506 research outputs found
Recommended from our members
Arctic summer airmass transformation, surface inversions, and the surface energy budget
During the Arctic Clouds in Summer Experiment (ACSE) in summer 2014 a weeklong period of warm-air advection over melting sea ice, with the formation of a strong surface temperature inversion and dense fog, was observed. Based on an analysis of the surface energy budget, we formulated the hypothesis that, because of the airmass transformation, additional surface heating occurs during warm-air intrusions in a zone near the ice edge. To test this hypothesis, we explore all cases with surface inversions occurring during ACSE and then characterize the inversions in detail. We find that they always occur with advection from the south and are associated with subsidence. Analyzing only inversion cases over sea ice, we find two categories: one with increasing moisture in the inversion and one with constant or decreasing moisture with height. During surface inversions with increasing moisture with height, an extra 10–25 W m−2 of surface heating was observed, compared to cases without surface inversions; the surface turbulent heat flux was the largest single term. Cases with less moisture in the inversion were often cloud free and the extra solar radiation plus the turbulent surface heat flux caused by the inversion was roughly balanced by the loss of net longwave radiation
A FIRE-ACE/SHEBA Case Study of Mixed-Phase Arctic Boundary Layer Clouds: Entrainment Rate Limitations on Rapid Primary Ice Nucleation Processes
Observations of long-lived mixed-phase Arctic boundary layer clouds on 7 May 1998 during the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE)Arctic Cloud Experiment (ACE)Surface Heat Budget of the Arctic Ocean (SHEBA) campaign provide a unique opportunity to test understanding of cloud ice formation. Under the microphysically simple conditions observed (apparently negligible ice aggregation, sublimation, and multiplication), the only expected source of new ice crystals is activation of heterogeneous ice nuclei (IN) and the only sink is sedimentation. Large-eddy simulations with size-resolved microphysics are initialized with IN number concentration N(sub IN) measured above cloud top, but details of IN activation behavior are unknown. If activated rapidly (in deposition, condensation, or immersion modes), as commonly assumed, IN are depleted from the well-mixed boundary layer within minutes. Quasi-equilibrium ice number concentration N(sub i) is then limited to a small fraction of overlying N(sub IN) that is determined by the cloud-top entrainment rate w(sub e) divided by the number-weighted ice fall speed at the surface v(sub f). Because w(sub c) 10 cm/s, N(sub i)/N(sub IN)<< 1. Such conditions may be common for this cloud type, which has implications for modeling IN diagnostically, interpreting measurements, and quantifying sensitivity to increasing N(sub IN) (when w(sub e)/v(sub f)< 1, entrainment rate limitations serve to buffer cloud system response). To reproduce observed ice crystal size distributions and cloud radar reflectivities with rapidly consumed IN in this case, the measured above-cloud N(sub IN) must be multiplied by approximately 30. However, results are sensitive to assumed ice crystal properties not constrained by measurements. In addition, simulations do not reproduce the pronounced mesoscale heterogeneity in radar reflectivity that is observed
Recommended from our members
Insights on sources and formation mechanisms of liquid-bearing clouds over MOSAiC examined from a Lagrangian framework
Understanding Arctic stratiform liquid-bearing cloud life cycles and properly representing these life cycles in models is crucial for evaluations of cloud feedbacks as well as the faithfulness of climate projections for this rapidly warming region. Examination of cloud life cycles typically requires analyses of cloud evolution and origins on short time scales, on the order of hours to several days. Measurements from the recent Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition provide a unique view of the current state of the central Arctic over an annual cycle. Here, we use the MOSAiC radiosonde measurements to detect liquid-bearing cloud layers over full atmospheric columns and to examine the cloud-generating air masses’ properties. We perform 5-day (120 h) back-trajectory calculations for every detected cloud and cluster them using a unique set of variables extracted from these trajectories informed by ERA5 reanalysis data. This clustering method enables us to separate between the air mass source regions such as ice-covered Arctic and midlatitude open water. We find that moisture intrusions into the central Arctic typically result in multilayer liquid-bearing cloud structures and that more than half of multilayer profiles include overlying liquid-bearing clouds originating in different types of air masses. Finally, we conclude that Arctic cloud formation via prolonged radiative cooling of elevated stable subsaturated air masses circulating over the Arctic can occur frequently (up to 20% of detected clouds in the sounding data set) and may lead to a significant impact of ensuing clouds on the surface energy budget, including net surface warming in some cases.</p
Recommended from our members
Toward understanding of differences in current cloud retrievals of ARM ground-based measurements
Accurate observations of cloud microphysical properties are needed for evaluating
