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[1] Accurate observations of cloud microphysical properties are needed for evaluating
and improving the representation of cloud processes in climate models and better estimate
of the Earth radiative budget. However, large differences are found in current cloud
products retrieved from ground-based remote sensing measurements using various retrieval
algorithms. Understanding the differences is an important step to address uncertainties
in the cloud retrievals. In this study, an in-depth analysis of nine existing ground-based
cloud retrievals using ARM remote sensing measurements is carried out. We place
emphasis on boundary layer overcast clouds and high level ice clouds, which are the focus
of many current retrieval development efforts due to their radiative importance and
relatively simple structure. Large systematic discrepancies in cloud microphysical
properties are found in these two types of clouds among the nine cloud retrieval products,
particularly for the cloud liquid and ice particle effective radius. Note that the differences
among some retrieval products are even larger than the prescribed uncertainties reported by
the retrieval algorithm developers. It is shown that most of these large differences have
their roots in the retrieval theoretical bases, assumptions, as well as input and constraint
parameters. This study suggests the need to further validate current retrieval theories and
assumptions and even the development of new retrieval algorithms with more observations
under different cloud regimes.

Citation: Zhao, C., et al. (2012), Toward understanding of differences in current cloud retrievals of ARM ground-based
measurements, J. Geophys. Res., 117, D10206, doi:10.1029/2011JD016792.

1. Introduction

[2] Treatment of clouds remains one of the largest uncer-
tainties in current climate models [Intergovernmental Panel
on Climate Change, 2007]. Improving cloud representation
in climate models requires improved knowledge of cloud
processes through detailed cloud observations. Cloud
microphysical properties can be directly measured by in situ
probes or sensors aboard research aircraft. However, aircraft
data is usually only available over very limited locations and
time periods due to their high associated cost. To obtain
long-term continuous measurements, ground-based and
space-borne remote sensors (radars, lidars, radiometers, etc.)
are often used, from which cloud microphysical properties
are retrieved using various algorithms.
[3] Using ground-based remote sensors and other instru-

ments, the Department of Energy (DOE)’s Atmospheric
Radiation Measurement (ARM) program has continuously
monitored clouds, radiation, and the associated atmospheric
states for over a decade at its primary research sites spanning
latitudes from tropical to Arctic. The goal of ARM is to
better understand clouds and their interaction with radiation
and improve cloud parameterizations in global climate
models [Ackerman and Stokes, 2003]. Various techniques

1Lawrence Livermore National Laboratory, Livermore, California,
USA.

2Laboratoire Atmosphère, Milieux, Observations Spatiales, Guyancourt,
France.

3Centre for Australian Weather and Climate Research, Melbourne,
Victoria, Australia.

4Cooperative Institute for Research in Environmental Science,
University of Colorado Boulder, Boulder, Colorado, USA.

5NOAA Earth System Research Laboratory, Boulder, Colorado, USA.
6Pacific Northwest National Laboratory, Richland, Washington, USA.
7University of Wyoming, Laramie, Wyoming, USA.
8Brookhaven National Laboratory, Upton, New York, USA.
9Department of Meteorology, University of Reading, Reading, UK.
10Department of Atmospheric Sciences, University of Utah, Salt Lake

City, Utah, USA.
11Finnish Meteorological Institute, Helsinki, Finland.
12National Severe Storms Laboratory, NOAA, Norman, Oklahoma,

USA.

Corresponding author: C. Zhao, Lawrence Livermore National
Laboratory, Mail Code L-103, Livermore, CA 94550, USA. (zhao6@llnl.gov)

Copyright 2012 by the American Geophysical Union.
0148-0227/12/2011JD016792

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, D10206, doi:10.1029/2011JD016792, 2012

D10206 1 of 21



[e.g., Mace et al., 1998, 2002, 2006; Wang et al., 2004;
Turner, 2005; Shupe et al., 2005; Deng and Mace, 2006;
Hogan et al., 2006a; Delanoë et al., 2007; Protat et al.,
2007; Delanoë and Hogan, 2008; Huang et al., 2009; Dunn
et al., 2011] have been developed to retrieve cloud properties
from the ground-based sensors in support of ARM cloud
modeling studies. While these retrieval products provide
valuable information on cloud properties, large differences
have been found between these cloud retrieval products in
earlier studies. For example, the inter-comparison studies
conducted byComstock et al. [2007] and Turner et al. [2007a]
showed large cloud property differences between different
retrievals for high level ice clouds and optically thin liquid
clouds, respectively; and a comprehensive focus study done
by Shupe et al. [2008] demonstrated large differences that
existed in several retrievals for mixed-phase clouds. These
studies were based on limited cases over short time periods.
[4] Understanding the differences in current cloud

retrieval products is important for evaluating and constrain-
ing climate models. In this study, we first document differ-
ences among the various cloud retrieval products and then
try to understand what differences can be explained by the
differences in the basic inputs and constraints or by the dif-
ferences in the theoretical basis and assumptions used in the
retrieval algorithms. It is important to understand the dis-
tinction between these retrieval elements. Here the theoreti-
cal basis denotes the retrieval algorithm instrument basis and
cloud property derivation methods, such as a radar-based
parameterization or a radiance-based optimal estimation.
Assumptions are those simplified conditions applied to the
complex cloud systems during retrievals, like the particle
size distribution and ice particle habit. Inputs are those
measurements required by the cloud retrieval algorithms in
order to derive the cloud properties. Constraint parameters
are those additional measurements that can be used to further
improve the quality of retrieved cloud properties. Our goal is
to examine the differences among the available cloud
retrievals, point out the potential causes from the way they
are retrieved, and explore potential issues that need to be
addressed in the future. In contrast to earlier studies, our
analysis is performed over a much longer time period and
emphasizes two different cloud regimes so that statistical
characteristics of the examined cloud retrievals for these two
cloud regimes can be explored. Nine ground-based cloud
retrieval products that are available over multiple years at the
ARM Southern Great Plains (SGP), North Slope of Alaska
(NSA), and Tropical Western Pacific Sites (TWP) are
analyzed.
[5] In section 2, we briefly describe the nine ground-based

cloud retrieval products used in this study. Section 3 shows
how the different cloud properties retrieved from various
algorithms are affected by their algorithm differences, as
well as differences in their input and constraint parameters.
In section 4, a statistical analysis based on multiyear data is
carried out to illustrate the systematic differences between
cloud retrieval products. A summary of findings and a brief
discussion of future studies are given in section 5.

2. Ground-Based Cloud Retrievals

[6] Table 1 lists the nine ground-based cloud retrievals
along with their principal investigator (PI) affiliations and

primary references. For each of the five ARM permanent
research sites, i.e., SGP, NSA, TWP Manus Island
(TWPC1), TWP Nauru Island (TWPC2), and TWP Darwin
(TWPC3), there are multiple cloud retrieval products. Note
that not all of them are available for all the sites and all types
of clouds. The exception is the MICROBASE product,
which is currently the ARM baseline cloud retrieval value-
added product (VAP) and contains all cloud properties for
all cloud conditions over the five sites. The primary retrieved
cloud microphysical products are liquid water content
(LWC) and liquid effective radius (re) for liquid clouds and
ice water content (IWC) and ice re for ice clouds for almost
all the cloud retrieval products except for CLOUDNET
which only has retrievals of LWC and IWC. Table 2 shows
the estimated uncertainties in these cloud products indicated
by the algorithm developers in their publications. For most
retrieval products, the uncertainties in liquid water path
(LWP), LWC, liquid re, IWC, and ice re are about 20–30%,
10–100%, 10–60%, 10–100%, and 10–50%, respectively.
However, it should be noted that these provided uncertain-
ties were usually estimated based on a limited number of
observations over limited periods. In addition, it represents
the uncertainty associated with a specific algorithm rather
than overall uncertainty in the retrieved property. Previous
studies [Comstock et al., 2007; Turner et al., 2007a] have
shown cases that the difference between retrieved properties
from different algorithms is often much larger than the
uncertainty associated with a specific algorithm.
[7] These cloud retrieval products have been widely used

