## SUPPLEMENTARY TABLES AND FIGURES

Hock, R., A., Bliss, R. Giesen, B. Marzeion, Y. Hirabayashi, M. Huss, V. Radic, A. Slangen (2019). GlacierMIP - A model intercomparison of global-scale glacier mass-balance models and projections. *J. Glaciol*.

## **Supplementary Tables**

Table S1. General Circulation Models (GCM) used by participating glacier models. (p. 2)

**Table S2**. Initial regional glacier area  $(km^2)$  in 2015 for five glacier models. (p. 3)

**Table S3.** Initial regional glacier mass (mm sea-level equivalent, SLE) in 2015 for all six glacier models. (p. 4)

## **Supplementary Figures**

**Fig. S1.** Projected time series of glacier evolution 2015 - 2100 for 19 regions, and globally excluding the Antarctic and Greenland periphery, based on RCP2.6. (*p. 5*)

**Fig. S2.** Projected time series of glacier evolution 2015 - 2100 for 19 regions, and globally excluding the Antarctic and Greenland periphery, based on RCP4.5. (*p. 6*)

**Fig. S3.** Fig. S3. Projected rates of mass change in m w.e.  $a^{-1}$  (specific mass balances) 2015 - 2100 for 19 regions, and globally excluding the Antarctic and Greenland periphery, based on RCP2.6. (*p. 7*)

**Fig. S4.** Fig. S3. Projected rates of mass change in m w.e.  $a^{-1}$  (specific mass balances) 2015 - 2100 for 19 regions, and globally excluding the Antarctic and Greenland periphery, based on RCP4.5. *(p. 8)* 

**Fig. S5.** Fig. S3. Projected rates of mass change in m w.e.  $a^{-1}$  (specific mass balances) 2015 - 2100 for 19 regions, and globally excluding the Antarctic and Greenland periphery, based on RCP8.5. *(p. 9)* 

**Fig. S6**. Projected rates of glacier net mass loss (m SLE  $a^{-1}$ ) 2015 – 2100 for 19 RGI regions from six glacier models using RCP2.6. (p. 10)

**Fig. S7**. Projected rates of glacier net mass loss (m SLE  $a^{-1}$ ) 2015 – 2100 for 19 RGI regions from six glacier models using RCP4.5. (p. 11)

**Table S1.** General Circulation Models (GCM) used by participating glacier models identified by their references and short names. The numbers 2.6, 4.5, 6.0 and 8.5 refer to the emission scenarios RCP2.6, RCP4.5, RCP6.0 and RCP8.5, respectively. The last four columns denote the number of glacier models forced by the same GCM and emission scenario (highlighted in bold if number  $\geq 4$ ). In total there are 214 model runs.

