207 research outputs found

    Hepatic RNA interference: delivery by synthetic vectors

    Get PDF
    Though the pharmaceutical industry’s infatuation with the therapeutic potential of RNA interference (RNAi) technology has finally come down from its initial lofty levels,[1] hope is by no means lost for the once-burgeoning enterprise, as recent clinical trials are beginning to show efficacy in areas ranging from amyloidosis to hypercholesterolemia to muscular dystrophy. With such resurgence comes a more informed perspective on the needs of such therapeutics: a renewed focus on true RNA drug development, and a desire for enhanced site-specific delivery.[2] In this review, we will discuss the latter with regard to hepatic targeting by synthetic vectors, covering the implications of organ and cellular physiology on conjugate structure, particle morphology, and active targeting. In presenting efficacy in a variety of disease models, we emphasize as well the extraordinary degree to which synthetic formulation improves upon and coordinates efforts with oligonucleotide development. Such advances in the understanding of and the technology behind RNAi have the potential to finally stabilize the long-term prospects RNA therapeutic development

    Autonomous Legged Hill and Stairwell Ascent

    Get PDF
    This paper documents near-autonomous negotiation of synthetic and natural climbing terrain by a rugged legged robot, achieved through sequential composition of appropriate perceptually triggered locomotion primitives. The first, simple composition achieves autonomous uphill climbs in unstructured outdoor terrain while avoiding surrounding obstacles such as trees and bushes. The second, slightly more complex composition achieves autonomous stairwell climbing in a variety of different buildings. In both cases, the intrinsic motor competence of the legged platform requires only small amounts of sensory information to yield near-complete autonomy. Both of these behaviors were developed using X-RHex, a new revision of RHex that is a laboratory on legs, allowing a style of rapid development of sensorimotor tasks with a convenience near to that of conducting experiments on a lab bench. Applications of this work include urban search and rescue as well as reconnaissance operations in which robust yet simple-to-implement autonomy allows a robot access to difficult environments with little burden to a human operator

    A Highly Efficient Synthetic Vector: Nonhydrodynamic Delivery of DNA to Hepatocyte Nuclei in Vivo

    Get PDF
    Multifunctional membrane-core nanoparticles, composed of calcium phosphate cores, arginine-rich peptides, cationic and PEGylated lipid membranes, and galactose targeting ligands, have been developed as synthetic vectors for efficient nuclear delivery of plasmid DNA and subsequent gene expression in hepatocytes in vivo. Targeted particles exhibited rapid and extensive hepatic accumulation and were predominantly internalized by hepatocytes, while the inclusion of such peptides in LCP was sufficient to elicit high degrees of nuclear translocation of plasmid DNA. Monocyclic CR8C significantly enhanced in vivo gene expression over ten-fold more than linear CR8C, likely due to a release-favoring mechanism of the DNA/peptide complex. Though 100-fold lower in activity than that achieved via hydrodynamic injection, this formulation presents as a much less invasive alternative. To our knowledge, this is the most effective synthetic vector for liver gene transfer

    Low energy inner valence ionization of the rare gases

    Get PDF
    Matthew A. Haynes, Birgit Lohmann, D. A. Biava, R. P. McEachran, C. T. Whelan, and D. H. Madiso

    Comparative study of argon 3p electron-impact ionization at low energies

    Get PDF
    (c) 2001 The American Physical SocietyAn experimental and theoretical study of electron-impact ionization of the 3p orbital in argon is presented. The (e,2e) technique was used to measure the relative triple-differential cross section for this process in the coplanar asymmetric geometry. The experimental results were obtained at an incident electron energy of 113.5 eV, a scattering angle of 15°, and ejected electron energies of 10, 7.5, 5, and 2 eV. The experimental data are compared with a distorted-wave Born approximation (DWBA) calculation, and also with previous results for argon 3s ionization obtained under identical kinematic conditions. Discrepancies between the experimental and theoretical data are attributed to the effects of charge-cloud polarization and higher-order scattering processes, which are not incorporated in the DWBA calculation.Haynes, Matthew A. and Lohmann, Birgi

    Measurement of residual stresses in surrogate coated nuclear fuel particles using ring-core focussed ion beam digital image correlation