in various studies to validate and improve cloud micro-
physical parameterizations in climate and weather forecast
models as well as to evaluate satellite observations. For
example, Xie et al. [2005] and Xu et al. [2005] used the
MICROBASE data to examine model simulated cloud
microphysical properties of midlatitude frontal clouds in
multimodel intercomparison studies. Klein et al. [2009] used
both SHUPE_TURNER and WANG cloud products for
assessment of model simulations of single-layer mixed-
phase clouds in the Arctic. Illingworth et al. [2007] and
Bouniol et al. [2010] applied the CLOUDNET process to
assess numerical weather forecast models. Dong et al.
[2008] used the MACE retrieval products to assess satellite
cloud remote sensing.
[8] The nine cloud retrieval products are mainly based on

the measurements from the millimeter-wavelength cloud
radar (MMCR), micropulse lidar (MPL), microwave radi-
ometer (MWR), radiosonde soundings, and the atmospheric
emitted radiance interferometer (AERI). These instruments
provide measurements of water equivalent radar reflectivity
(Ze), Doppler velocity (Vd), spectral width (sd), lidar back-
scatter coefficient (b), cloud top and bottom locations, cloud
particle visible extinction coefficients (sext), LWP, temper-
ature, and spectral radiance, which are used as either critical
inputs or constraints in various retrieval techniques. We
want to emphasize here that these cloud retrieval products
have used different MWR measurements of LWP. For
example, MACE, SHUPE_TURNER, and COMBRET have
used the instantaneous LWP retrieved by Turner et al.
[2007b], MICROBASE has used the statistical LWP
retrieved by Turner et al. [2007b], CLOUDNET has used
the LWP retrieved with the method developed by Gaussiat
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et al. [2007], and WANG has used the LWP retrieved by
Wang [2007].
[9] For different cloud regimes measured by various

remote sensors, the cloud retrieval algorithms vary widely.
In particular, different algorithms are typically used to
retrieve cloud properties based on the cloud phase. Even for
the same remote sensing measurements, the cloud retrievals
could be different because of their different assumptions.
Table 3 provides a summary of the retrieval methods used in
the nine ground-based cloud retrieval products, including the
cloud types to which the retrieval algorithms are applied, the
algorithm and its retrieval theory basis and major assump-
tions, as well as the basic inputs and constraints used in the
retrieval techniques. Brief explanations of the symbols and
abbreviations in Table 3 are given in the notation section.
Main features of the nine retrieval products are presented in
a technical report [C. Zhao et al., 2011].
[10] The nine retrieval products differ from each other in

many ways, such as the cloud phase classification, cloud
masks, Ze calculation and threshold values used in the
algorithm, and the treatment of drizzle. For example,
MICROBASE uses a simple temperature-based phase clas-
sification method in which the clouds are classified as liquid,
mixed or ice phase for the temperature (T) range of T ≥ 0�C,
�16�C < T < 0�C, and T ≤ �16�C, respectively, while
SHUPE_TURNER and COMBRET use an advanced cloud
phase classification method developed by Shupe [2007]
which is based on the combination of radar, lidar, LWP
and temperature. For Ze, most retrieval products use the
value-added product of the Active Remotely Sensed Cloud
Locations (ARSCL) [Clothiaux et al., 2000] while MACE
and CLOUDNET do their own radar moments processing
methods. This will result in slightly different Ze values used
in these retrievals. For the treatment of drizzle, some

retrieval products (e.g., COMBRET) have classified drizzle
from clouds while others just flag the presence of drizzle
(e.g., MICROBASE). In reality, drizzle is present in many
low-level warm (particularly thick) clouds [Kubar et al.,
2009]. Furthermore the combination of radar and lidar can
see more ice clouds than radar only [Borg et al., 2011]. All
these differences are examples of differences in the cloud
retrieval inputs.
[11] In practice, various assumptions are made within

these retrieval algorithms, including assumptions about the
particle size distributions (PSD), ice crystal habit, and ice
density (ri). Different assumptions are often used because of
high natural variability of cloud properties and different
interpretations of in situ observations. As shown in Table 3,
all retrieval algorithms assume a lognormal PSD for liquid
particles but they assume either an exponential or a (modi-
fied) gamma PSD for ice particles. The assumption for ice
crystal habit varies between different retrievals and different
locations. Most radar-based retrieval algorithms also assume
applicability of Rayleigh scattering theory, or the (6 + k)th
power law relationship between particle size and Ze when
the radar wavelength is large compared to the scatterers.
Here k is a parameter dependent on ice crystal habit and ice
bulk density.
[12] For ice re, the definition might be different for the

cloud products with non-spherical ice crystal habit assump-
tion [McFarquhar and Heymsfield, 1998], and we need to
convert them into the same definition for the following
intercomparison studies. For the nine cloud products studied
here, MICROBASE, SHUPE_TURNER, DENG, RADON,
and VARCLOUD have used the definition of

re ¼ 3IWC

4riAc
ð1Þ

Table 2. Approximate Uncertainties in the Major Cloud Microphysical Properties Derived From Different Retrievals in Nine Cloud
Products Based on Literaturea

Products Clouds

Cloud Property Uncertainties From Literature

LWP LWC Liquid re IWC Ice re

MICROBASE Liquid �20–30% NG �10% - -
Ice - - - �30–50% NG
Mixed NG NG NG NG NG

MACE Stratus (layer) �25% NG �16% - -
Stratus (profile) �20–30% �20–100% �20–60% - -
Other Liquid �20–30% �15% NG - -
Cirrus - - - �60% �40%
Other Ice - - - �30–50% NG

CLOUDNET Liquid part �20–30% NG - - -
Ice part - - - �30–50% -

DENG Ice - - - �85% �35%
SHUPE_ TURNER Pure liquid clouds �20–30% �10–50% �10% - -

Liquid and ice in optical thin clouds �20–30% �40–70% �20–30% �60–100% �20–50%
Ice in other clouds - - - �60–100% �20–50%

WANG Mixed �18% �18% �18% �10–100% �10–30%
COMBRET Liquid (radar) Same as MICROBASE

Ice (Ze and sext) - - - �10–100% �10–30%
Ice (Ze) - - - �30–50% NG
Ice (sext) - - - NG NG
Drizzle and Rain - - - NG NG

RADON Ice - - - �30–40% �15%
VARCLOUD Ice Uncertainties are dependent on errors in measurements and accuracy in forward

models

a“NG” indicates that the uncertainty is not given in the literature and “-” denotes that the variable does not exist or is not retrieved for the specific cloud
type.

ZHAO ET AL.: UNDERSTANDING CLOUD RETRIEVAL DIFFERENCE D10206D10206

4 of 21



T
ab

le
3.

R
et
ri
ev
al

A
lg
or
ith

m
s
(A

ss
um

pt
io
ns
,
R
et
ri
ev
al

Id
ea
s,
F
un

ct
io
ns

an
d
In
pu

ts
)
fo
r
N
in
e
C
lo
ud

P
ro
du

ct
sa

P
ro
du

ct
s

C
lo
ud

s
M
et
ho

d
T
he
or
y
B
as
ed

F
un

ct
io
ns
/M

od
el
s/
P
ar
am

et
er
s

A
ss
um

pt
io
ns

M
aj
or

In
pu

ts
C
on

st
ra
in
ts

P
S
D

H
ab
it

M
IC
R
O
B
A
S
E

L
iq
ui
d

E
P
M

L
W
C
=
F
(Z

e,
L
W
P
);
r e
=
F
(Z

e,
L
W
C
);
N

�
20

0
cm

�
3

L
og

no
rm

al
(s

=
0.
35

)
sp
he
ri
ca
l

Z
e

L
W
P

Ic
e

E
P
M

IW
C
=
F
(Z

e)
;
r e
=
F
(T
)

E
xp

on
en
tia
l

P
la
na
r
po

ly
cr
ys
ta
l

Z
e,
T

M
ix
ed

E
P
M

f ic
e
=
�T

/1
6;

Z
el
iq
u
id
=
(1

�
f ic

e)
*Z

;
Z
ei
ce
=
f ic

e*
Z

S
ee

ab
ov

e
S
ee

ab
ov

e
Z
e,
T

L
W
P

M
A
C
E

B
ou

nd
ar
y
st
ra
tu
s
(l
ay
er
)