| GCM                  | Slangen and others (2012) |                  |                  |                  | Marzeion and others (2012) |                  |                  |                  | Giesen and<br>Oerlemans (2013)<br><i>GIE2013</i> |   |   | Hirabayashi and<br>others (2013)<br>HYOGA2 |   |   | Radic and others<br>(2014)<br>RAD2014 |                  |   | Huss and Hock (2015)<br>GloGEM |   |                  | Number of glacier<br>models |                  |                  |                  |    |    |    |    |
|----------------------|---------------------------|------------------|------------------|------------------|----------------------------|------------------|------------------|------------------|--------------------------------------------------|---|---|--------------------------------------------|---|---|---------------------------------------|------------------|---|--------------------------------|---|------------------|-----------------------------|------------------|------------------|------------------|----|----|----|----|
| SLA20                |                           | SLA2012          |                  |                  | MAR2012                    |                  |                  | <mark>2.6</mark> |                                                  |   |   |                                            |   |   |                                       |                  |   |                                |   |                  | <mark>4.5</mark>            | <mark>6.0</mark> | <mark>8.5</mark> |                  |    |    |    |    |
| ACCESS1-0            |                           | 4.5              |                  | <mark>8.5</mark> |                            |                  |                  |                  |                                                  |   |   |                                            |   |   |                                       |                  |   |                                |   |                  |                             |                  |                  |                  | 0  | 1  | 0  | 1  |
| BCC-CSM1-1           | 2.6                       | 4.5              | <mark>6.0</mark> | 8.5              | <mark>2.6</mark>           | 4.5              | <mark>6.0</mark> | 8.5              |                                                  |   |   |                                            |   |   |                                       |                  |   | 4.5                            |   | 8.5              | 2.6                         | 4.5              |                  | <mark>8.5</mark> | 3  | 4  | 2  | 4  |
| BNU-ESM              |                           |                  |                  |                  |                            |                  |                  |                  | 2.6                                              |   |   | <mark>8.5</mark>                           |   |   |                                       |                  |   |                                |   |                  |                             |                  |                  |                  | 1  | 0  | 0  | 1  |
| CanESM2              |                           | 4.5              |                  | <mark>8.5</mark> | <mark>2.6</mark>           | <mark>4.5</mark> |                  | <mark>8.5</mark> |                                                  |   |   |                                            |   |   |                                       | <mark>8.5</mark> |   | <mark>4.5</mark>               |   | 8.5              | <mark>2.6</mark>            | <mark>4.5</mark> |                  | <mark>8.5</mark> | 2  | 4  | 0  | 5  |
| CCSM4                |                           |                  |                  |                  | 2.6                        | 4.5              | <mark>6.0</mark> | 8.5              | 2.6                                              |   |   | <mark>8.5</mark>                           |   |   |                                       | 8.5              |   | 4.5                            |   | 8.5              | 2.6                         | 4.5              |                  | 8.5              | 3  | 3  | 1  | 5  |
| CNRM-CM5             |                           | 4.5              |                  | <mark>8.5</mark> | <mark>2.6</mark>           | <mark>4.5</mark> |                  | 8.5              | 2.6                                              |   |   | <mark>8.5</mark>                           |   |   |                                       | <mark>8.5</mark> |   | <mark>4.5</mark>               |   | 8.5              | <mark>2.6</mark>            | <mark>4.5</mark> |                  | 8.5              | 3  | 4  | 0  | 6  |
| CSIRO-Mk3-6-0        | 2.6                       | 4.5              | <mark>6.0</mark> | 8.5              | 2.6                        | 4.5              | <mark>6.0</mark> | 8.5              | 2.6                                              |   |   | 8.5                                        |   |   |                                       |                  |   | 4.5                            |   | 8.5              | 2.6                         | 4.5              |                  | 8.5              | 4  | 4  | 2  | 5  |
| GFDL-CM3             |                           |                  |                  |                  | 2.6                        | 4.5              | <mark>6.0</mark> | 8.5              |                                                  |   |   |                                            |   |   |                                       |                  |   | 4.5                            |   | 8.5              |                             | 4.5              |                  | 8.5              | 1  | 3  | 1  | 3  |
| GFDL-ESM2G           |                           | 4.5              |                  | 8.5              |                            |                  |                  |                  | 2.6                                              |   |   | <mark>8.5</mark>                           |   |   |                                       | <mark>8.5</mark> |   |                                |   |                  |                             |                  |                  |                  | 1  | 1  | 0  | 3  |
| GFDL-ESM2M           |                           | 4.5              |                  | 8.5              |                            |                  |                  |                  |                                                  |   |   |                                            |   |   |                                       |                  |   |                                |   |                  |                             |                  |                  |                  | 0  | 1  | 0  | 1  |
| GISS-E2-R            |                           | 4.5              |                  | 8.5              |                            | 4.5              | <mark>6.0</mark> | 8.5              |                                                  |   |   |                                            |   |   |                                       |                  |   | 4.5                            |   | 8.5              | 2.6                         | <mark>4.5</mark> |                  | <mark>8.5</mark> | 1  | 4  | 1  | 4  |
| HadGEM2-AO           |                           |                  |                  |                  |                            |                  |                  |                  | 2.6                                              |   |   | <mark>8.5</mark>                           |   |   |                                       |                  |   |                                |   |                  |                             |                  |                  |                  | 1  | 0  | 0  | 1  |
