114 research outputs found

    A new model for global glacier change and sea-level rise

    Get PDF
    The anticipated retreat of glaciers around the globe will pose far-reaching challenges to the management of fresh water resources and significantly contribute to sea-level rise within the coming decades. Here, we present a new model for calculating the twenty-first century mass changes of all glaciers on Earth outside the ice sheets. The Global Glacier Evolution Model (GloGEM) includes mass loss due to frontal ablation at marine-terminating glacier fronts and accounts for glacier advance/retreat and surface elevation changes. Simulations are driven with monthly near-surface air temperature and precipitation from 14 Global Circulation Models forced by RCP2.6, RCP4.5, and RCP8.5 emission scenarios. Depending on the scenario, the model yields a global glacier volume loss of 25–48% between 2010 and 2100. For calculating glacier contribution to sea-level rise, we account for ice located below sea-level presently displacing ocean water. This effect reduces the glacier contribution by 11–14%, so that our model predicts a sea-level equivalent (multi-model mean ±1 standard deviation) of 79±24 mm (RCP2.6), 108±28 mm (RCP4.5), and 157±31 mm (RCP8.5). Mass losses by frontal ablation account for 10% of total ablation globally, and up to ~30% regionally. Regional equilibrium line altitudes are projected to rise by ~100–800 m until 2100, but the effect on ice wastage depends on initial glacier hypsometries

    Modern Semiconductor Technologies for Neuromorphic Hardware

    Get PDF
    Neuromorphic hardware is a promising tool for neuroscience and technological applications. This thesis addresses the question to what extent such systems can benefit from advances in CMOS scaling using the existing BrainScales Hardware System as a reference. A 65 nm process technology was selected and basic characteristics were evaluated using prototype chips. A system providing a large number of programmable voltage and current sources, based on capacitive storage cells, was developed. A novel scheme for refreshing the cells is presented. This system has been characterized in silicon. Two components required in a concept for synapse implementation, consisting of primarily digital circuits, were developed and tested in a prototype chip. One is an orthogonal dual-port SRAM with a specialized structure where every 8 bit word stored in the memory can be accessed by a single operation from either port. The second is an 8 bit current DAC which is used for generating postsynaptic events. Finally the analog neuron implementation from the existing system was transfered to the 65 nm process technology using thick-oxide transistors. Simulations suggest that comparable performance can be achieved. In conclusion, modern process technologies will contribute to successful realization of large-scale neuromorphic hardware systems

    Variations in Alaska tidewater glacier frontal ablation, 1985–2013

    Get PDF
    Our incomplete knowledge of the proportion of mass loss due to frontal ablation (the sum of ice loss through calving and submarine melt) from tidewater glaciers outside of the Greenland and Antarctic ice sheets has been cited as a major hindrance to accurate predictions of global sea level rise. We present a 28 year record (1985–2013) of frontal ablation for 27 Alaska tidewater glaciers (representing 96% of the total tidewater glacier area in the region), calculated from satellite-derived ice velocities and modeled estimates of glacier ice thickness. We account for cross-sectional ice thickness variation, long-term thickness changes, mass lost between an upstream fluxgate and the terminus, and mass change due to changes in terminus position. The total mean rate of frontal ablation for these 27 glaciers over the period 1985–2013 is 15.11 ± 3.63Gta⁻¹. Two glaciers, Hubbard and Columbia, account for approximately 50% of these losses. The regional total ablation has decreased at a rate of 0.14Gta⁻¹ over this time period, likely due to the slowing and thinning of many of the glaciers in the study area. Frontal ablation constitutes only ∼4% of the total annual regional ablation, but roughly 20% of net mass loss. Comparing several commonly used approximations in the calculation of frontal ablation, we find that neglecting cross-sectional thickness variations severely underestimates frontal ablation

    Runaway thinning of the low-elevation Yakutat Glacier, Alaska, and its sensitivity to climate change

    Get PDF
    Lake-calving Yakutat Glacier in southeast Alaska, USA, is undergoing rapid thinning and terminus retreat. We use a simplified glacier model to evaluate its future mass loss. In a first step we compute glacier-wide mass change with a surface mass-balance model, and add a mass loss component due to ice flux through the calving front. We then use an empirical elevation change curve to adjust for surface elevation change of the glacier and finally use a flotation criterion to account for terminus retreat due to frontal ablation. Surface mass balance is computed on a daily timescale; elevation change and retreat is adjusted on a decadal scale. We use two scenarios to simulate future mass change: (1) keeping the current (2000–10) climate and (2) forcing the model with a projected warming climate. We find that the glacier will disappear in the decade before 2110 or 2070 under constant or warming climates, respectively. For the first few decades, the glacier can maintain its current thinning rates by retreating and associated loss of high-ablating, low-elevation areas. However, once higher elevations have thinned substantially, the glacier can no longer counteract accelerated thinning by retreat and mass loss accelerates, even under constant climate conditions. We find that it would take a substantial cooling of 1.5°C to reverse the ongoing retreat. It is therefore likely that Yakutat Glacier will continue its retreat at an accelerating rate and disappear entirely

    Isolated Rh atoms in dehydrogenation catalysis

    Get PDF
    Isolated active sites have great potential to be highly efficient and stable in heterogeneous catalysis, while enabling low costs due to the low transition metal content. Herein, we present results on the synthesis, first catalytic trials, and characterization of the Ga9Rh2 phase and the hitherto not-studied Ga3Rh phase. We used XRD and TEM for structural characterization, and with XPS, EDX we accessed the chemical composition and electronic structure of the intermetallic compounds. In combination with catalytic tests of these phases in the challenging propane dehydrogenation and by DFT calculations, we obtain a comprehensive picture of these novel catalyst materials. Their specific crystallographic structure leads to isolated Rhodium sites, which is proposed to be the decisive factor for the catalytic properties of the systems