and improving the representation of cloud processes in climate models and better estimate
of the Earth radiative budget. However, large differences are found in current cloud
products retrieved from ground-based remote sensing measurements using various retrieval
algorithms. Understanding the differences is an important step to address uncertainties
in the cloud retrievals. In this study, an in-depth analysis of nine existing ground-based
cloud retrievals using ARM remote sensing measurements is carried out. We place
emphasis on boundary layer overcast clouds and high level ice clouds, which are the focus
of many current retrieval development efforts due to their radiative importance and
relatively simple structure. Large systematic discrepancies in cloud microphysical
properties are found in these two types of clouds among the nine cloud retrieval products,
particularly for the cloud liquid and ice particle effective radius. Note that the differences
among some retrieval products are even larger than the prescribed uncertainties reported by
the retrieval algorithm developers. It is shown that most of these large differences have
their roots in the retrieval theoretical bases, assumptions, as well as input and constraint
parameters. This study suggests the need to further validate current retrieval theories and
assumptions and even the development of new retrieval algorithms with more observations
under different cloud regimes
Atmospheric conditions during the Arctic Clouds in Summer Experiment (ACSE): Contrasting open-water and sea-ice surfaces during melt and freeze-up seasons
The Arctic Clouds in Summer Experiment (ACSE) was conducted during summer and early autumn 2014, providing a detailed view of the seasonal transition from ice melt into freeze-up. Measurements were taken over both ice-free and ice-covered surfaces near the ice edge, offering insight into the role of the surface state in shaping the atmospheric conditions. The initiation of the autumn freeze-up was related to a change in air mass, rather than to changes in solar radiation alone; the lower atmosphere cooled abruptly, leading to a surface heat loss. During melt season, strong surface inversions persisted over the ice, while elevated inversions were more frequent over open water. These differences disappeared during autumn freeze-up, when elevated inversions persisted over both ice-free and ice-covered conditions. These results are in contrast to previous studies that found a well-mixed boundary layer persisting in summer and an increased frequency of surface-based inversions in autumn, suggesting that knowledge derived from measurements taken within the pan-Arctic area and on the central ice pack does not necessarily apply closer to the ice edge. This study offers an insight into the atmospheric processes that occur during a crucial period of the year; understanding and accurately modeling these processes is essential for the improvement of ice-extent predictions and future Arctic climate projections
A New Class of Changing-Look LINERs
We report the discovery of six active galactic nuclei (AGN) caught "turning
on" during the first nine months of the Zwicky Transient Facility (ZTF) survey.
The host galaxies were classified as LINERs by weak narrow forbidden line
emission in their archival SDSS spectra, and detected by ZTF as nuclear
transients. In five of the cases, we found via follow-up spectroscopy that they
had transformed into broad-line AGN, reminiscent of the changing-look LINER
iPTF 16bco. In one case, ZTF18aajupnt/AT2018dyk, follow-up HST UV and
ground-based optical spectra revealed the transformation into a narrow-line
Seyfert 1 (NLS1) with strong [Fe VII, X, XIV] and He II 4686 coronal lines.
Swift monitoring observations of this source reveal bright UV emission that
tracks the optical flare, accompanied by a luminous soft X-ray flare that peaks
~60 days later. Spitzer follow-up observations also detect a luminous
mid-infrared flare implying a large covering fraction of dust. Archival light
curves of the entire sample from CRTS, ATLAS, and ASAS-SN constrain the onset
of the optical nuclear flaring from a prolonged quiescent state. Here we
present the systematic selection and follow-up of this new class of
changing-look LINERs, compare their properties to previously reported
changing-look Seyfert galaxies, and conclude that they are a unique class of
transients well-suited to test the uncertain physical processes associated with
the LINER accretion state.Comment: Submitted to ApJ, 31 pages, 17 Figures (excluding Appendix due to
file size constraints but will be available in electronic version
An Intercomparison of Microphysical Retrieval Algorithms for Upper Tropospheric Ice Clouds
The large horizontal extent, location in the cold upper troposphere, and ice composition make cirrus clouds important modulators of the earth's radiation budget and climate. Cirrus cloud microphysical properties are difficult to measure and model because they are inhomogeneous in nature and their ice crystal size distribution and habit are not well characterized. Accurate retrievals of cloud properties are crucial for improving the representation of cloud scale processes in large-scale models and for accurately predicting the earth's future climate. A number of passive and active remote sensing retrieval algorithms exist for estimating the microphysical properties of upper tropospheric clouds. We believe significant progress has been made in the evolution of these retrieval algorithms in the last decade, however, there is room for improvement. Members of the Atmospheric Radiation measurement program (ARM) Cloud properties Working Group are involved in an intercomparison of optical depth(tau), ice water path, and characteristic particle size in clouds retrieved using ground-based instruments. The goals of this intercomparison are to evaluate the accuracy of state-of-the-art algorithms, quantify the uncertainties, and make recommendations for improvement