E
P
M
;

op
tim

al
T
hi
ck
:
r e
_
la
y
er
=
F
(L
W
P
,
g,

m0
);
T
hi
n:

d-
2
st
re
am

m
od

el
lo
gn

or
m
al

(s
=
0.
35

)
S
ph

er
ic
al

L
W
P
,
g,

m0
L
W
P

B
ou

nd
ar
y
st
ra
tu
s
(p
ro
fi
le
)

F
or
w
ar
d

L
W
C
=
F
(L
W
P
,
Z
e)
;
da
y:

r e
=
F
(r
e_
la
y
er
,
Z
e)
;

ni
gh

t:
r e
=
F
(Z

e)
L
og

no
rm

al
S
ph

er
ic
al

L
W
P
,
Z
e

L
W
P

O
th
er

L
iq
ui
d

F
or
w
ar
d

L
W
C
=
F
(L
W
P
,
Z
e)
;<
r6

>
=
<
r3

>
2

-
sp
he
ri
ca
l

L
W
P
,
Z
e

L
W
P

C
ir
ru
s
(l
ay
er
)

O
pt
im

al
M
O
D
T
R
A
N
3
m
od

el
(o
pt
ic
al

th
in
)

M
od

if
ie
d
G
am

m
a
(a

=
1)

he
xa
go

na
l

Z
e,
I

C
ir
ru
s
(P
ro
fi
le
)

F
or
w
ar
d

Z
e
=
F
(L
,
n(
L
))
;
V
d
=
F
(L
,
n(
L
),
V
(L
))
;

s d2
=
F
(L
,
n(
L
),
V
(L
))

E
xp

on
en
tia
l

B
ul
le
t
R
os
et
te

Z
e,
V
d

O
th
er

Ic
e

E
P
M

IW
C
=
aZ

eb
,
a,
b
ar
e
co
ns
ta
nt
s

E
xp

on
en
tia
l

-
Z
e

C
L
O
U
D
N
E
T

L
iq
ui
d
pa
rt

F
or
w
ar
d

L
W
C
fr
om

L
W
P
-s
ca
le

w
ith

ad
ia
ba
tic

gr
ad
ie
nt

-
-

T
,
P
;
L
W
P

L
W
P

Ic
e
pa
rt

E
P
M

IW
C
=
F
(Z

e,
T
)

-
sp
he
ri
ca
l
ag
gr
eg
at
es

T
,
P
;
Z
e

D
E
N
G

Ic
e

O
pt
im

al
Z
e
=
F
(l
,
N
0
);
V
d
=
F
(l
,
W

m
);
s d

=
F
(l
,
W

s
);

W
s
=
F
(s

d
,
Z
e)
;

E
xp

on
en
tia
l

he
xa
go

na
l

Z
e,
V
d
,
s d

S
H
U
P
E
_
T
U
R
N
E
R

P
ur
e
liq

ui
d
cl
ou

ds
F
or
w
ar
d

r e
=
F
(Z

e,
N
)
w
ith

ad
ju
st
ed

N
;
L
W
C
=
F
(Z

e)
L
og

no
rm

al
S
ph

er
ic
al

Z
e,
L
W
P

L
W
P

L
iq
ui
d
an
d
ic
e
in

op
tic
al

th
in

cl
ou

ds
O
pt
im

al
L
iq
ui
d
an
d
ic
e
r e
:
A
E
R
I
ba
se
d
L
W
C
:
ad
ia
ba
tic

gr
ad
ie
nt

sc
al
ed

by
L
W
P
;
IW

C
=
aZ

eb
G
am

m
a

A
ny

I;
L
W
P
,
Z
e

L
W
P

Ic
e
in

ot
he
r
cl
ou

ds
E
P
M

IW
C
=
aZ

eb
;
r e
=
F
(Z

e)
;
a
=
a(
tim

e)
,
b
=
0.
63

ex
po

ne
nt
ia
l

-
Z
e

W
A
N
G

M
ix
ed

F
or
w
ar
d

O
pt
im

al
Ic
e
pa
rt
:
IW

C
=
F
(s

ex
t,
r e
);
r e
=
F
(s

ex
t,
Z
e)
;

L
iq
ui
d
pa
rt
:
D
IS
O
R
T
;

M
od

if
ie
d
ga
m
m
a;

lo
gn

or
m
al

he
xa
go

na
l

L
W
P
,
I,
Z
e,
s e

x
t,
T
cb

L
W
P

C
O
M
B
R
E
T

L
iq
ui
d
(r
ad
ar
)

S
am

e
as

M
IC
R
O
B
A
S
E
,
ex
ce
pt

N
=
10

0
cm

�
3

Ic
e
(Z

e
an
d
s e

x
t)

E
P
M

IW
C
=
F
(s

ex
t,
Z
e)
;
r e
=
F
(s

ex
t,
Z
e)
;

M
od

if
ie
d
G
am

m
a

he
xa
go

na
l

Z
e,
s e

x
t

Ic
e
(Z

e
or

s e
x
t)

E
P
M

IW
C
=
F
(Z

e,
T
);
IW

C
=
F
(s

ex
t,
T
);

r e
=
F
(I
W
C
,
Z
e)
;
r e
=
F
(I
W
C
,
s e

x
t)

F
itt
in
g
G
am

m
a

-
Z
e,
T
or

s e
x
t,
T

D
ri
zz
le

an
d
R
ai
n

E
P
M

R
=
F
(Z

e)
;
N
(r
)
=
F
(R
,
r)
;
r e
=
vo

lu
m
e/
ar
ea
;

M
ar
sh
al
l-
P
al
m
er

ty
pe

-
Z
e

R
A
D
O
N

Ic
e

F
or
w
ar
d

IW
C
=
f(
Z
e,
N
0
*)
,
s e

x
t
=
f(
Z
,
N
0
*)
,

D
m
=
f(
V
T
),
r e
=
F
(I
W
C
,
s e

x
t);

N
or
m
al
iz
ed

(N
0
*,

D
m
)

re
tr
ie
ve
d

Z
e,
V
d

V
A
R
C
L
O
U
D

Ic
e

O
pt
im

al
R
ad
ar

an
d
lid

ar
fo
rw

ar
d
m
od

el
s.

(I
R
fo
rw

ar
d
m
od

el
av
ai
la
bl
e)

N
or
m
al
iz
ed

(N
0
*,

D
m
)

sp
he
ri
ca
l
ag
gr
eg
at
es

Z
e,
s e

x
t,
I,
T

a T
he

m
ea
ni
ng

s
of

th
e
sy
m
bo

ls
an
d
ab
br
ev
ia
tio

ns
ar
e
lis
te
d
in

th
e
no

ta
tio

n
se
ct
io
n.

ZHAO ET AL.: UNDERSTANDING CLOUD RETRIEVAL DIFFERENCE D10206D10206

5 of 21



where ri and Ac are solid ice density (0.92 g cm�3) and
projected area associated with the size distribution. Note that
DENG, RADON and VARCLOUD directly use this equa-
tion with their derived ice extinction coefficient while
MICROBASE and SHUPE_TURNER uses a T-based and a
Ze-based parameterization method, respectively. MACE has
used the effective spherical radius defined in terms of the
total volume of the distribution to the total area [Mace et al.,
1998] and we assume it is comparable to the definition of
equation (1) in this study. Differently, COMBRET and
WANGuse a generalized effective diameter Dge [Fu, 1996]. In
this study, we convert Dge to the ice re defined in equation (1)
using an equation [Fu, 1996, equation (3.12)]

re ¼ Dge * 0:6495 ð2Þ

As described in Fu [1996], the error caused by this conversion
is small.
[13] The current data availability for the nine cloud

retrieval products using ARM measurements is shown in
Figure 1. There are three to six different retrieval products
available for the study period which runs from 2002 to 2007
at SGP, NSA, TWPC1 and TWPC2, and from 2005 to 2008
at TWPC3. To facilitate the intercomparison, all the retrie-
vals have been converted to a uniform format with hourly
time resolution and 45 m vertical resolution. The same cloud
samples (same height and time) are used for comparing
different retrieval products.