    Get PDF
    Coated fuel particles, most commonly tri-structural isotropic (TRISO), are intended for application in several designs of advanced nuclear reactors. A complete understanding of the residual stresses and local properties of these particles through their entire lifecycle is required to inform fuel element manufacturing, reactor operation, accident scenarios, and reprocessing. However, there is very little experimental data available in the literature on the magnitude of residual stresses in the individual coating layers of these particles. This work applies ring-core focussed ion beam milling combined with digital image correlation analysis (FIB-DIC) to cross-sections of TRISO and pyrolytic carbon coatings in surrogate coated fuel particles to evaluate the residual stresses. Tensile residual hoop stresses are identified in both pyrolytic carbon layers, while silicon carbide experiences a compressive residual hoop stress. Note that these residual stresses, which were not accounted for in the models reported in open literature, have magnitudes comparable to the stresses predicted to arise in real fuel particles during service. A 2D linear-elastic continuum-based finite element analysis has been conducted to investigate the stress relaxation phenomena caused by sectioning stressed coatings on spherical particles. The FIB-DIC method established here is independent of radiation defects and can be applied to irradiated TRISO particles to retrieve first-hand information regarding the residual stress evolution during service

    Cell salvage and donor blood transfusion during cesarean section: A pragmatic, multicentre randomised controlled trial (SALVO)

    Get PDF
    BACKGROUND: Excessive haemorrhage at cesarean section requires donor (allogeneic) blood transfusion. Cell salvage may reduce this requirement. METHODS AND FINDINGS: We conducted a pragmatic randomised controlled trial (at 26 obstetric units; participants recruited from 4 June 2013 to 17 April 2016) of routine cell salvage use (intervention) versus current standard of care without routine salvage use (control) in cesarean section among women at risk of haemorrhage. Randomisation was stratified, using random permuted blocks of variable sizes. In an intention-to-treat analysis, we used multivariable models, adjusting for stratification variables and prognostic factors identified a priori, to compare rates of donor blood transfusion (primary outcome) and fetomaternal haemorrhage ≥2 ml in RhD-negative women with RhD-positive babies (a secondary outcome) between groups. Among 3,028 women randomised (2,990 analysed), 95.6% of 1,498 assigned to intervention had cell salvage deployed (50.8% had salvaged blood returned; mean 259.9 ml) versus 3.9% of 1,492 assigned to control. Donor blood transfusion rate was 3.5% in the control group versus 2.5% in the intervention group (adjusted odds ratio [OR] 0.65, 95% confidence interval [CI] 0.42 to 1.01, p = 0.056; adjusted risk difference -1.03, 95% CI -2.13 to 0.06). In a planned subgroup analysis, the transfusion rate was 4.6% in women assigned to control versus 3.0% in the intervention group among emergency cesareans (adjusted OR 0.58, 95% CI 0.34 to 0.99), whereas it was 2.2% versus 1.8% among elective cesareans (adjusted OR 0.83, 95% CI 0.38 to 1.83) (interaction p = 0.46). No case of amniotic fluid embolism was observed. The rate of fetomaternal haemorrhage was higher with the intervention (10.5% in the control group versus 25.6% in the intervention group, adjusted OR 5.63, 95% CI 1.43 to 22.14, p = 0.013). We are unable to comment on long-term antibody sensitisation effects. CONCLUSIONS: The overall reduction observed in donor blood transfusion associated with the routine use of cell salvage during cesarean section was not statistically significant. TRIAL REGISTRATION: This trial was prospectively registered on ISRCTN as trial number 66118656 and can be viewed on http://www.isrctn.com/ISRCTN66118656

    Mapping Polyclonal HIV-1 Antibody Responses via Next-Generation Neutralization Fingerprinting

