317 research outputs found

    The chemistry and saturation states of subsurface fluids during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland

    Get PDF
    In situ carbonation of basaltic rocks could provide a long-term carbon storage solution, which is essential for the success and public acceptance of carbon storage. To demonstrate the viability of this carbon storage solution, 175 tonnes (t) of pure CO2 and 73 tonnes (t) of a 75% CO2-24% H2S-1% H2-gas mixture were sequentially injected into basaltic rocks at the CarbFix site at Hellisheidi, SW-Iceland from January to August 2012. This paper reports the chemistry and saturation states with respect to potential secondary minerals of sub-surface fluids sampled prior to, during, and after the injections. All gases were dissolved in water during their injection into permeable basalts located at 500–800 m depth with temperatures ranging from 20 to 50 °C. A pH decrease and dissolved inorganic carbon (DIC) increase was observed in the first monitoring well, HN-04, about two weeks after each injection began. At storage reservoir target depth, this diverted monitoring well is located ∼125 m downstream from the injection well. A significant increase in H2S concentration, however, was not observed after the second injection. Sampled fluids from the HN-04 well show a rapid increase in Ca, Mg, and Fe concentration during the injections with a gradual decline in the following months. Calculations indicate that the sampled fluids are saturated with respect to siderite about four weeks after the injections began, and these fluids attained calcite saturation about three months after each injection. Pyrite is supersaturated prior to and during the mixed gas injection and in the following months. In July 2013, the HN-04 fluid sampling pump broke down due to calcite precipitation, verifying the carbonation of the injected CO2. Mass balance calculations, based on the recovery of non-reactive tracers co-injected into the subsurface together with the acid-gases, confirm that more than 95% of the CO2 injected into the subsurface was mineralised within a year, and essentially all of the injected H2S was mineralised within four months of its injection. These results demonstrate the viability of the in situ mineralisation of these gases in basaltic rocks as a long-term and safe storage solution for CO2 and H2S

    The Tight Junction Associated Signalling Proteins ZO-1 and ZONAB Regulate Retinal Pigment Epithelium Homeostasis in Mice

    Get PDF
    Cell-cell adhesion regulates the development and function of epithelia by providing mechanical support and by guiding cell proliferation and differentiation. The tight junction (TJ) protein zonula occludens (ZO)-1 regulates cell proliferation and gene expression by inhibiting the activity of the Y-box transcription factor ZONAB in cultured epithelial cells. We investigated the role of this TJ-associated signalling pathway in the retinal pigment epithelium (RPE) in vivo by lentivirally-mediated overexpression of ZONAB, and knockdown of its cellular inhibitor ZO-1. Both overexpression of ZONAB or knockdown of ZO-1 resulted in increased RPE proliferation, and induced ultrastructural changes of an epithelial-mesenchymal transition (EMT)-like phenotype. Electron microscopy analysis revealed that transduced RPE monolayers were disorganised with increased pyknosis and monolayer breaks, correlating with increased expression of several EMT markers. Moreover, fluorescein angiography analysis demonstrated that the increased proliferation and EMT-like phenotype induced by overexpression of ZONAB or downregulation of ZO-1 resulted in RPE dysfunction. These findings demonstrate that ZO-1 and ZONAB are critical for differentiation and homeostasis of the RPE monolayer and may be involved in RPE disorders such as proliferative vitroretinopathy and atrophic age-related macular degeneration

    Apoptosis of human melanoma cells induced by inhibition of B-RAFV600E involves preferential splicing of bimS