| HadGEM2-CC           |                           | 4.5              |                  | 8.5              |                            |                  |                  |                  |                                                  |   |   |                                            |   |   |                                       |                  |   |                                |   |                  |                             |                  |                  |                  | 0  | 1  | 0  | 1  |
| HadGEM2-ES           | <mark>2.6</mark>          | 4.5              | <mark>6.0</mark> | 8.5              | <mark>2.6</mark>           | <mark>4.5</mark> | <mark>6.0</mark> | <mark>8.5</mark> |                                                  |   |   |                                            |   |   |                                       |                  |   | <mark>4.5</mark>               |   | 8.5              | <mark>2.6</mark>            | <mark>4.5</mark> |                  | <mark>8.5</mark> | 3  | 4  | 2  | 4  |
| INM-CM4              |                           | 4.5              |                  | 8.5              |                            | 4.5              |                  | 8.5              |                                                  |   |   |                                            |   |   |                                       | 8.5              |   | 4.5                            |   | 8.5              |                             | 4.5              |                  | 8.5              | 0  | 4  | 0  | 5  |
| IPSL-CM5A-LR         | <mark>2.6</mark>          | 4.5              | <mark>6.0</mark> | 8.5              | 2.6                        | <mark>4.5</mark> | <mark>6.0</mark> | 8.5              | 2.6                                              |   |   | <mark>8.5</mark>                           |   |   |                                       |                  |   | 4.5                            |   | 8.5              | <mark>2.6</mark>            | <mark>4.5</mark> |                  | 8.5              | 4  | 4  | 2  | 5  |
| IPSL-CM5A-MR         |                           | 4.5              |                  | 8.5              |                            |                  |                  |                  | 2.6                                              |   |   | <mark>8.5</mark>                           |   |   |                                       |                  |   |                                |   |                  |                             |                  |                  |                  | 1  | 1  | 0  | 2  |
| MIROC-ESM            |                           | 4.5              |                  | 8.5              | <mark>2.6</mark>           | <mark>4.5</mark> | <mark>6.0</mark> | <mark>8.5</mark> | 2.6                                              |   |   | <mark>8.5</mark>                           |   |   |                                       |                  |   | <mark>4.5</mark>               |   | 8.5              | <mark>2.6</mark>            | <mark>4.5</mark> |                  | <mark>8.5</mark> | 3  | 4  | 1  | 5  |
| 5MIROC-ESM-<br>CHEM  |                           | <mark>4.5</mark> |                  | <mark>8.5</mark> |                            |                  |                  |                  | <mark>2.6</mark>                                 |   |   | <mark>8.5</mark>                           |   |   |                                       |                  |   |                                |   |                  |                             |                  |                  |                  | 1  | 1  | 0  | 2  |
| MIROC5               | 2.6                       | <mark>4.5</mark> | <mark>6.0</mark> | <mark>8.5</mark> | <mark>2.6</mark>           | <mark>4.5</mark> | <mark>6.0</mark> | 8.5              | 2.6                                              |   |   | <mark>8.5</mark>                           |   |   |                                       |                  |   |                                |   |                  |                             |                  |                  |                  | 3  | 2  | 2  | 3  |
| MPI-ESM-LR           |                           | 4.5              |                  | 8.5              | <mark>2.6</mark>           | <mark>4.5</mark> |                  | 8.5              | 2.6                                              |   |   | <mark>8.5</mark>                           |   |   |                                       | <mark>8.5</mark> |   | <mark>4.5</mark>               |   | <mark>8.5</mark> | <mark>2.6</mark>            | <mark>4.5</mark> |                  | <mark>8.5</mark> | 3  | 4  | 0  | 6  |
| MPI-ESM-MR           |                           | <mark>4.5</mark> |                  | <mark>8.5</mark> |                            |                  |                  |                  | 2.6                                              |   |   | <mark>8.5</mark>                           |   |   |                                       |                  |   |                                |   |                  |                             |                  |                  |                  | 1  | 1  | 0  | 2  |
| MRI-CGCM3            |                           | 4.5              |                  | 8.5              | <mark>2.6</mark>           | <mark>4.5</mark> | <mark>6.0</mark> | <mark>8.5</mark> | 2.6                                              |   |   | <mark>8.5</mark>                           |   |   |                                       | <mark>8.5</mark> |   | <mark>4.5</mark>               |   | 8.5              | <mark>2.6</mark>            | <mark>4.5</mark> |                  | <mark>8.5</mark> | 3  | 4  | 1  | 6  |
| NorESM1-M            |                           | 4.5              |                  | 8.5              | <mark>2.6</mark>           | <mark>4.5</mark> | <mark>6.0</mark> | 8.5              | <mark>2.6</mark>                                 |   |   | 8.5                                        |   |   |                                       | 8.5              |   | <mark>4.5</mark>               |   | 8.5              | <mark>2.6</mark>            | <mark>4.5</mark> |                  | 8.5              | 3  | 4  | 1  | 6  |
| NorESM1-ME           |                           | 4.5              |                  | 8.5              |                            |                  |                  |                  | <mark>2.6</mark>                                 |   |   | <mark>8.5</mark>                           |   |   |                                       |                  |   |                                |   |                  |                             |                  |                  |                  | 1  | 1  | 0  | 2  |
| Number of model runs | 5                         | 21               | 5                | 21               | 13                         | 15               | 11               | 15               | 16                                               | 0 | 0 | 16                                         | 0 | 0 | 0                                     | 8                | 0 | 14                             | 0 | 14               | 12                          | 14               | 0                | 14               | 46 | 64 | 16 | 88 |