3. Differences Between Cloud Retrievals

[14] Stratus and cirrus clouds are the two types of clouds
that most ground-based retrieval techniques are developed
specifically for due to their radiative importance and rela-
tively simple structures. Even for these two types of clouds,

however, earlier case studies showed that large differences
exist in retrieved cloud properties among various retrieval
algorithms [Turner et al., 2007a; Comstock et al., 2007].
Different from these past case studies, this study targets
understanding the differences between cloud retrieval pro-
ducts from their algorithm details in a statistical way. For
simplicity, we examine only single-layer boundary layer
overcast clouds and high level ice clouds. The boundary
layer overcast clouds are defined as those single layer liquid
and mixed-phase clouds with cloud top below 2 km and
hourly cloud fraction over 90%. Note that 2 km is selected to
make sure that most of the selected “boundary layer clouds”
are stratiform in nature. We realize that this fixed, cloud top
threshold may miss some of the deepest clouds given the
seasonal and geographical variability in boundary layer
depth. A sensitivity test using a 3 km threshold at the TWP
sites yields similar results to those found when using 2 km.
The high level ice clouds refer to single-layer ice clouds with
hourly cloud fraction over 90% and cloud bases above 4 km,
5 km and 6 km at NSA, SGP and TWP, respectively. The
cloud boundary, cloud layer and cloud fraction used to
identify these two types of clouds are from the ARM climate
modeling best estimate (CMBE) [Xie et al., 2010], which is
based on cloud frequency of occurrence from the vertically
pointing MMCR and MPL. In what follows we will show
the cloud retrieval differences based on the retrieval results
during the period between May and November in 2004 at
NSA and SGP and in 2007 at TWPC3.

3.1. Boundary Layer Overcast Clouds

[15] As shown in Table 3, the retrieval techniques usually
differ from each other in their basic inputs, fundamental
theories, and assumptions. Below we try to understand how
these differences impact the retrieved cloud liquid properties
in both liquid-phase and mixed-phase clouds.

Figure 1. Data availability for the nine ground-based cloud retrieval products between 1997 and 2009 at
five permanent ARM research sites. MICROBASE, MACE, SHUPE_TURNER and COMBRET are for
all cloud properties; CLOUDNET is for LWC and IWC of all clouds; DENG, VARCLOUD and RADON
are for ice cloud properties only; and WANG is for mixed-phase cloud properties only.
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3.1.1. Liquid Phase Clouds
[16] Boundary layer clouds are generally liquid phase at

the SGP and TWP sites while mixed-phase at the NSA site.
For pure liquid phase clouds, there are five retrieval pro-
ducts, MICROBASE, MACE, CLOUDNET, SHUPE_
TURNER, and COMBRET. These cloud products use either
an optimal estimation method or empirical parameterization
method.
[17] Figure 2 shows the probability distribution of cloud

bases and LWP for the same boundary layer liquid clouds in
MICROBASE, MACE and CLOUDNET at SGP for period
of May through November 2004. Clear differences exist in
both cloud bases and LWP among these three cloud pro-
ducts. Given the fact that these quantities are used either as
the basic inputs (e.g., cloud bases) or constraints (e.g.,
LWP), the differences shown in Figure 2 inevitably lead to
discrepancies in the retrieved cloud properties such as LWC.
This is illustrated in Figures 3a and 3b, which show the
vertical distributions of the mean LWC for the same clouds
retrieved by MICROBASE, MACE, and CLOUDNET at
SGP, and by MICROBASE and SHUPE_TURNER at
NSA, respectively. The large offset in amount of retrieved

LWC between MICROBASE and MACE or between
MICROBASE and CLOUDNET at SGP (Figure 3a) indi-
cates that the constrained MWR LWP used in MICROBASE
is larger than those used in MACE and CLOUDNET. This is
consistent with the averaged LWP values for this period,
which are 149.15, 117.04 and 108.54 g/m2 for MICROBASE,
MACE and CLOUDNET at SGP. The similar amount of
retrieved LWC between MICROBASE and SHUPE_
TURNER shown in Figure 3b is also consistent with their
constrained LWP, which are 70.12 and 68.27 g/m2,
respectively.
[18] It should be noted that even constrained by the same

LWP, the vertical structure of the retrieved LWC can still be
different due to the differences resulted from different
algorithm theory bases. For example, the vertical gradients
of LWC are proportional to Ze

1/1.8 in MICROBASE,
COMBRET and SHUPE_TURNER (liquid only clouds),
and proportional to Ze

1/2 in MACE, while they follow an
adiabatic gradient determined based on temperature and
moisture profiles in CLOUDNET and SHUPE_TURNER
(mixed-phase clouds). The LWC vertical distributions shown
in Figure 3 demonstrate these theory-related differences

Figure 2. Probability distribution functions of boundary layer liquid cloud bases and LWP from three
cloud retrieval products at SGP for period between May and November in 2004.

Figure 3. The differences of vertical distributions of mean LWC at each height for the same boundary
single layer overcast clouds (liquid phase) fromMay through November in 2004 (a) between MICROBASE,
MACE and CLOUDNET at SGP, and (b) between MICROBASE and SHUPE_TURNER at NSA.
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(MICROBASE, MACE and CLOUDNET) and similarities
(MICROBASE and SHUPE_TURNER).
[19] For liquid re, both MACE and SHUPE_TURNER use

a radiance based optimal estimation method for optical thin
clouds and a Ze-based parameterization method for optical
thick clouds. The radiance based optimal estimation method
makes use of the optimal match of surface shortwave or
infrared (IR) radiance between measurements and calcula-
tions. The radar based parameterization method makes use
of the 6th power law relationship between droplet size and
Ze, which most heavily weights the large droplets. In con-
trast, liquid re in MICROBASE and COMBRET is obtained
using the power law relationship between LWC and liquid
re, an assumed constant cloud number concentration (N), and
a lognormal particle size distribution. There is a notable dif-
ference for the derivation of liquid re between MICROBASE
and COMBRET. MICROBASE derives cloud liquid re using
scaled LWC by MWRRET LWP and N = 200 cm�3 for all
sites, while COMBRET calculates liquid re using LWC
before being scaled by the MWRRET LWP and
N = 100 cm�3 for TWP sites. N = 200 cm�3 inMICROBASE
is generally a reasonable assumption for land area at SGP
[Miles et al., 2000]. However, for NSA and TWP sites, this
number is likely too large and will result in an underestima-
tion of liquid re. In comparison, N = 100 cm�3 used in
COMBRET for TWP sites is a more reasonable assumption
since the clouds are more maritime in origin [McFarlane
et al., 2002].
[20] Figures 4a, 4b and 4c show the differences in hourly

averaged liquid re for the same liquid-only clouds between
MACE and MICROBASE at SGP, between SHUPE_
TURNER and MICROBASE at NSA, and between
MICROBASE and COMBRET at TWPC3, respectively.
Figure 4a shows slightly smaller liquid re in MICROBASE
than MACE at SGP, which is most likely due to the dif-
ferences in their retrieval basis. The radar reflectivity-
based retrieval used in MACE more heavily weights the
larger droplets compared to the LWC-based retrieval in
MICROBASE, resulting in a much higher occurrence of
larger 15–20 um liquid re as shown in Figure 4a. Figure 4b
shows that liquid re in MICROBASE is systematically less

than that in SHUPE_TURNER. Considering they have
similar LWC (Figure 3b), this difference is caused by
the larger number concentration assumption used in
MICROBASE at NSA. Note that the peak shown in the
SHUPE-TURNER line is due to the climatological value
(8 mm) assumed for re when other techniques cannot be
used. In contrast, Figure 4c shows a similar re distribution
between MICROBASE and COMBRET since they use
similar retrieval algorithms. The slight difference in cloud
liquid re between MICROBASE and COMBRET must be
related to a combination of their differences in the LWC
used for liquid re calculation and the assumption in droplet
number concentration.
[21] Figure 5 shows the relationship between LWC and

liquid re for liquid cloud products at SGP, NSA and TWPC3.
Note the red lines in Figure 5 are the fitting lines with a 2nd
order polynomial function. The LWC-re relationship varies
among the retrieval products. Theoretically,

LWC ¼
Z

4prlr3N rð Þ
3

� �
dr ð3Þ

where rl is water density, r is droplet size, and N(r) is droplet
size distribution. With an assumed particle size distribution,
if cloud droplet number concentration (N) is assumed
(MICROBASE and COMBRET), LWC and liquid re follow
a power law relationship. If LWC and re are derived inde-
pendently (MACE, SHUPE_TURNER) with no assumption
on N, the two variables might show unexpected relation-
ships. This feature is clearly illustrated in Figure 5, which
shows LWC and liquid re follow a good power law rela-
tionship in MICROBASE while demonstrate a poor corre-
lation with almost no relationship in MACE and
SHUPE_TURNER. COMBRET (Figure 5f) shows a much
weaker power relationship between LWC and liquid re
compared to that for MICROBASE. Although COMBRET
uses a similar retrieval algorithm as MICROBASE, it cal-
culates liquid re using LWC before it is scaled by the
MWRRET LWP. In other words, the final scaled LWC is no
longer consistent with the LWC used to derive liquid re,
which is why the power relationship in COMBRET is weak.