    Get PDF
    Bim is known to be critical in killing of melanoma cells by inhibition of the RAF/MEK/ERK pathway. However, the potential role of the most potent apoptosis-inducing isoform of Bim, BimS, remains largely unappreciated. Here, we show that inhibition of the mutant B-RAFV600E triggers preferential splicing to produce BimS, which is particularly important in induction of apoptosis in B-RAFV600E melanoma cells. Although the specific B-RAFV600E inhibitor PLX4720 upregulates all three major isoforms of Bim, BimEL, BimL, and BimS, at the protein and mRNA levels in B-RAFV600E melanoma cells, the increase in the ratios of BimS mRNA to BimEL and BimL mRNA indicates that it favours BimS splicing. Consistently, enforced expression of B-RAFV600E in wild-type B-RAF melanoma cells and melanocytes inhibits BimS expression. The splicing factor SRp55 appears necessary for the increase in BimS splicing, as SRp55 is upregulated, and its inhibition by small interfering RNA blocks induction of BimS and apoptosis induced by PLX4720. The PLX4720-induced, SRp55-mediated increase in BimS splicing is also mirrored in freshly isolated B-RAFV600E melanoma cells. These results identify a key mechanism for induction of apoptosis by PLX4720, and are instructive for sensitizing melanoma cells to B-RAFV600E inhibitors

    Adult Neurogenesis: Ultrastructure of a Neurogenic Niche and Neurovascular Relationships

    Get PDF
    The first-generation precursors producing adult-born neurons in the crayfish (Procambarus clarkii) brain reside in a specialized niche located on the ventral surface of the brain. In the present work, we have explored the organization and ultrastructure of this neurogenic niche, using light-level, confocal and electron microscopic approaches. Our goals were to define characteristics of the niche microenvironment, examine the morphological relationships between the niche and the vasculature and observe specializations at the boundary between the vascular cavity located centrally in the niche. Our results show that the niche is almost fully encapsulated by blood vessels, and that cells in the vasculature come into contact with the niche. This analysis also characterizes the ultrastructure of the cell types in the niche. The Type I niche cells are by far the most numerous, and are the only cell type present superficially in the most ventral cell layers of the niche. More dorsally, Type I cells are intermingled with Types II, III and IV cells, which are observed far less frequently. Type I cells have microvilli on their apical cell surfaces facing the vascular cavity, as well as junctional complexes between adjacent cells, suggesting a role in regulating transport from the blood into the niche cells. These studies demonstrate a close relationship between the neurogenic niche and vascular system in P. clarkii. Furthermore, the specializations of niche cells contacting the vascular cavity are also typical of the interface between the blood/cerebrospinal fluid (CSF)-brain barriers of vertebrates, including cells of the subventricular zone (SVZ) producing new olfactory interneurons in mammals. These data indicate that tissues involved in producing adult-born neurons in the crayfish brain use strategies that may reflect fundamental mechanisms preserved in an evolutionarily broad range of species, as proposed previously. The studies described here extend our understanding of neurovascular relationships in the brain of P. clarkii by characterizing the organization and ultrastructure of the neurogenic niche and associated vascular tissues

    Drug-Induced Regulation of Target Expression

    Get PDF
    Drug perturbations of human cells lead to complex responses upon target binding. One of the known mechanisms is a (positive or negative) feedback loop that adjusts the expression level of the respective target protein. To quantify this mechanism systems-wide in an unbiased way, drug-induced differential expression of drug target mRNA was examined in three cell lines using the Connectivity Map. To overcome various biases in this valuable resource, we have developed a computational normalization and scoring procedure that is applicable to gene expression recording upon heterogeneous drug treatments. In 1290 drug-target relations, corresponding to 466 drugs acting on 167 drug targets studied, 8% of the targets are subject to regulation at the mRNA level. We confirmed systematically that in particular G-protein coupled receptors, when serving as known targets, are regulated upon drug treatment. We further newly identified drug-induced differential regulation of Lanosterol 14-alpha demethylase, Endoplasmin, DNA topoisomerase 2-alpha and Calmodulin 1. The feedback regulation in these and other targets is likely to be relevant for the success or failure of the molecular intervention

    The role of planetary formation and evolution in shaping the composition of exoplanetary atmospheres