    Investigating the uniqueness and usefulness of proactive personality in organizational research: A meta-analytic review

    Get PDF
    Using meta-analysis (283 effect sizes from 122 studies), we extend prior qualitative and quantitative reviews of research on proactive personality in a number of meaningful ways. First, we examine the discriminant and incremental validity of proactive personality using meta-analytic regression analyses. Our results reveal that more than 50% of variance in proactive personality is unrelated to the Big Five personality traits collectively. Also, proactive personality accounts for unique variance in overall job performance, task performance, and organizational citizenship behaviors, even after controlling for the Big Five personality traits and general mental ability (for overall job performance and task performance). Moreover, we find no subgroup differences in proactive personality, highlighting its potential use in selection contexts. In conclusion, we discuss implications of our findings for research and practice

    Global glacier change in the 21st century: Every increase in temperature matters

    Get PDF
    Glacier mass loss affects sea level rise, water resources, and natural hazards. We present global glacier projections, excluding the ice sheets, for shared socioeconomic pathways calibrated with data for each glacier. Glaciers are projected to lose 26 ± 6% (+1.5°C) to 41 ± 11% (+4°C) of their mass by 2100, relative to 2015, for global temperature change scenarios. This corresponds to 90 ± 26 to 154 ± 44 millimeters sea level equivalent and will cause 49 ± 9 to 83 ± 7% of glaciers to disappear. Mass loss is linearly related to temperature increase and thus reductions in temperature increase reduce mass loss. Based on climate pledges from the Conference of the Parties (COP26), global mean temperature is projected to increase by +2.7°C, which would lead to a sea level contribution of 115 ± 40 millimeters and cause widespread deglaciation in most mid-latitude regions by 2100

    ЧЕРНІГІВСЬКЕ ВИДАННЯ НОВОГО ЗАВІТУ 1717 РОКУ З ПРИСВЯТОЮ ГЕТЬМАНУ ІВАНУ СКОРОПАДСЬКОМУ

    Get PDF
    В умовах втрати більшості українських стародруків XVII – початку XVIII ст., неабияке значення для дослідження мають поодинокі знахідки, котрі іноді трапляються серед приватних зібрань або державних сховищ. Збереження і введення до наукового обігу подібних раритетів входить до важливих напрямків досліджень української історії козацької доби

    Deletion of the ageing gene p66Shc reduces early stroke size following ischaemia/reperfusion brain injury

    Get PDF
    Aims Stroke is a leading cause of morbidity and mortality, and its incidence increases with age. Both in animals and in humans, oxidative stress appears to play an important role in ischaemic stroke, with or without reperfusion. The adaptor protein p66Shc is a key regulator of reactive oxygen species (ROS) production and a mediator of ischaemia/reperfusion damage in ex vivo hearts. Hence, we hypothesized that p66Shc may be involved in ischaemia/reperfusion brain damage. To this end, we investigated whether genetic deletion of p66Shc protects from ischaemia/reperfusion brain injury. Methods and results Transient middle cerebral artery occlusion (MCAO) was performed to induce ischaemia/reperfusion brain injury in wild-type (Wt) and p66Shc knockout mice (p66Shc−/−), followed by 24 h of reperfusion. Cerebral blood flow and blood pressure measurements revealed comparable haemodynamics in both experimental groups. Neuronal nuclear antigen immunohistochemical staining showed a significantly reduced stroke size in p66Shc−/− when compared with Wt mice (P < 0.05, n = 7-8). In line with this, p66Shc−/− mice exhibited a less impaired neurological function and a decreased production of free radicals locally and systemically (P < 0.05, n = 4-5). Following MCAO, protein levels of gp91phox nicotinamide adenine dinucleotide phosphate oxidase subunit were increased in brain homogenates of Wt (P < 0.05, n = 4), but not of p66Shc−/− mice. Further, reperfusion injury in Wt mice induced p66Shc protein in the basilar and middle cerebral artery, but not in brain tissue, suggesting a predominant involvement of vascular p66Shc. Conclusion In the present study, we show that the deletion of the ageing gene p66Shc protects mice from ischaemia/reperfusion brain injury through a blunted production of free radicals. The ROS mediator p66Shc may represent a novel therapeutical target for the treatment of ischaemic strok

    GlacierMIP – A model intercomparison of global-scale glacier mass-balance models and projections

    Get PDF
    Global-scale 21st-century glacier mass change projections from six published global glacier models are systematically compared as part of the Glacier Model Intercomparison Project. In total 214 projections of annual glacier mass and area forced by 25 General Circulation Models (GCMs) and four Representative Concentration Pathways (RCP) emission scenarios and aggregated into 19 glacier regions are considered. Global mass loss of all glaciers (outside the Antarctic and Greenland ice sheets) by 2100 relative to 2015 averaged over all model runs varies from 18 ± 7% (RCP2.6) to 36 ± 11% (RCP8.5) corresponding to 94 ± 25 and 200 ± 44 mm sea-level equivalent (SLE), respectively. Regional relative mass changes by 2100 correlate linearly with relative area changes. For RCP8.5 three models project global rates of mass loss (multi-GCM means) of >3 mm SLE per year towards the end of the century. Projections vary considerably between regions, and also among the glacier models. Global glacier mass changes per degree global air temperature rise tend to increase with more pronounced warming indicating that mass-balance sensitivities to temperature change are not constant. Differences in glacier mass projections among the models are attributed to differences in model physics, calibration and downscaling procedures, initial ice volumes and varying ensembles of forcing GCMs
    corecore