Figure 4. The retrieval difference of liquid re for exactly the same boundary single layer overcast
clouds during the period of May through November for (a) MICROBASE and MACE in 2004 at SGP,
(b) MICROBASE and SHUPE_TURNER in 2004 at NSA, and (c) MICROBASE and COMBRET in
2007 at TWPC3.
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In principle, the algorithms used to derive liquid re in MACE
and SHUPE_TURNER are more physically based than those
used in MICROBASE and COMBRET, which just simply
assume a constant liquid N.
3.1.2. Mixed-Phase Clouds
[22] Mixed-phase clouds are frequently observed at NSA

[Shupe, 2011] and their liquid component has a large impact
on cloud radiative effects [Shupe and Intrieri, 2004]. Below

we discuss the differences among mixed-phase cloud
microphysical properties retrieved at the ARM NSA site.
[23] Associated with the retrieval theoretical basis, clear

differences exist in the vertical variations of cloud proper-
ties. As shown in Table 1, there are 3 cloud retrieval pro-
ducts for boundary layer mixed-phase clouds at NSA, which
are MICROBASE, SHUPE_TURNER and WANG. For the
following vertical variation analysis, WANG is not dis-
cussed since it represents layer averaged cloud properties.

Figure 5. The relationship between LWC and liquid re for different retrieval products of pure liquid
clouds during the period of May through November in 2004 at SGP and NSA, and in 2007 at TWPC3.
The red lines are the fitting lines with a 2nd order polynomial function.
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MICROBASE obtains the cloud liquid re based on Ze and
cloud temperature (T) using

Zeliq ¼ 1þ T=16ð ÞZe ð4Þ

LWC ¼ LWP
Zeliq1=1:8X
Zeliq1=1:8Dz

ð5Þ

re ¼ 3LWC

4prlN exp 9s2
x=2

� �
 !1=3

exp 2:5s2
x

� � ð6Þ

where Zeliq, sx andDz are water equivalent radar reflectivity
contributed by liquid droplets, spectral width of cloud
droplet lognormal size distribution, and the length of each
radar range gate, respectively. T is between �16 and 0�C. In
contrast, SHUPE_TURNER derives the layer averaged
cloud liquid re using AERI-based optimal estimation method
for optical thin clouds, derives the profiles of cloud liquid re
using Ze-based parameterization method for all-liquid layers,
and sets a climatology value of 8 mm for those that cannot be
retrieved.
[24] Figures 6a and 6b show the vertical structure of

hourly averaged liquid re from MICROBASE and SHUPE_
TURNER for mixed-phase clouds. Differences in cloud phase
classification can be clearly seen between MICROBASE
and SHUPE_TURNER. Since the cloud temperature ranges
from �19�C to 0.5�C (most around �9�C) for this period,
MICROBASE classifies almost all clouds/hydrometers as
mixed-phase. Differently, SHUPE_TURNER determines
the clouds based on radar and lidar, not on cloud tempera-
ture. This is the reason that MICROBASE has classified
many mixed-phase clouds below 400 m in October 2004

while SHUPE_TURNER has not. This is a clear case indi-
cating the importance of accurate and consistent cloud
phase classification.
[25] Algorithm-related differences in cloud properties can

also be found in Figure 6. As shown in Figure 6a, the
decrease of cloud temperature with height results in a
decrease of liquid re with height in MICROBASE for period
between October 9 and October 15, 2004. In contrast, the
hourly average of cloud liquid re from SHUPE_TURNER
generally increases or stays constant with height within a
layer, particularly for the upper layer of clouds (Figure 6b).
Figure 6b also shows that SHUPE_TURNER algorithm has
a prominent feature with climatological value of 8 microns
throughout most of the cloud, which is potentially a signif-
icant limitation for this product. Over the same period, air-
craft measurements in the Arctic from the Mixed-Phase
Arctic Cloud Experiment (M-PACE) have shown a typical
vertical structure of single-layer mixed phase clouds in
which the liquid re increases with height [Verlinde et al.,
2007]. This feature has also been observed in other field
campaigns in the Arctic region, like the First ISCCP (Inter-
national Satellite Cloud Climatology Project) Regional
Experiment/Surface Heat Budget of the Arctic (FIRE-ACE/
SHEBA) [Hobbs et al., 2001]. These observed features in
mixed-phase clouds clearly cannot be captured by a T-dependent
cloud phase partition scheme [Zhao and Wang, 2010] such as
that used in MICROBASE, indicating the serious problem
associated with the MICROBASE retrieved cloud properties for
mixed-phase clouds.
[26] The retrieved cloud liquid microphysics, particularly

the cloud liquid re, also exhibits a notable difference in the
probability density functions. As an example, Figure 7
shows that the liquid re retrieved from both SHUPE_
TURNER and WANG is systematically larger than that from
MICROBASE for single-layer, mixed-phase boundary layer

Figure 6. Difference in vertical structure of liquid re between (a) MICROBASE and (b) SHUPE_TURNER
in October 2004 at NSA site.
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clouds. As indicated earlier, the large droplet number con-
centration assumed in MICROBASE might make liquid re
underestimated at NSA. Another possible reason is that the
estimation of Ze for the cloud droplets in equation (4) as
MICROBASE uses has little validity, causing the retrieved
liquid re to be systematically smaller than the others. In other
words, liquid re from SHUPE_TURNER and WANG are
likely more reliable than that from MICROBASE, particu-
larly for mixed-phase clouds.
[27] There are some other assumptions made in current

retrievals of boundary layer overcast cloud properties, such
as the horizontal homogeneity assumption and the lognormal
particle size distribution (PSD) assumption. These assump-
tions also introduce uncertainties in the cloud retrievals.
However, since these assumptions are similar for all the
retrieval algorithms examined in this study except for their
difference in the time resolution, they cannot be the main
reason for the large differences found in these retrievals and
are not discussed here.

3.2. High Level Ice Clouds

[28] Ice cloud retrieval techniques can also be classified
into two categories: the forward or optimal estimation
approach (MACE, DENG, VARCLOUD, and RADON) and
the empirical parameterization method (MICROBASE,
MACE, CLOUDNET, SHUPE_TURNER, and COMBRET).
Note that the MACE cloud product includes retrievals from
both categories. The forward approach uses theoretically
based equations with certain assumptions (forward models)
to derive cloud properties. In contrast, the empirical param-
eterization method uses empirical regression equations

derived from aircraft observations. In general, there are more
unknowns and therefore more assumptions that need to be
made for ice clouds than liquid clouds due to their com-
plexity in bulk density, ice crystal habit, and particle forma-
tion processes. Moreover, the retrieval of ice cloud properties
is hampered by a lack of constraints on the total IWP. These
extra limitations could result in larger retrieval uncertainties
for high level ice clouds than for boundary layer overcast
clouds.
[29] We first emphasize the cloud retrieval differences