**Table S2**. **Initial regional glacier area (km<sup>2</sup>) in 2015 for five glacier models**. Values refer to arithmetic mean  $\pm$  standard deviation of all model runs with the same glacier model forced by each model's set of GCM and RCP. Areas in 2015 vary for the same model since model simulations start before 2015, and the evolving area depends on the climate scenario. *Mean* refers to the arithmetic mean of all six models' multi-scenario means ( $\pm$  their standard deviation). *Min* and *Max* refers to the minimum and maximum area of the models' multi-scenario means. Global area, global area excluding the Antarctic periphery (A), and global area excluding the Antarctic and Greenland periphery (A+G) are also given. Area data for SLA2012 are not available.

| Region              | MAR2012       | GIE2013        | HYOGA2       | RAD2014       | GloGEM        | Mean           | Min     | Max     |
|---------------------|---------------|----------------|--------------|---------------|---------------|----------------|---------|---------|
| Alaska*             | 84,549±956    | 747,69±10768   | 89,732±768   | 85,699±2247   | 85,049±873    | 83,959±5530    | 7,4769  | 89,732  |
| W Canada & US       | 12,754±640    | 107,86±1709    | 13,717±287   | 11,859±610    | 12,535±488    | 12,330±1090    | 10,786  | 13,717  |
| Arctic Canada N     | 103,941±316   | 108,569±13978  | 104,667±207  | 104,068±278   | 103,639±403   | 104,977±2043   | 103,639 | 108,569 |
| Arctic Canada S     | 39,425±494    | 39,526±4782    | 40,610±223   | 39,590±708    | 39,913±320    | 39,813±482     | 39,425  | 40,610  |
| Greenland           | 85,878±1530   | 116,918±12574  | _            | 87,653±1139   | 87,729±724    | 94,545±14940   | 85,878  | 116,918 |
| Iceland             | 10,910±82     | 10,389±1077    | 10,835±91    | 10,942±199    | 10,567±228    | 10,728±240     | 10,389  | 10,942  |
| Svalbard            | 32,833±644    | 31,961±4675    | 33,356±303   | 32,786±307    | 33,548±329    | 32,897±618     | 31,961  | 33,548  |
| Scandinavia         | 2,545±120     | 2,481±398      | 2,693±36     | 2,618±155     | 2,515±157     | 2,571±85       | 2,481   | 2,693   |
| Russian Arctic      | 50,670±582    | 50,149±5416    | 51,855±34    | 51,434±66     | 50,134±354    | 50,849±773     | 50,134  | 51,855  |
| North Asia          | $3,008\pm79$  | 2,515±421      | 2,667±32     | 2,181±109     | 2,491±101     | 2,573±301      | 2,181   | 3,008   |
| Central Europe      | 1,640±147     | 1,479±288      | 1,985±49     | 1,811±92      | 1,756±80      | 1,734±189      | 1,479   | 1,985   |
| Caucasus            | $1,150\pm41$  | 940±170        | $1,108\pm14$ | 769±63        | 965±51        | 986±151        | 769     | 1,150   |
| Central Asia        | 475,17±1262   | 55,371±8530    | 60,176±582   | 64,452±1511   | 60,118±1381   | 57,527±6453    | 47,517  | 64,452  |
| South Asia W        | 29,162±517    | 28,236±4731    | 31,198±368   | 3,4311±1424   | 32,192±768    | 31,020±2421    | 28,236  | 3,4311  |
| South Asia E        | 188,87±435    | 15,243±2686    | 20,858±254   | 20,157±841    | 20,328±750    | 19,095±2271    | 15,243  | 20,858  |
| Low Latitudes       | 1,721±97      | 4,908±798      | 4,198±171    | 1,959±115     | 1,852±145     | 2,927±1507     | 1,721   | 4,908   |
| Southern Andes      | 27,928±339    | 30,392±3419    | 29,572±506   | 30,095±364    | 27,500±504    | 29,097±1305    | 27,500  | 30,392  |
| New Zealand         | 723±81        | $1,438\pm240$  | 850±114      | 1,028±65      | 1,215±30      | 1,051±285      | 723     | 1,438   |
| Antarctic periphery | -             | 160,029±19,223 | -            | 122452±758    | 122381±468    | 134,954±21,716 | 122,381 | 160,029 |
| Global excl. A+G    | 469,363±44,59 | 469,153±63,373 | 500,077±2892 | 495,758±6,281 | 486,315±3,255 | 484,133±14,463 | 469,153 | 500,077 |
| Global excl. A      | 555,241±57,13 | 586,071±75,933 | -            | 583,411±7,248 | 574,045±3,769 | 574,692±13,956 | 555,241 | 586,071 |
| Global              | -             | 746,100±95,095 | -            | 705,863±7,317 | 696,425±3,915 | 716,129±26,381 | 696,425 | 746,100 |

