35 research outputs found

    Aquifex aeolicus 3-Deoxy- d - manno -2-Octulosonic Acid 8-Phosphate Synthase: A New Class of KDO 8-P Synthase?

    Full text link
    The relationship between 3-deoxy- d - manno 2-octulosonic acid 8-phosphate (KDO 8-P) synthase and 3-deoxy- d - arabino -2-heptulosonic acid 7-phosphate (DAH 7-P) synthase has not been adequately addressed in the literature. Based on recent reports of a metal requiring KDO 8-P synthase and the newly solved X-ray crystal structures of both Escherichia coli KDO 8-P synthase and DAH 7-P synthase, we begin to address the evolutionary kinship between these catalytically similar enzymes. Using a maximum likelihood-based grouping of 29 KDO 8-P synthase sequences, we demonstrate the existence of a new class of KDO 8-P synthase, the members of which we propose to require a metal cofactor for catalysis. Similarly, we hypothesize a class of DAH 7-P synthase that does not have the metal requirement of the heretofore model E. coli enzyme. Based on this information and a careful investigation of the reported X-ray crystal structures, we also propose that KDO 8-P synthase and DAH 7-P synthase are the product of a divergent evolutionary process from a common ancestor.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42370/1/239-52-2-205_10520205.pd

    The European Prevention of Alzheimer's Dementia Programme: An Innovative Medicines Initiative-funded partnership to facilitate secondary prevention of Alzheimer's disease dementia

    Get PDF
    INTRODUCTION: Tens of millions of people worldwide will develop Alzheimer's disease (AD), and only by intervening early in the preclinical disease can we make a fundamental difference to the rates of late-stage disease where clinical symptoms and societal burden manifest. However, collectively utilizing data, samples, and knowledge amassed by large-scale projects such as the Innovative Medicines Initiative (IMI)-funded European Prevention of Alzheimer's Dementia (EPAD) program will enable the research community to learn, adapt, and implement change. METHOD: In the current article, we define and discuss the substantial assets of the EPAD project for the scientific community, patient population, and industry, describe the EPAD structure with a focus on how the public and private sector interacted and collaborated within the project, reflect how IMI specifically supported the achievements of the above, and conclude with a view for future. RESULTS: The EPAD project was a €64-million investment to facilitate secondary prevention of AD dementia research. The project recruited over 2,000 research participants into the EPAD longitudinal cohort study (LCS) and included over 400 researchers from 39 partners. The EPAD LCS data and biobank are freely available and easily accessible via the Alzheimer's Disease Data Initiative's (ADDI) AD Workbench platform and the University of Edinburgh's Sample Access Committee. The trial delivery network established within the EPAD program is being incorporated into the truly global offering from the Global Alzheimer's Platform (GAP) for trial delivery, and the almost 100 early-career researchers who were part of the EPAD Academy will take forward their experience and learning from EPAD to the next stage of their careers. DISCUSSION: Through GAP, IMI-Neuronet, and follow-on funding from the Alzheimer's Association for the data and sample access systems, the EPAD assets will be maintained and, as and when sponsors seek a new platform trial to be established, the learnings from EPAD will ensure that this can be developed to be even more successful than this first pan-European attempt

    A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    Evolution and inhibition of KDO 8 -P synthase.

    Full text link
    The result of exploring the evolution of 3-deoxy- D-manno-octulosonic acid 8-phosphate (KDO 8-P) synthase suggests that the enzyme exists in two distinct classes, one that requires a metal for catalysis and one that does not. From this phylogenic analysis, it also appears likely that KDO 8-P synthase and 3-deoxy-D- arabino-heptulosonic acid 8-phosphate (DAH 7-P) synthase share a distant ancestor. The most distant ancestor of these two enzymes was probably a form of DAH 7-P synthase. The first evolutionary event was likely a gene duplication event, splitting the metallo-KDO 8-P synthase from DAH 7-P synthase. The second, a mutation rather than duplication event, created the non-metallo class of KDO 8-P synthase. In order to explore the metallo-class of KDO 8-P synthase, the enzyme from Helicobacter pylori J99 was cloned and overexpressed. A full characterization of this enzyme was performed and it was confirmed that a divalent metal is required for catalysis in this enzyme. From the identity of the most active metals, it is suggested that role of the metal is either activation of the arabinose 5-phosphate carbonyl or activation of a water molecule for attack on C2 of phosphoenolpyruvate. As very few inhibitors exist for KDO 8-P synthase, a mass screen of approximately 150 000 compounds was undertaken. This screen produced a single compound that was highly active against the enzyme in vitro and slightly active in vivo. This compound was examined in detail and determined to be a slow-tight-binding inhibitor of E. coli KDO 8-P synthase and completely inactive against H. pylori KDO 8-P synthase. As such, several other compounds were tested against both enzymes and one was found to be inactive against the E. coli form while inhibiting the H. pylori. Using one compound, which is active against both forms of the enzyme, a campaign of structure-based drug design was embarked upon. During these experiments, it was determined that the binding of substrates is random, not ordered as had been previously reported.Ph.D.Pharmacy sciencesPure SciencesUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/131300/2/3057898.pd