related to the fundamental basis of the retrieval algorithms. It
is seen from Table 3 that the high level ice cloud properties
are derived using radar-based retrieval methods by all
retrieval algorithms. Some of them also use the spectral
radiance (MACE, SHUPE_TURNER) or lidar extinction
coefficient (COMBRET, VARCLOUD). Note that results
fromWANG are not presented in this section since the product
currently only includes mixed-phase cloud properties.
[30] Figure 8 shows large discrepancies in retrieved ice

cloud properties, which are highly related to the algorithm
basis. For all ARM sites, ice re from MICROBASE is gen-
erally smaller with a narrower range than that from others.
This is mainly because ice re in MICROBASE is retrieved
based on cloud temperature using [Ivanova et al., 2001]

re ¼ 75:3þ 0:5895Tð Þ=2 ð7Þ

[31] At the maximum 0�C for ice clouds, MICROBASE
has a maximum re of 37.7 mm, demonstrating a very limited
range. On the other hand, MACE, DENG, and SHUPE_
TURNER derive ice re by making use of the (6 + k)th power
relationship between cloud particle size and Ze. In general,
ice re in MICROBASE is less than those retrieved from radar
reflectivity. Interestingly, ice re from DENG at NSA and
from RADON at TWPC3 is even smaller than that from
MICROBASE. The small ice re in DENG at NSA might be
associated with the parameters (e.g., particle mass-length
relationship) used for clouds at NSA, which has not been
explicitly evaluated and might have relatively large uncer-
tainties. The small ice re in RADON at TWPC3 is likely due
to the fact that the statistical relationship between ice particle
density and maximum dimension is retrieved for each cloud
from the fall speed – Ze relationship rather than assumed the
same for all clouds as in other methods. To know which
algorithm is more valid requires further comparisons with
accurate in situ observations.
[32] Cloud property differences associated with the fun-

damental basis used in the ice retrievals can also be illus-
trated by the relationship between IWC and ice re. The IWC
and ice re from MACE, SHUPE_TURNER and DENG are
both derived from Ze-based parameterization methods. In
contrast, IWC and ice re in MICROBASE are derived using
Ze-based and T-based parameterization methods, respectively;
and they are related through the visible extinction coefficient
using an optimal estimation method in VARCLOUD. Corre-
spondingly, Figure 9 shows a clear power law relationship
between IWC and ice re for MACE, SHUPE_TURNER, and
DENG, and a relatively weaker power law relationship for
MICROBASE and VARCLOUD for high level ice clouds.
Interestingly, IWC in MICROBASE generally increases with
ice re but roughly decreases at larger ice re, particularly at

Figure 7. The difference in the cloud liquid re for the same
single-layer, mixed-phase boundary layer clouds between
retrievals from MICROBASE, SHUPE_TURNER, and
WANG in May through November 2004 at NSA. Note that
Liquid re at different vertical layers has been set as the layer
averaged value in the cloud product of WANG.
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TWPC3. This is most likely due to the misclassification of
cloud phases based on cloud T. If the clouds becomes mixed-
phase at cold T around �30�C to �20�C, Ze and IWC will
most likely decrease while ice re still increases according to
the T-based algorithm, leading to the features shown in
Figure 9. Similar to MICROBASE, COMBRET and
RADON also demonstrate that IWC increases first and then
decreases with ice re at TWPC3. The IWC-re relationship
for COMBRET is likely caused by multiple scattering in the
lidar signal near cloud top, resulting in an overestimation of
the extinction. It has been found that when the optical depth
is smaller and the multiple scattering is less, IWC is posi-
tively correlated with ice re in COMBRET. But for thicker
clouds, which tend to dominate in the tropics, negative
correlation between IWC and ice re often resulted from the
lidar extinction near cloud top. The reasons for the IWC-re
relationship in RADON need further investigation.

[33] We next examine how cloud retrieval differences
are caused by uncertainties in defining various empirical
parameters used in these algorithms. The regression equa-
tions and empirical parameters are often derived based on
limited aircraft in situ measurements, which may not be
valid globally due to the complexity of clouds. The different
parameters used by various retrieval algorithms will cause
discrepancies in the retrieved cloud properties. For example,
many ice cloud retrieval algorithms use IWC = aZe

b to
determine IWC. However, parameters a and b are defined
differently in different retrieval techniques. In MICROBASE
and MACE, a = 0.097 and b = 0.59. In SHUPE_TURNER,
the parameter a is a tunable parameter dependent on time of
year and roughly lies between 0.05 and 0.12 and b = 0.63.
Note that some of the differences in parameters a and b are
due to latitudinal dependence of these coefficients. These
parameter differences will impact retrieval results where, for

Figure 8. Differences in retrieved ice re between the ground-based retrieval products for high level ice
clouds during the period between May and November in 2004 at (top) SGP and (middle) NSA,
and (bottom) in 2007 at TWPC3.
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Figure 9. Relationships between IWC and ice re for high level ice clouds between different retrievals for
period of May through November in 2004 at SGP and NSA and in 2007 at TWPC3.
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instance, they can make IWC from SHUPE_TURNER sys-
tematically less than that from MICROBASE at NSA.
[34] Next, we discuss the retrieval differences associated

with ice crystal habit assumptions. An ice crystal’s habit
here refers to its visible external shape. As indicated by
Comstock et al. [2007], for each ground-based ice cloud
retrieval technique examined, an assumption concerning the
ice crystal habit has to be made. For example, the ice crystal
habit is assumed to be hexagonal column [Mace et al., 1998]
and bullet rosette [Mace et al., 2002] in MACE, planar
polycrystals in MICROBASE, and hexagonal columns in
WANG, COMBRET and DENG. However, various field
observations and lab studies [McFarquhar and Heymsfield,
1996; Korolev et al., 1999; Heymsfield and Iaquinta, 2000;
Noel et al., 2004; Verlinde et al., 2007; McFarlane and
Marchand, 2008; Bailey and Hallett, 2009] have shown
high geographic and temporal variability of ice crystal
habits. Because various ice crystal habits often result in
different relationships between particle mass, ice bulk den-
sity, or terminal velocity and particle maximum dimension
length, the necessary but simplified ice crystal habit
assumptions can have a large impact on the retrieved cloud
microphysical properties. For example, a sensitivity study
conducted by Mace et al. [2002] showed that a difference of
up to a factor of 4 in IWC can be caused by the ice crystal
habit assumption for one particular cloud retrieval method.
Protat et al. [2011] also showed using in situ micro-
physical observations in tropical cirrus that the use of
density–diameter relationships for single habits does pro-
duce large biases relative to bulk IWC observations: from
�50% for bullet rosettes to +80% for aggregates. Wang and
Sassen [2002] indicated that different particle mass-length
assumptions could change the Ze/IWC relationship by up to
50%. Therefore, the differences in ice crystal habit assump-
tions are partially responsible for the large discrepancies
found between retrievals, such as the ice re differences
between MICROBASE, MACE, DENG, and COMBRET
shown in Figure 8. The exact impact of different ice crystal
habit assumptions on each retrieval algorithm needs further
sensitivity analysis, which is beyond the scope of the current
study and will be done in the future.
[35] Finally we talk about the impacts of different particle

size distribution (PSD) assumptions on cloud retrievals. A
common assumption is that a single PSD is sufficient to
determine the scattering properties of the ice crystals within
the cirrus layer [Mace et al., 2002]. Gamma (or modified
gamma) and exponential (a gamma PSD with order zero)
PSD are the two widely used unimodal PSD assumptions for
current ice cloud retrieval algorithms. However, bimodal
distributions have been found for a large fraction of cirrus
clouds [Mitchell et al., 1996; Mace et al., 2002; Y. Zhao
et al., 2011]. Recent field measurement during the Small
Particles In Cirrus (SPARTICUS) campaign at SGP suggests
that the bimodal PSD is not always better than the unimodal
PSD to fit the measured particle size distributions [Schwartz
and Mace, 2011]. Therefore, it is not clear that any given
PSD assumption is better than another in a generic sense.
However, there is no doubt that different PSD assumptions
impact retrieval results. For example, it is obvious that more
particles are concentrated in the small size area for clouds
with a lower order gamma PSD. Therefore, smaller re will be
obtained for retrievals with a low order gamma PSD in

comparison to the same retrievals but with a high order
gamma PSD [Deng and Mace, 2006].