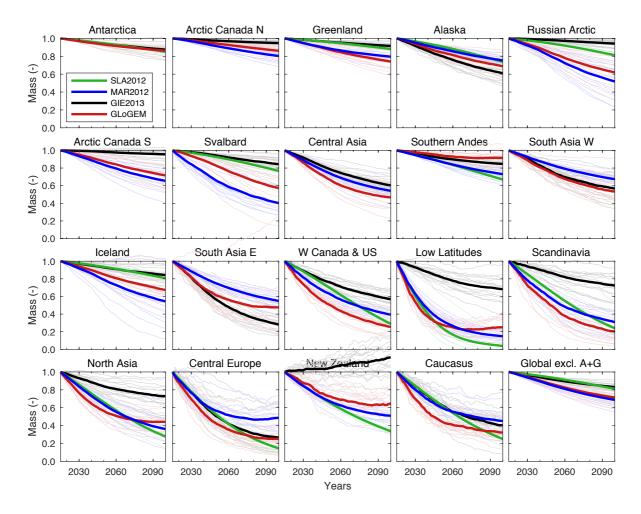
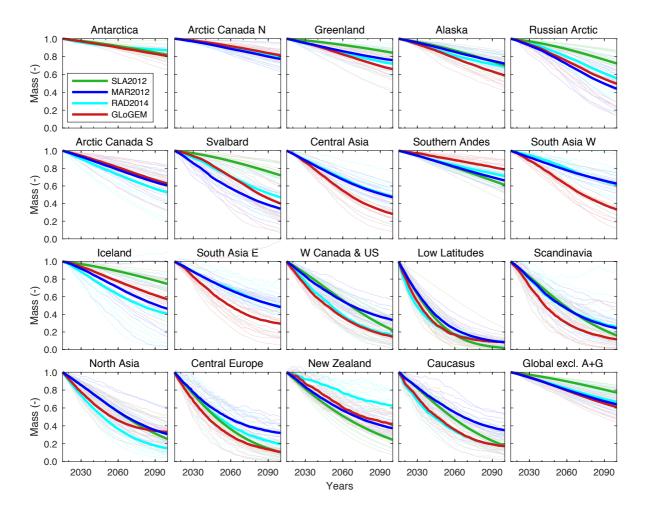
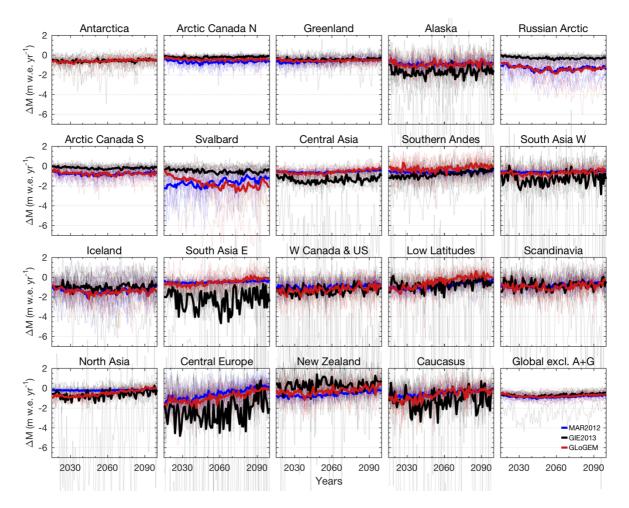

\*including adjacent glaciers in the Yukon Territory and British Columbia.