Recommended from our members
Thin and transient meltwater layers and false bottoms in the Arctic sea ice pack-Recent insights on these historically overlooked features
The rapid melt of snow and sea ice during the Arctic summer provides a significant source of low-salinity meltwater to the surface ocean on the local scale. The accumulation of this meltwater on, under, and around sea ice floes can result in relatively thin meltwater layers in the upper ocean. Due to the small-scale nature of these upper-ocean features, typically on the order of 1 m thick or less, they are rarely detected by standard methods, but are nevertheless pervasive and critically important in Arctic summer. Observations during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in summer 2020 focused on the evolution of such layers and made significant advancements in understanding their role in the coupled Arctic system. Here we provide a review of thin meltwater layers in the Arctic, with emphasis on the new findings from MOSAiC. Both prior and recent observational datasets indicate an intermittent yet long-lasting (weeks to months) meltwater layer in the upper ocean on the order of 0.1 m to 1.0 m in thickness, with a large spatial range. The presence of meltwater layers impacts the physical system by reducing bottom ice melt and allowing new ice formation via false bottom growth. Collectively, the meltwater layer and false bottoms reduce atmosphere-ocean exchanges of momentum, energy, and material. The impacts on the coupled Arctic system are far-reaching, including acting as a barrier for nutrient and gas exchange and impacting ecosystem diversity and productivity.
</p
Deriving Mixed-Phase Cloud Properties from Doppler Radar Spectra
In certain circumstances, millimeter-wavelength Doppler radar velocity spectra can be used to estimate the microphysical composition of both phases of mixed-phase clouds. This distinction is possible when the cloud properties are such that they produce a bimodal Doppler velocity spectrum. Under these conditions, the Doppler spectrum moments of the distinct liquid and ice spectral modes may be computed independently and used to quantitatively derive properties of the liquid droplet and ice particle size distributions. Additionally, the cloud liquid spectral mode, which is a tracer for clear-air motions, can be used to estimate the vertical air motion and to correct estimates of ice particle fall speeds. A mixed-phase cloud case study from the NASA Cirrus Regional Study of Tropical Anvils and Cloud Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) is used to illustrate this new retrieval approach. The case of interest occurred on 29 July 2002 when a supercooled liquid cloud layer based at 5 km AGL and precipitating ice crystals advected over a ground measurement site. Ground-based measurements from both 35- and 94-GHz radars revealed clear bimodal Doppler velocity spectra within this cloud layer. Profiles of radar reflectivity were computed independently from the liquid and ice spectral modes of the velocity spectra. Empirical reflectivity-based relationships were then used to derive profiles of both liquid and ice microphysical parameters, such a
Emission Features and Source Counts of Galaxies in Mid-Infrared
In this work we incorporate the newest ISO results on the mid-infrared
spectral-energy-distributions (MIR SEDs) of galaxies into models for the number
counts and redshift distributions of MIR surveys. A three-component model, with
empirically determined MIR SED templates of (1) a cirrus/PDR component (2) a
starburst component and (3) an AGN component, is developed for infrared
(3--120\micron) SEDs of galaxies. The model includes a complete IRAS 25\micron
selected sample of 1406 local galaxies (; Shupe et al. 1998a).
Results based on these 1406 spectra show that the MIR emission features cause
significant effects on the redshift dependence of the K-corrections for fluxes
in the WIRE 25\micron band and ISOCAM 15\micron band. This in turn will affect
deep counts and redshift distributions in these two bands, as shown by the
predictions of two evolution models (a luminosity evolution model with
and a density evolution model with ).
The dips-and-bumps on curves of MIR number counts, caused by the emission
features, should be useful indicators of evolution mode. The strong emission
features at --8\micron will help the detections of relatively high
redshift () galaxies in MIR surveys. On the other hand, determinations
of the evolutionary rate based on the slope of source counts, and studies on
the large scale structures using the redshift distribution of MIR sources, will
have to treat the effects of the MIR emission features carefully. We have also
estimated a 15\micron local luminosity function from the predicted 15\micron
fluxes of the 1406 galaxies using the bivariate (15\micron vs. 25\micron
luminosities) method. This luminosity function will improve our understanding
of the ISOCAM 15\micron surveys.Comment: 24 pages, 14 EPS figures. Accepted by Ap
- …