4. Statistical Analysis of Cloud Retrievals

[36] In this section, we use multiyear data between 2005
and 2008 at TWPC3 and between 2002 and 2007 at other
sites to examine differences in the probability distribution
functions for the cloud properties and show a statistical
summary of the correlations and differences among the
cloud retrieval products. The purpose of this analysis is to
examine whether the differences found in section 3 are sta-
tistically robust. For each site, only the clouds for which all
applicable retrieval products have valid values are
considered.

4.1. Probability Distribution

[37] To better compare the cloud retrieval products, we
classify the clouds into thin and thick clouds. Turner [2005]
have shown that an AERI-based optimal estimation method
is only valid for thin liquid clouds with optical depth (tl) less
than 6 and Comstock et al. [2007] have used an optical depth
(ti) of 0.3 to classify optical thin and thick ice clouds.
Unfortunately, we do not have independent measurements of
the cloud optical depths for all five ARM sites. Instead,
cloud geometric depth (DH) determined from CMBE is used
to classify thin and thick clouds. Note that the cloud base/top
in CMBE is determined as the layer when CMBE cloud
fraction becomes larger/smaller than 30% for a single layer
cloud. DH can be related to the cloud optical depth through

tl ¼ 3LWC • DH

2re
ð8Þ

ti ¼ 0:065 IWC • DHð Þ0:84 ð9Þ

where LWC and IWC are in g/m3 and DH is in m. The
empirical equation for ice optical depth (equation (9)) is
from the study by Heymsfield et al. [2003]. Considering
typical values of liquid re = 8 mm, LWC = 0.1 g/m3 and ice
IWC = 0.01 g/m3, the DH of 300 m and 600 m roughly
correspond to optical depths of 6 for liquid and 0.3 for ice
clouds, respectively. Therefore, we classify geometric thin
and thick clouds according to whether DH less or greater
than 300 m for boundary layer overcast clouds, and 600 m
for high level ice clouds.
[38] Figure 10 shows the probability distributions of cloud

LWC and liquid re from different cloud retrieval products for
geometrically thin and thick boundary layer overcast clouds
at 3 ARM fixed stations of SGP, NSA and TWPC3. Simi-
larly, Figure 11 shows the statistical distributions of high
level ice cloud properties. The numbers shown in the figures
are the total cloud samples used for this statistical analysis at
each site, and the colors represent the frequency of cloud
samples that lie within different ranges of LWC, liquid re,
IWC or ice re.
[39] For both geometrically thin and thick clouds,

Figures 10 and 11 show similar comparison results as those
found in Section 3. These similarities confirm that the large
differences found between various retrieval products are not
case dependent, but statistically robust. The PDFs shown
here also give rough ranges of cloud microphysical
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properties for different cloud retrieval products. For
boundary layer stratus, LWC and liquid re from most
retrievals generally vary between 0–0.6 g m�3 and 3–13 mm,
respectively. For high level ice clouds, IWC and ice re from
most retrievals typically varies between 0–0.5 g m�3 and
10–70 mm, respectively. As a reference, observations from
several major field campaigns [McFarquhar and Heymsfield,
1996; Lawson et al., 2001; Dong et al., 2002; Heymsfield
et al., 2004; McFarquhar et al., 2007; Yost et al., 2011]
show that most stratus LWC and liquid re measurements
typically vary between 0.01–0.8 g m�3 and 3–20 mm,
respectively. For cirrus clouds, the observations show most
IWC generally in a range of 0.001–0.5 g m�3. The aircraft
measurements also show a large amount of small ice parti-
cles, which are likely influenced by particle shattering in the

process of measurement [McFarquhar et al., 2007; Protat
et al., 2011]. Compared to these limited aircraft measure-
ments, the cloud microphysical properties from most cloud
products studied here lie within reasonable ranges statisti-
cally. Further evaluation of these cloud retrievals with a
collection of specific aircraft measurements will be done in
the future.

4.2. Statistical Summary

[40] Taylor diagrams [Taylor, 2001] are used to examine
the statistical differences of cloud properties among these
examined retrievals. Since there are no long-term aircraft
observations available for all these examined sites, we use
MICROBASE as a reference (the black point marked ‘M’ in
Figure 12) in each Taylor diagram because of its availability

Figure 10. Statistical distribution of cloud LWC and liquid re for geometric thin (DH ≤ 300 m) and geo-
metric thick (DH > 300 m) boundary layer overcast clouds. The numbers in the title are the total cloud
samples used for this statistical analysis at each site, and the colors indicates the frequency of
cloud samples which lie within the specified range of LWC and liquid re.
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for all conditions at all five sites. However, we should keep
in mind that this does not mean MICROBASE is more
accurate than others. The Taylor diagrams in Figure 12
provide correlations, centered root-mean square (RMS)
differences, and ratios of temporal standard deviations
(Sother/SMICROBASE, where S is temporal standard deviation)
for cloud LWP, LWC, liquid re, IWP, IWC, and ice re
between a given cloud retrieval and MICROBASE. The
centered RMS difference between the other retrievals and
MICROBASE is proportional to the distance to the point on
the x axis identified as “M.” Since the centered RMS error
is the error distance after the bias (or offset) between two
data sets has been removed, we use different colors to dis-
criminate the difference in mean cloud properties between a

retrieval and MICROBASE. These colors indicate the ratios
of mean values of the cloud properties from a specific cloud
product compared to MICROBASE, Xi/XM, where X
represents cloud properties, i is any specific cloud product
and M is MICROBASE.
[41] For boundary layer overcast liquid clouds, the corre-

lation between MICROBASE and other cloud retrieval
products is generally low. Figure 12a shows that the average
LWP is similar (within 40%) among most cloud products.
The exceptions are WANG and COMBRET which give
smaller values except at TWPC1. Figure 12b shows that
the cloud LWC is significantly smaller in MACE and
CLOUDNET and larger in WANG and COMBRET
(TWPC2 and TWPC3) than MICROBASE compared to their

Figure 11. Statistical distribution of cloud IWC and ice re for geometric thin (DH ≤ 600 m) and geo-
metric thick (DH > 600 m) high level ice clouds. The numbers in the title are the total cloud samples
used for this statistical analysis at each site, and the colors indicates the frequency of cloud samples
which lie within the specified range of IWC and ice re.
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uncertainties shown in Table 2. Considering that LWC
has been scaled by the MWR LWP in all cloud products,
the different inter-comparison results shown in Figures 12a
and 12b indicate that different liquid cloud depths have
been used in the cloud products. For example, at TWPC3,
the averaged liquid cloud depths should be the largest for
CLOUDNET, and the smallest for COMBRET. Figure 12b
also shows smaller RMS difference for MACE and
SHUPE_TURNER than for CLOUDNET and WANG
respective to MICROBASE. This is because that LWC in
MICROBASE, MACE and SHUPE_TURNER are derived
using similar Ze-based algorithms while LWC in CLOUDNET

and WANG are adiabatic estimates. Figure 12c shows that
cloud liquid re in MICROBASE is systematically smaller than
that in others, which is most likely due to its droplet number
concentration assumption.
[42] In general, the ice cloud properties obtained from

different cloud products have much higher correlation
coefficients and smaller RMS differences than those for
liquid clouds, particularly for IWC and IWP. However, this
doesn’t necessarily mean that the ice cloud retrievals are any
more certain than liquid cloud retrievals. The commonality
of radar data used by most ice cloud retrievals is likely the
reason for the better correlations found in Figures 12d, 12e