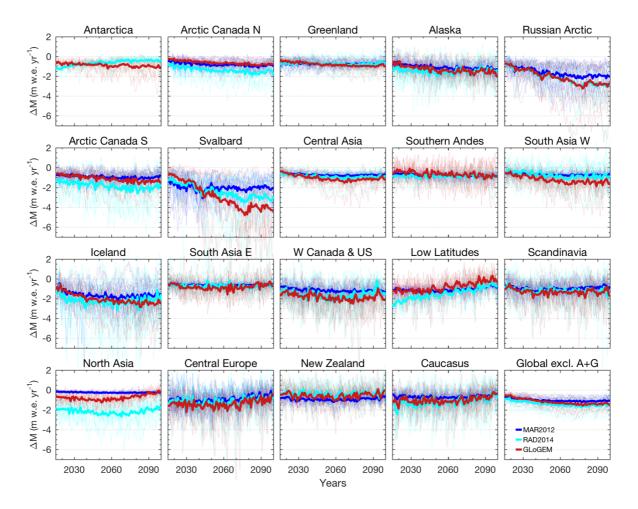
Table S3. Initial regional glacier mass (mm sea-level equivalent, SLE) in 2015 for all six glacier models. Values refer to arithmetic mean  $\pm$  standard deviation of all model runs with the same glacier model forced by each model's set of GCM and RCP. Volumes in 2015 vary for the same model since model simulations start before 2015, and the evolving volume depends on the climate scenario. *Mean* refers to the arithmetic mean of all 6 models' multi-scenario means ( $\pm$  their standard deviation). *Min* and *Max* refers to the minimum and maximum mass of the models' multi-scenario means. Global volume, global volume excluding the Antarctic periphery (A), and global area excluding the Antarctic and Greenland periphery (A+G) are also given.


| Region           | SLA2012       | MAR2012        | GIE2013       | HYOGA2         | RAD2014         | GloGEM         | Mean           | Min   | Max   |
|------------------|---------------|----------------|---------------|----------------|-----------------|----------------|----------------|-------|-------|
| Alaska           | 77.2±0.4      | 59.8±0.7       | 46.8±1.2      | 57.6±0.4       | 73.3±1.4        | 47.9±0.5       | 60.4±12.6      | 46.8  | 73.3  |
| W Canada & USA   | $4.7 \pm 0.1$ | 2.5±0.1        | 4.1±0.1       | 4.9±0.1        | 2.5±0.2         | 2.3±0.1        | 3.5±1.2        | 2.3   | 4.9   |
| Arctic Canada N  | 224.7±0.4*    | 80.2±1.7       | 87.9±0.2      | 153.1±0.2      | 150.1±1.0       | 74.6±0.4       | 128.5±58.7     | 74.6  | 153.1 |
| Arctic Canada S  | -             | $17.4 \pm 0.6$ | 36.8±0.2      | 26.4±0.1       | 24.2±0.7        | $20.8 \pm 0.2$ | 25.1±7.4       | 17.4  | 36.8  |
| Greenland        | 42.9±0.1      | 50.3±1.1       | 133.1±0.5     | -              | 45.2±0.8        | 37.6±0.3       | 61.8±40.1      | 37.6  | 133.1 |
| Iceland          | 13.3±0.0      | 6.8±0.6        | 12.8±0.2      | $11.8\pm0.1$   | $6.8 \pm 0.4$   | 8.7±0.2        | $10.0 \pm 3.0$ | 6.8   | 12.8  |
| Svalbard         | 27.7±0.1      | 16.0±1.3       | 17.8±0.2      | 25.1±0.2       | 23.7±0.4        | 21.9±0.3       | 22.0±4.4       | 16    | 25.1  |
| Scandinavia      | $0.5 \pm 0.0$ | $0.4{\pm}0.0$  | $1.0\pm0.0$   | $0.7{\pm}0.0$  | $0.5 \pm 0.0$   | $0.3 \pm 0.0$  | $0.6\pm0.2$    | 0.3   | 1.0   |