    Developmental and internal validation of a novel 13 loci STR multiplex method for Cannabis sativa DNA profiling

    No full text
    Marijuana (Cannabis sativa L.) is a plant cultivated and trafficked worldwide as a source of fiber (hemp), medicine, and intoxicant. The development of a validated method using molecular techniques such as short tandem repeats (STRs) could serve as an intelligence tool to link multiple cases by means of genetic individualization or association of cannabis samples. For this purpose, a 13 loci STR multiplex method was developed, optimized, and validated according to relevant ISFG and SWGDAM guidelines. The STR multiplex consists of 13 previously described C. sativa STR loci: ANUCS501, 9269, 4910, 5159, ANUCS305, 9043, B05, 1528, 3735, CS1, D02, C11, and H06. A sequenced allelic ladder consisting of 56 alleles was designed to accurately genotype 101 C. sativa samples from three seizures provided by a U.S. Customs and Border Protection crime lab. Using an optimal range of DNA (0.5–1.0 ng), validation studies revealed well-balanced electropherograms (inter-locus balance range: 0.500–1.296), relatively balanced heterozygous peaks (mean peak height ratio of 0.83 across all loci) with minimal artifacts and stutter ratio (mean stutter of 0.021 across all loci). This multi-locus system is relatively sensitive (0.13 ng of template DNA) with a combined power of discrimination of 1 in 55 million. The 13 STR panel was found to be species specific for C. sativa; however, non-specific peaks were produced with Humulus lupulus. The results of this research demonstrate the robustness and applicability of this 13 loci STR system for forensic DNA profiling of marijuana samples

    Evaluation of a 13-loci STR multiplex system for Cannabis sativa genetic identification

    No full text
    Marijuana (Cannabis sativa) is the most commonly used illicit substance in the USA. The development of a validated method using Cannabis short tandem repeats (STRs) could aid in the individualization of samples as well as serve as an intelligence tool to link multiple cases. For this purpose, a modified 13-loci STR multiplex method was optimized and evaluated according to ISFG and SWGDAM guidelines. A real-time PCR quantification method for C. sativa was developed and validated, and a sequenced allelic ladder was also designed to accurately genotype 199 C. sativa samples from 11 U.S. Customs and Border Protection seizures. Distinguishable DNA profiles were generated from 127 samples that yielded full STR profiles. Four duplicate genotypes within seizures were found. The combined power of discrimination of this multilocus system is 1 in 70 million. The sensitivity of the multiplex STR system is 0.25 ng of template DNA. None of the 13 STR markers cross-reacted with any of the studied species, except for Humulus lupulus (hops) which generated unspecific peaks. Phylogenetic analysis and case-to-case pairwise comparison of 11 cases using F (st) as genetic distance revealed the genetic association of four groups of cases. Moreover, due to their genetic similarity, a subset of samples (N = 97) was found to form a homogeneous population in Hardy-Weinberg and linkage equilibrium. The results of this research demonstrate the applicability of this 13-loci STR system in associating Cannabis cases for intelligence purposes

    Correction to: Nuclear, chloroplast, and mitochondrial data of a US cannabis DNA database (International journal of legal medicine (2018) 132 3 (713-725))

    No full text
    The original version of this article contained a mistake. In page 10 of the original article, the significant level (p\ua0> 0.01) is incorrect. The correct significant level is (p\ua
    corecore