Figure 12. Taylor diagrams show the statistical correlation coefficients, relative standard deviation
(Sother/SMICROBASE, where S is standard deviation) and centered root-mean square errors for all retrieval
products relative to MICROBASE regarding (a) LWP, (b) LWC, (c) liquid re, (d) IWP, (e) IWC, and
(f) ice re. The numbers in the plots indicate the different cloud retrieval products. The colors indicate
the different ratios of mean values of the cloud properties (X) from a specific cloud product compared
to MICROBASE.
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and 12f. There are high correlations and low RMS differ-
ences for IWC in MICROBASE, MACE, CLOUDNET, and
SHUPE_TURNER, associated with their similar Ze-based
IWC retrieval algorithms. However, the different parameters
used in the algorithms make IWC in SHUPE_TURNER
systematically smaller than that in MICROBASE. In con-
trast, COMBRET and VARCLOUD generally show signif-
icantly larger averaged values and RMS differences in IWC
relative to those Ze-based cloud retrievals, which should be
related to their combined radar and lidar basis. Ze-Vd based
cloud retrievals (DENG and RADON) show significantly
larger IWC at TWPC3 and similar (within 60%) IWC at
other sites compared to Ze-based cloud retrievals. For ice re
in high level ice clouds, the correlation coefficient between
examined cloud products mainly lies between 0.5 and 0.8.
Respective to MICROBASE, the correlation is relatively
weaker for SHUPE_TURNER and MACE compared to
others. The most likely reason is that the ice re of thin ice
clouds in SHUPE_TURNER and MACE are derived using
radiance based optimal estimation method while other cloud
products are from radar (or radar-lidar) based retrievals.
Figure 12f also shows that the ice re from temperature-based
MICROBASE is significantly smaller than from radar-lidar
and radar-only based cloud retrievals at low (3 TWP sites)
and middle (SGP) latitudes, except for from RADON. For
ice re from cloud products other than MICROBASE,
COMBRET, DENG and VARCLOUD are similar (within
40%) and larger than RADON at TWPC3, DENG is sig-
nificantly smaller than SHUPE_TURNER at NSA, and other
cloud products are similar (within 40%) with each other at
SGP, TWPC1 and TWPC2.
[43] The correlations of retrieved cloud properties among

cloud products other than MICROBASE, which are not
shown in Figure 12, are also generally low for liquid cloud
properties and much higher for ice cloud properties. The
potential reasons are similar as discussed above.

5. Summary and Discussions

[44] This study systematically documents the differences
among nine cloud retrieval products (i.e., MICROBASE,
MACE, CLOUDNET, DENG, SHUPE_TURNER, WANG,
COMBRET, VARCLOUD and RADON) and explores the
potential causes for these differences in term of retrieving
the microphysical properties of boundary layer overcast
clouds and high level ice clouds at the ARM SGP, NSA, and
TWP sites. Following are the main findings.
[45] For boundary layer liquid clouds, clear differences in

liquid re and LWC have been found among cloud products
associated with differences in retrieval instrument basis and
assumptions used in different retrieval techniques. Different
vertical structure can result from their retrieval basis and
parameters, such as the LWC from radar based methods with
different empirical parameters versus the LWC from an
adiabatic calculation. Clear differences in LWC shown in
this study also indicate the significant role of cloud retrieval
input and constraint parameters (e.g., cloud boundaries and
MWR LWP).
[46] For high level ice clouds, higher correlations in re and

IWC are found among the cloud products associated with
their common use of Ze. The magnitude of the correlation
coefficient is highly related to the similarity of their retrieval

instrument basis (radar basis, radar-lidar basis, radar-T basis,
and T basis). Similar to boundary layer liquid clouds, clear
differences in ice re and IWC for high level ice clouds have
been found among cloud retrieval products, which are
associated with the differences in retrieval basis, parameters,
and assumptions. Note that the differences of cloud proper-
ties caused by differences in underlying assumptions have
not been explicitly examined in this study, particularly the
different ice crystal habit assumptions.
[47] In summary, this study has shown the large system-

atic differences between various cloud products based on
long-term statistical analysis. These differences are even
often greater than those uncertainties prescribed in Table 2.
This fact indicates that the estimated uncertainties of
retrieval methods, as reported by different algorithm devel-
opers, are too optimistic. This study has also proposed pos-
sible reasons for these differences in term of their retrieval
basis, assumptions, parameters, as well as the retrieval inputs
and constraints. However, to quantify the effects from dif-
ferent factors and ultimately determine the best estimate of
cloud properties under different conditions, further con-
straints of these retrievals with more observations and ded-
icated sensitivity analyses with different combinations of the
retrieval factors are highly needed.
[48] A better understanding of the factors leading to dif-

ferences in cloud properties between various cloud products
will facilitate efforts to quantify cloud retrieval uncertainties
and develop a best estimate of cloud microphysical proper-
ties with error bars. Developing a uniform input and con-
straint data file based on ARM value-added products, which
provide a best estimate of these required fields, can help
considerably reduce these differences as found in earlier
studies [Dunn et al., 2010; Huang et al., 2011]. To address
the uncertainty issue within current cloud retrievals, ARM is
making an effort to assemble the ground based cloud
retrievals into an ARM cloud retrieval ensemble data set
(ACRED) [C. Zhao et al., 2011]. This product could provide
a rough estimate of uncertainties in these cloud retrievals
based on current instruments and retrieval techniques pro-
vided that the algorithms were reasonably designed to
retrieve cloud properties for a certain type of clouds. One
concern with the current ACRED is that the uncertainty in
each of the ensemble members has not been determined for
all meteorological conditions. To address this issue, one
could generate an ensemble data set for each of the algo-
rithms by perturbing key parameters and/or changing key
assumptions used in these selected retrieval methods. This
will help improve our understanding of the uncertainty
associated with each of these retrieval methods and provide
necessary information to further quantify the uncertainty
using statistical methods such as the Bayesian approach.
Another idea is to create observation system simulation
experiment (OSSE) data sets and run the algorithms on these
[McFarlane et al., 2002; Hogan et al., 2006b]. While the
designs of forward models in OSSE limit the use of this
method, a carefully constructed comparison might be able to
determine which algorithm is more accurate under which
conditions, and what the effects of different assumptions are.
Moreover, the accuracy of assumptions and parameters in
the cloud retrievals can be evaluated and tested with more in
situ aircraft data and observed surface and top of atmosphere
(TOA) radiative fluxes [Mlawer et al., 2008]. In addition,
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with the knowledge of the strengths and weakness of
retrieval algorithms based on sensitivity studies, it is possi-
ble to determine the optimal technique for certain types of
clouds under specific condition and then to develop a best
estimated cloud properties data set by merging the optimal
algorithms for all conditions together. In short, more
research is needed to better understand and reduce the
uncertainty in current cloud retrievals.

Notation

The notation section provides a description of the symbols
and abbreviations in Table 3.

PSD particle size distribution.
Exponential PSD N(r) = N0 exp(�lr).
Lognormal PSD N lnrð Þ ¼ N

s
ffiffiffiffi
2p

p exp � lnr � lnr0ð Þ2=2s2
� �

.

(modified) gammaPSD N rð Þ ¼ N0 exp að Þ r
r0

� �
exp � ra

r0

� �
.

Normalized PSD N(Deq) = N0*F(Deq/Dm).
F(Deq/Dm) normalized PSD.

N, N0 number concentration, number
concentration intercept.

N0* number concentration intercept
proportional to IWC/Dm

4 .
r, r0 radius, modal radius.
l, a parameters.

s standard width of lognormal
distribution.

Deq, Dm ‘equivalent melted’ diameter,
volume weighted diameter.

DISORT discrete ordinate radiative transfer
model [Stamnes et al., 1988].

LBLRTM line-by-line radiative transfer model
[Clough et al., 1981, 1992].

MODTRAN3 moderate resolution atmospheric
transmission version3 [Berk et al.,
1989].

d-2 stream model d-2 stream radiative transfer model
[Toon et al., 1989].

g, m0 cloud transmissivity ratio, cosine of
solar zenith angle.

T, P, I temperature, pressure, and spectral
radiation.

Tcb cloud base temperature.
LWP, R liquid water path, rain rate.

Ze water equivalent radar reflectivity.
Vd, sd radar Doppler velocity, Doppler

velocity spectral width.
sext lidar extinction coefficient.

Wm, Ws mean air vertical velocity, standard
deviation of the vertical motion.

F() a function of ….
a, b parameters.
fice cloud ice fraction.

Zeliquid, Zeice radar reflectivity from liquid
contribution, ice contribution.

LWC, IWC liquid water content, ice water
content.

re, re_layer effective radius, layer average
effective radius.

t optical depth.
EPM empirical parameterization method.

Optimal radiation matching optimal
estimation method.

Forward forward approachwhich theoretically
derives the cloud properties with
forward models.
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