    Get PDF
    Computational neutralization fingerprinting, NFP, is an efficient and accurate method for predicting the epitope specificities of polyclonal antibody responses to HIV-1 infection. Here, we present next-generation NFP algorithms that substantially improve prediction accuracy for individual donors and enable serologic analysis for entire cohorts. Specifically, we developed algorithms for: (a) selection of optimized virus neutralization panels for NFP analysis, (b) estimation of NFP prediction confidence for each serum sample, and (c) identification of sera with potentially novel epitope specificities. At the individual donor level, the next-generation NFP algorithms particularly improved the ability to detect multiple epitope specificities in a sample, as confirmed both for computationally simulated polyclonal sera and for samples from HIV-infected donors. Specifically, the next-generation NFP algorithms detected multiple specificities in twice as many samples of simulated sera. Further, unlike the first-generation NFP, the new algorithms were able to detect both of the previously confirmed antibody specificities, VRC01-like and PG9-like, in donor CHAVI 0219. At the cohort level, analysis of ~150 broadly neutralizing HIV-infected donor samples suggested a potential connection between clade of infection and types of elicited epitope specificities. Most notably, while 10E8-like antibodies were observed in infections from different clades, an enrichment of such antibodies was predicted for clade B samples. Ultimately, such largescale analyses of antibody responses to HIV-1 infection can help guide the design of epitope-specific vaccines that are tailored to take into account the prevalence of infecting clades within a specific geographic region. Overall, the next-generation NFP technology will be an important tool for the analysis of broadly neutralizing polyclonal antibody responses against HIV-1

    The GAAS Metagenomic Tool and Its Estimations of Viral and Microbial Average Genome Size in Four Major Biomes

    Get PDF
    Metagenomic studies characterize both the composition and diversity of uncultured viral and microbial communities. BLAST-based comparisons have typically been used for such analyses; however, sampling biases, high percentages of unknown sequences, and the use of arbitrary thresholds to find significant similarities can decrease the accuracy and validity of estimates. Here, we present Genome relative Abundance and Average Size (GAAS), a complete software package that provides improved estimates of community composition and average genome length for metagenomes in both textual and graphical formats. GAAS implements a novel methodology to control for sampling bias via length normalization, to adjust for multiple BLAST similarities by similarity weighting, and to select significant similarities using relative alignment lengths. In benchmark tests, the GAAS method was robust to both high percentages of unknown sequences and to variations in metagenomic sequence read lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard methodologies for metagenomic analysis may dramatically underestimate the abundance and importance of organisms with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of microbial and viral average genome lengths in over 150 metagenomes from four biomes to determine whether genome lengths vary consistently between and within biomes, and between microbial and viral communities from the same environment. Significant differences between biomes and within aquatic sub-biomes (oceans, hypersaline systems, freshwater, and microbialites) suggested that average genome length is a fundamental property of environments driven by factors at the sub-biome level. The behavior of paired viral and microbial metagenomes from the same environment indicated that microbial and viral average genome sizes are independent of each other, but indicative of community responses to stressors and environmental conditions

    Metagenomic Analysis of Respiratory Tract DNA Viral Communities in Cystic Fibrosis and Non-Cystic Fibrosis Individuals

    Get PDF
    The human respiratory tract is constantly exposed to a wide variety of viruses, microbes and inorganic particulates from environmental air, water and food. Physical characteristics of inhaled particles and airway mucosal immunity determine which viruses and microbes will persist in the airways. Here we present the first metagenomic study of DNA viral communities in the airways of diseased and non-diseased individuals. We obtained sequences from sputum DNA viral communities in 5 individuals with cystic fibrosis (CF) and 5 individuals without the disease. Overall, diversity of viruses in the airways was low, with an average richness of 175 distinct viral genotypes. The majority of viral diversity was uncharacterized. CF phage communities were highly similar to each other, whereas Non-CF individuals had more distinct phage communities, which may reflect organisms in inhaled air. CF eukaryotic viral communities were dominated by a few viruses, including human herpesviruses and retroviruses. Functional metagenomics showed that all Non-CF viromes were similar, and that CF viromes were enriched in aromatic amino acid metabolism. The CF metagenomes occupied two different metabolic states, probably reflecting different disease states. There was one outlying CF virome which was characterized by an over-representation of Guanosine-5′-triphosphate,3′-diphosphate pyrophosphatase, an enzyme involved in the bacterial stringent response. Unique environments like the CF airway can drive functional adaptations, leading to shifts in metabolic profiles. These results have important clinical implications for CF, indicating that therapeutic measures may be more effective if used to change the respiratory environment, as opposed to shifting the taxonomic composition of resident microbiota
    • …
    corecore