    Get PDF
    Over the last twenty years, the search for extrasolar planets revealed us the rich diversity of the outcomes of the formation and evolution of planetary systems. In order to fully understand how these extrasolar planets came to be, however, the orbital and physical data we possess are not enough, and they need to be complemented with information on the composition of the exoplanets. Ground-based and space-based observations provided the first data on the atmospheric composition of a few extrasolar planets, but a larger and more detailed sample is required before we can fully take advantage of it. The primary goal of the Exoplanet Characterization Observatory (EChO) is to fill this gap, expanding the limited data we possess by performing a systematic survey of hundreds of extrasolar planets. The full exploitation of the data that EChO and other space-based and ground-based facilities will provide in the near future, however, requires the knowledge of what are the sources and sinks of the chemical species and molecules that will be observed. Luckily, the study of the past history of the Solar System provides several indications on the effects of processes like migration, late accretion and secular impacts, and on the time they occur in the life of planetary systems. In this work we will review what is already known about the factors influencing the composition of planetary atmospheres, focusing on the case of gaseous giant planets, and what instead still need to be investigated.Comment: 26 pages, 9 figures, 1 table. Accepted for publication on Experimental Astronomy, special issue on the M3 EChO mission candidat

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Prominent Bone Loss Mediated by RANKL and IL-17 Produced by CD4+ T Cells in TallyHo/JngJ Mice

    Get PDF
    Increasing evidence that decreased bone density and increased rates of bone fracture are associated with abnormal metabolic states such as hyperglycemia and insulin resistance indicates that diabetes is a risk factor for osteoporosis. In this study, we observed that TallyHo/JngJ (TH) mice, a polygenic model of type II diabetes, spontaneously developed bone deformities with osteoporotic features. Female and male TH mice significantly gained more body weight than control C57BL/6 mice upon aging. Interestingly, bone density was considerably decreased in male TH mice, which displayed hyperglycemia. The osteoblast-specific bone forming markers osteocalcin and osteoprotegerin were decreased in TH mice, whereas osteoclast-driven bone resorption markers such as IL-6 and RANKL were significantly elevated in the bone marrow and blood of TH mice. In addition, RANKL expression was prominently increased in CD4+ T cells of TH mice upon T cell receptor stimulation, which was in accordance with enhanced IL-17 production. IL-17 production in CD4+ T cells was directly promoted by treatment with leptin while IFN-γ production was not. Moreover, blockade of IFN-γ further increased RANKL expression and IL-17 production in TH-CD4+ T cells. In addition, the osteoporotic phenotype of TH mice was improved by treatment with alendronate. These results strongly indicate that increased leptin in TH mice may act in conjunction with IL-6 to preferentially stimulate IL-17 production in CD4+ T cells and induce RANKL-mediated osteoclastogenesis. Accordingly, we propose that TH mice could constitute a beneficial model for osteoporosis

    Mature Peripheral RPE Cells Have an Intrinsic Capacity to Proliferate; A Potential Regulatory Mechanism for Age-Related Cell Loss

    Get PDF
    Mammalian peripheral retinal pigmented epithelium (RPE) cells proliferate throughout life, while central cells are senescent. It is thought that some peripheral cells migrate centrally to correct age-related central RPE loss.We ask whether this proliferative capacity is intrinsic to such cells and whether cells located centrally produce diffusible signals imposing senescence upon the former once migrated. We also ask whether there are regional differences in expression patterns of key genes involved in these features between the centre and the periphery in vivo and in vitro. Low density RPE cultures obtained from adult mice revealed significantly greater levels of proliferation when derived from peripheral compared to central tissue, but this significance declined with increasing culture density. Further, exposure to centrally conditioned media had no influence on proliferation in peripheral RPE cell cultures at the concentrations examined. Central cells expressed significantly higher levels of E-Cadherin revealing a tighter cell adhesion than in the peripheral regions. Fluorescence-labelled staining for E-Cadherin, F-actin and ZO-1 in vivo revealed different patterns with significantly increased expression on central RPE cells than those in the periphery or differences in junctional morphology. A range of other genes were investigated both in vivo and in vitro associated with RPE proliferation in order to identify gene expression differences between the centre and the periphery. Specifically, the cell cycle inhibitor p27(Kip1) was significantly elevated in central senescent regions in vivo and mTOR, associated with RPE cell senescence, was significantly elevated in the centre in comparison to the periphery.These data show that the proliferative capacity of peripheral RPE cells is intrinsic and cell-autonomous in adult mice. These differences between centre and periphery are reflected in distinct patterns in junctional markers. The regional proliferation differences may be inversely dependent to cell-cell contact
    corecore