-rhamnoside 

Filter Estimate SE t-value P value 

Dark - No-UVA/Blue 0.237 0.098 2.426 0.074 

Dark - No-UVA -0.019 0.091 -0.211 1.000 

Dark - Full-Spectrum -0.041 0.095 -0.432 1.000 

No-UVA/Blue - No-UVA -0.256 0.094 -2.729 0.042 

No-UVA/Blue - Full-Spectrum -0.278 0.098 -2.843 0.037 

No-UVA - Full-Spectrum -0.022 0.092 -0.237 1.000 

Neochlorogenic acid 

Filter Estimate SE t-value P value 

Dark - No-UVA/Blue -0.102 0.079 -1.291 0.617 

Dark - No-UVA -0.185 0.074 -2.509 0.076 

Dark - Full-Spectrum -0.218 0.078 -2.806 0.042 

No-UVA/Blue - No-UVA -0.084 0.078 -1.087 0.617 

No-UVA/Blue - Full-Spectrum -0.116 0.080 -1.445 0.617 

No-UVA - Full-Spectrum -0.033 0.076 -0.431 0.668 

MeOH soluble condensed tannins 

Green leaves 

Filter Estimate SE t-value P value 

Dark - No-UVA/Blue 0.912 0.387 2.354 0.411 

Dark - No-UVA 0.702 0.336 2.088 0.633 

Dark - Full-Spectrum 0.783 0.364 2.152 0.585 

No-UVA/Blue - No-UVA -0.210 0.349 -0.601 1.000 

No-UVA/Blue - Full-Spectrum -0.129 0.376 -0.343 1.000 

No-UVA - Full-Spectrum 0.081 0.323 0.251 1.000 

Yellow leaves 

Filter Estimate SE t-value P value 

Dark - No-UVA/Blue -0.421 0.331 -1.272 1.000 

Dark - No-UVA 0.506 0.336 1.505 1.000 

Dark - Full-Spectrum 0.855 0.336 2.544 0.286 

No-UVA/Blue - No-UVA 0.926 0.331 2.801 0.155 

No-UVA/Blue - Full-Spectrum 1.276 0.331 3.857 0.009 

No-UVA - Full-Spectrum 0.349 0.336 1.039 1.000 

 

  



Table S9 Pairwise comparisons for HPLC phenolics responding to filter treatments in Betula 

pendula leaves in the controlled experiment: t- tests, with the Holm’s correction for multiple 

comparisons, were used to calculate the P values. Significant contrasts are shown in bold. 

Chlorogenic acid 

Filter Estimate SE t-value P value 

Dark - No-UVA/Blue -0.028 0.104 -0.265 0.792 

Dark - No-UVA -0.345 0.117 -2.956 0.029 

Dark - Full-Spectrum -0.212 0.113 -1.875 0.268 

No-UVA/Blue - No-UVA -0.317 0.112 -2.823 0.035 

No-UVA/Blue - Full-Spectrum -0.184 0.108 -1.697 0.289 

No-UVA - Full-Spectrum 0.133 0.120 1.106 0.549 

 

  



Table S10 List of pairwise comparisons between forest stands for daily mass loss of green and 

yellow leaves of Fagus sylvatica and Betula pendula in the forest experiment: t- tests, with 

the Holm’s correction for multiple comparisons, were used to calculate the P values. 

Significant contrasts are shown in bold. 
 

Fagus sylvatica – green leaves 

                                      Estimate       Sigma   t-value      p-value 

Picea abies - Fagus sylvatica      0.002953929 0.005056817 0.5841479 5.607852e-01 

Picea abies - Acer platanoides     0.025573700 0.005056817 5.0572721 2.697791e-06 

Picea abies - Betula pendula       0.035232408 0.005056817 6.9673092 8.629000e-10 

Fagus sylvatica - Acer platanoides 0.022619771 0.005056817 4.4731242 2.552844e-05 

Fagus sylvatica - Betula pendula   0.032278479 0.005056817 6.3831613 1.099344e-08 

Acer platanoides - Betula pendula  0.009658708 0.005056817 1.9100371 5.975779e-02 
 

Fagus sylvatica – yellow leaves 

                                       Estimate       Sigma    t-value     p-value 

Picea abies - Fagus sylvatica      -0.004850646 0.002870346 -1.6899166 0.095037167 

Picea abies - Acer platanoides     -0.008397483 0.002906365 -2.8893419 0.004996198 

Picea abies - Betula pendula       -0.005945492 0.002870346 -2.0713500 0.041632619 

Fagus sylvatica - Acer platanoides -0.003546837 0.002906365 -1.2203687 0.226001819 

Fagus sylvatica - Betula pendula   -0.001094846 0.002870346 -0.3814334 0.703918777 