| Russian Arctic   | 47.5±0.2      | $28.3 \pm 0.9$ | 56.5±0.2      | $111.0\pm0.1$  | 47.7±0.3        | 33.4±0.3       | 54.1±29.7      | 28.3  | 111   |
| North Asia       | $0.4{\pm}0.0$ | $0.2\pm0.0$    | $0.6\pm0.0$   | $0.9\pm0.0$    | $0.6 \pm 0.0$   | $0.3 \pm 0.0$  | 0.5±0.3        | 0.2   | 0.9   |
| Central Europe   | $0.4{\pm}0.0$ | 0.3±0.0        | $0.3 \pm 0.0$ | $0.6\pm0.0$    | $0.3 \pm 0.0$   | 0.3±0.0        | 0.3±0.1        | 0.3   | 0.6   |
| Caucasus         | $0.2{\pm}0.0$ | $0.2\pm0.0$    | $0.2 \pm 0.0$ | $0.4{\pm}0.0$  | $0.1 \pm 0.0$   | $0.1 \pm 0.0$  | $0.2\pm0.1$    | 0.1   | 0.4   |
| Central Asia     | 33.0±1.1**    | 9.8±0.3        | 25.6±0.5      | $23.2 \pm 0.2$ | $16.5 \pm 0.5$  | $10.9 \pm 0.6$ | 19.8±9.1       | 9.8   | 25.6  |
| South Asia W     | -             | 8.9±0.2        | 9.0±0.3       | $14.8 \pm 0.2$ | $11.8\pm0.4$    | 8.0±0.3        | $10.5 \pm 2.8$ | 8     | 14.8  |
| South Asia E     | -             | 3.5±0.1        | $3.5 \pm 0.2$ | 7.4±0.1        | 4.4±0.2         | 3.0±0.2        | 4.3±1.8        | 3     | 7.4   |
| Low Latitudes    | $0.7 \pm 0.1$ | $0.2\pm0.0$    | $1.7\pm0.1$   | 1.1±0.1        | $0.2{\pm}0.0$   | $0.2 \pm 0.0$  | $0.7 \pm 0.6$  | 0.2   | 1.7   |
| Southern Andes   | 19.1±0.2      | 12.6±0.2       | 32.7±0.3      | $13.4 \pm 0.2$ | $17.8\pm0.2$    | 14.3±0.2       | $18.3 \pm 7.5$ | 12.6  | 32.7  |
| New Zealand      | $0.2{\pm}0.0$ | $0.1 \pm 0.0$  | $0.4{\pm}0.0$ | $0.3 \pm 0.1$  | $0.2{\pm}0.0$   | $0.2 \pm 0.0$  | $0.2\pm0.1$    | 0.1   | 0.4   |
| Antarctic        | 164.2±0.6     | -              | 151.5±1.4     | -              | 126.6±0.8       | 115.6±0.6      | 139.5±22.3     | 115.6 | 151.5 |
| periphery        |               |                |               |                |                 |                |                |       |       |
| Global excl. A+G | 449.8±2.0     | 247.3±4.8      | 337.5±1.6     | 452.6±1.4      | $380.7 \pm 3.8$ | 247.2±1.5      | 352.5±92.4     | 247.2 | 452.6 |
| Global excl. A   | 492.7±2.1     | 297.5±5.7      | 470.6±1.8     |                | 426.0±4.5       | 284.8±1.7      | 394.3±97.3     | 284.8 | 492.7 |
| Global           | 656.9±2.2     | -              | 622.1±2.4     |                | 552.6±4.5       | 400.4±1.9      | 558.0±113.4    | 400.4 | 656.9 |