Acer platanoides - Betula pendula   0.002451991 0.002906365  0.8436625 0.401437997 

 

Betula pendula – green leaves 

                                       Estimate      Sigma    t-value      p-value 

Picea abies - Fagus sylvatica       0.083368627 0.01927312  4.3256428 4.951291e-05 

Picea abies - Acer platanoides      0.150936050 0.01847946  8.1677740 8.967271e-12 

Picea abies - Betula pendula        0.089233679 0.02036276  4.3821992 4.042020e-05 

Fagus sylvatica - Acer platanoides  0.067567423 0.01927312  3.5057857 7.989121e-04 

Fagus sylvatica - Betula pendula    0.005865052 0.02109605  0.2780166 7.818192e-01 

Acer platanoides - Betula pendula  -0.061702371 0.02036276 -3.0301572 3.423368e-03 

 

Betula pendula – yellow leaves 

                                        Estimate       Sigma     t-value      p-value 

Picea abies - Fagus sylvatica       0.0497523513 0.009251949  5.37749939 8.036199e-07 

Picea abies - Acer platanoides      0.0426155583 0.009024600  4.72215487 1.044825e-05 

Picea abies - Betula pendula        0.0504409127 0.009137846  5.52000008 4.519126e-07 

Fagus sylvatica - Acer platanoides -0.0071367930 0.009251949 -0.77138264 4.428719e-01 

Fagus sylvatica - Betula pendula    0.0006885613 0.009366877  0.07351023 9.415932e-01 

Acer platanoides - Betula pendula   0.0078253543 0.009137846  0.85636747 3.944867e-01 

  



Description of understorey light estimation 

Above canopy PAR 
Above canopy PAR was obtained from the Viikki Fields Weather Station of the University of Helsinki 

located within the experimental site (60°13'39.7'N, 25°01'09.5'E).  Additionally, PAR was measured at 

regular intervals during the experiments in all the forest stands and in a nearby open area using an 

array spectroradiometer (Maya2000 Pro Ocean Optics, Dunedin, FL, USA; D7-H-SMA cosine diffuser, 

Bentham Instruments Ltd, Reading, UK) that had been calibrated within the previous 12 months (see 

Hartikainen et al 2018 for details of the calibration), [39, 40] (Table S1 and S2). 

Above canopy UV radiation 
Above canopy UV radiation was obtained from the Finnish Meteorological Institute (FMI) weather 

station located in the adjacent suburb of Kumpula (60°12'00.0"N, 24°57'36.0"E), Helsinki [43, 44].  

Additionally, UV radiation was measured at regular intervals during the experiments in all the forest 

stands and in a nearby open area using an array spectroradiometer (Maya2000 Pro Ocean Optics, 

Dunedin, FL, USA; D7-H-SMA cosine diffuser, Bentham Instruments Ltd, Reading, UK) that had been 

calibrated within the previous 12 months (see Hartikainen et al 2018 for details of the calibration), 

[39, 40] (Table S1 and S2). 

Understorey PAR 
Transmission percentages of different PAR wavelengths were calculated through comparisons of 

measurements made in the understorey of each forest stand with measurements in the open area 

nearby as mentioned above.  Hemispherical photos were taken at the same locations as spectral 

irradiance, to characterize canopy cover of each stand by calculation of the global light index (GLI) 

through the software Hemisfer, as defined by [41, 42].  The GLI was calculated over several dates 

during the experiment (once every 15 days) in order to account for sun elevation angle and sunrise 

and sunset time.  GLI were estimated for both clear sky and totally overcast conditions.  Several GLI 

indexes have been used to calculate the amount of the above canopy PAR transmitted through the 

understorey over the study period taking into account the cloudiness per each day.  Days have been 

considered cloudy when the diffuse radiation was higher than 30% of direct radiation.  An average GLI 

has been employed for partially cloudy days.  The understorey PAR was then corrected per wavelength 

using the transmission percentages calculated from the measurements taken with the Maya 

spectroradiometer.  This allowed us to also estimate the amount of blue light in the understorey. 

Understorey UV radiation 
Transmission percentages of different biological spectral weighting functions for UV exposure and 

unweighted UV radiation were calculated through comparisons of measurements made in the 

understorey of each forest stand with measurements in the open area nearby as mentioned above, 



as well as UV:PAR ratios.  These percentages and the UV:PAR ratio in the understorey were used to 

correct the estimated percentage of transmitted PAR, in order to obtain an index of UV transmittance 

(GLIUV) for clear and overcast conditions through the period of the experiment, accounting for sun 

elevation angle and sunrise and sunset time.  The several estimated GLIuv for each period of the 

experiment where used to calculate the understorey UV as a percentage of the above canopy UV 

obtained from the Kumpula weather station. 