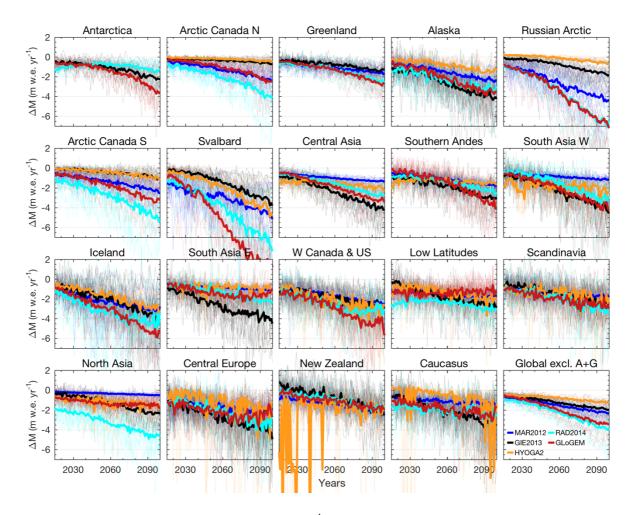
\*Volume includes both Arctic Canada N and S


\*\* Volume includes all three regions in High Mountain Asia (Central Asia, South Asia W, South Asia)

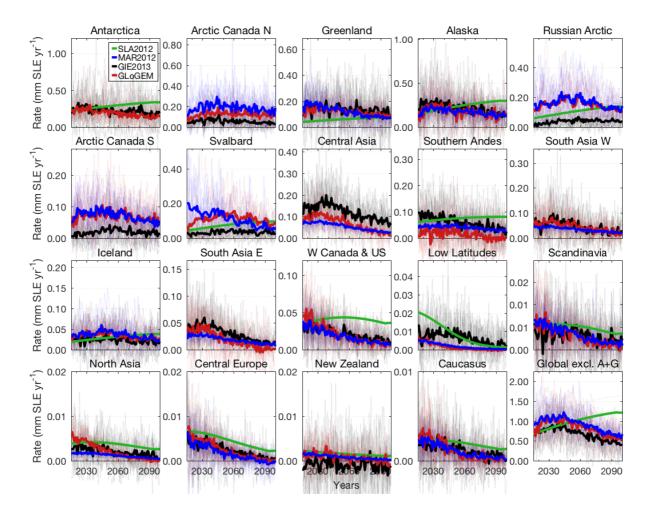



**Fig. S1.** Projected time series of glacier evolution 2015 - 2100 for 19 regions, and globally excluding the Antarctic and Greenland periphery (A+G), based on RCP2.6. Glacier mass is normalized to mass in 2015. Thick lines show multi-GCM means and thin lines mark the results from individual GCMs. Projections for the two Arctic Canada and three High Mountain Asia regions are not available spatially differentiated from SLA2012. Regions are sorted according to initial glacier mass in 2015.

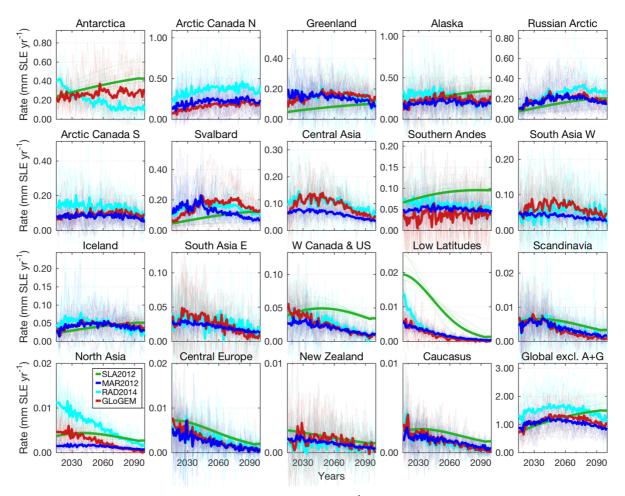



**Fig. S2**. Projected time series of glacier evolution 2015 - 2100 for 19 regions, and globally excluding the Antarctic and Greenland periphery (A+G), based on RCP4.5. Glacier mass is normalized to mass in 2015. Thick lines show multi-GCM means and thin lines mark the results from individual GCMs. Projections for the two Arctic Canada and three High Mountain Asia regions are not available spatially differentiated from SLA2012. Regions are sorted according to initial glacier mass in 2015.




**Fig. S3**. Projected rates of mass change in m w.e.  $a^{-1}$  (specific mass balances) 2015 - 2100 for 19 regions, and globally excluding the Antarctic and Greenland periphery (A+G), based on RCP2.6. Thick lines show multi-GCM means and thin lines mark the results from individual GCMs. Regions are sorted according to initial glacier mass in 2015.




**Fig. S4**. Projected rates of mass change in m w.e.  $a^{-1}$  (specific mass balances) 2015 - 2100 for 19 regions, and globally excluding the Antarctic and Greenland periphery (A+G), based on RCP4.5. Thick lines show multi-GCM means and thin lines mark the results from individual GCMs. Regions are sorted according to initial glacier mass in 2015.



**Fig. S5**. Projected rates of mass change in m w.e.  $a^{-1}$  (specific mass balances) 2015 - 2100 for 19 regions, and globally excluding Antarctica and Greenland periphery (A+G), based on RCP8.5. Thick lines show multi-GCM means and thin lines mark the results from individual GCMs. Regions are sorted according to initial glacier mass in 2015.



**Fig. S6**. Projected rates of glacier net mass loss (m SLE  $a^{-1}$ ) 2015 – 2100 for 19 RGI regions from six glacier models using RCP2.6. Also shown are global mass losses excluding the Antarctic and Greenland periphery (A+G), based on RCP2.6. Projections for the two Arctic Canada and three High Mountain Asia regions are not available spatially differentiated from SLA2012. Regions are sorted according to initial glacier mass in 2015.



**Fig. S7**. Projected rates of glacier net mass loss (m SLE  $a^{-1}$ ) 2015 – 2100 for 19 RGI regions from six glacier models using RCP4.5. Also shown are global mass losses excluding the Antarctic and Greenland periphery (A+G). Projections for the two Arctic Canada and three High Mountain Asia regions are not available spatially differentiated from SLA2012. Regions are sorted according to initial glacier mass in 2015.