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Abstract 17 

In situ carbonation of basaltic rocks could provide a long-term carbon storage solution, which is 18 

essential for the success and public acceptance of carbon storage. To demonstrate the viability of 19 

this carbon storage solution, 175 tonnes of pure CO2 and 73 tonnes of a 75% CO2-24% H2S-1% 20 

H2-gas mixture were sequentially injected into basaltic rocks at the CarbFix site at Hellisheidi, 21 

SW-Iceland from January to August 2102.  This paper reports the chemistry and saturation states 22 

with respect to potential secondary minerals of sub-surface fluids sampled prior to, during, and 23 

after the injections. All gases were dissolved in water during their injection into permeable 24 

basalts located at 500-800 m depth with temperatures ranging from 20 to 50°C. A pH decrease 25 

and dissolved inorganic carbon (DIC) increase was observed in the first monitoring well, HN-04, 26 

about two weeks after each injection began. At storage reservoir target depth, this diverted 27 

monitoring well is located ~125 m downstream from the injection well. A significant increase in 28 

H2S concentration, however, was not observed after the second injection. Sampled fluids from 29 

the HN-04 well show a rapid increase in Ca, Mg, and Fe concentration during the injections with 30 



a gradual decline in the following months. Calculations indicate that the sampled fluids are 31 

saturated with respect to siderite about four weeks after the injections began, and these fluids 32 

attained calcite saturation about three months after each injection. Pyrite is supersaturated prior 33 

to and during the mixed gas injection and in the following months. In July 2013, the HN-04 fluid 34 

sampling pump broke down due to calcite precipitation, verifying the carbonation of the injected 35 

CO2. Mass balance calculations, based on the recovery of non-reactive tracers co-injected into 36 

the subsurface together with the acid-gases, confirm that more than 95% of the CO2 injected into 37 

the subsurface was mineralised within a year, and essentially all of the injected H2S was 38 

mineralised within four months of its injection. These results demonstrate the viability of the in 39 

situ mineralisation of these gases in basaltic rocks as a long-term and safe storage solution for 40 

CO2 and H2S.  41 

 42 

Introduction 43 

Attenuating the current increasing atmospheric CO2 concentration is one of the greatest 44 

challenges of this century (e.g. Broecker, 2007; Broecker and Kunzig, 2008; Global CCS Institute, 45 

2015; Hoffert et al., 2002; International Energy Agency, 2015 ; IPCC, 2005, 2014; Lackner, 2003; 46 

Oelkers and Schott, 2005; Oelkers and Cole, 2008; Pacala and Socolow, 2004). One potential 47 

solution to this challenge is carbon capture and storage (CCS). A critical step in CCS is identifying 48 

locations and methods for secure subsurface CO2 storage.  49 

 50 

This paper follows two previous reports on the CarbFix injection, 1) a detailed description 51 

of the injection method and data from the injection well was presented by Sigfússon et al. (2015) 52 

and 2) the monitoring of tracers, carbon and pH in the first monitoring well downstream from the 53 

injection well was reported by Matter et al. (2016). The CarbFix project is focussed on CO2 and 54 

H2S injected into basaltic rocks. Carbon storage in basaltic rocks offers several advantages, due to 55 

their ability to promote permanent CO2 storage by mineralisation and due to their large potential 56 

storage volume (Gislason and Oelkers, 2014; Goldberg and Slagle, 2009; Goldberg et al., 2010; 57 

McGrail et al., 2006; Snæbjörnsdóttir et al., 2014). As such, a large number of past studies have 58 

focussed on developing the technology to safely store CO2 in basaltic rocks (Assayag et al., 2009; 59 

Bacon et al., 2014; Flaathen et al., 2009; Galeczka et al., 2014; Goldberg et al., 2013; Goldberg et 60 

al., 2008; Gudbrandsson et al., 2011; Gysi and Stefánsson, 2012a; Matter et al., 2007; McGrail et 61 



al., 2012; McGrail et al., 2006; McGrail et al., 2011; Rogers et al., 2006; Rosenbauer et al., 2012; 62 

Sigfusson et al., 2015; Stockmann et al., 2011; Van Pham et al., 2012). Basaltic rocks are rich in 63 

divalent cations such as Ca
2+

, Mg
2+

, and Fe
2+

. Acidic gas-charged water accelerates the release of 64 

these metals, promoting the formation of carbonate minerals such as calcite, magnesite, and 65 

siderite (Gislason et al., 2014; Gislason and Oelkers, 2014; Olsson et al., 2014; Gislason et al., 66 

2010; Gunnarsson et al., 2011; Oelkers et al., 2008; Stefánsson et al., 2011). About 10% of the 67 

continents and most of the oceanic floor are comprised of basaltic rocks, including the mid-oceanic 68 

ridges. The largest basaltic storage potential lies offshore; theoretically all CO2 from the burning of 69 

fossil fuel carbon (~5000 GtC; Archer, 2005) could be stored by mineral carbonation along the 70 

mid-ocean ridges (Snæbjörnsdóttir et al., 2014). The flanks of the ridges contain highly fractured 71 

and permeable basaltic layers (Fisher, 1998) with a pervasive circulation of about 1,000 Gt 72 

seawater/yr (Harris and Chapman, 2004). The potential for using these systems for carbon storage 73 

is confirmed by the results of Wolff-Boenisch et al. (2011), who demonstrated the rapid 74 

dissolution basaltic rocks in CO2 charged seawater.  75 

 76 

About 90% of Icelandic bedrock is basaltic (Hjartarson and Sæmundsson, 2014). In total, 77 

Iceland produced 1.6 MtCO2 by industrial processes in 2012 and about 0.2 MtCO2 by geothermal 78 

energy production (Wöll et al., 2014). Iceland is the largest (103,000 km
2
) part of the mid-ocean 79 

ridge systems exposed above sea level. Iceland, therefore, provides an excellent opportunity to 80 

explore the feasibility of mineral storage of CO2 and gas mixtures in basaltic rocks at the oceanic 81 

ridges since drilling and detailed monitoring of injected gas and water by reactive and non-reactive 82 

tracers is much less costly onshore than offshore.  83 

 84 

The potential advantages in storing carbon by the in situ carbonation of Icelandic basalts 85 

motivated creation of the CarbFix project, which was designed to inject CO2 into subsurface 86 

adjacent to the Hellisheidi geothermal power plant. Extensive research was carried out prior to the 87 

injection of acid gases at the CarbFix site. Gislason et al. (2010) described the thermodynamics 88 

and kinetic basis for carbon storage at this site. Alfredsson et al., (2013) characterised the geology, 89 

and rock and water chemistry of the CarbFix site. Wiese et al. (2008) determined the amount and 90 

spatial distribution of naturally mineralised CO2 within the Icelandic geothermal systems. The 91 

dissolution and precipitation rates of the subsurface rocks at the site were investigated in mixed 92 



flow reactors (e.g. Gudbrandsson et al., 2011; Gysi and Stefánsson, 2012a; Stockmann et al., 93 

2013), in pressurised plug flow experiments (e.g. Galeczka et al., 2014), by hydrological modelling 94 

(Khalilabad et al., 2008), and using reactive transport modelling (Aradóttir et al., 2012). 95 

 96 

The CarbFix project is unique in that it injects CO2 into basalts as a dissolved aqueous 97 

phase. In contrast, most subsurface carbon storage projects have injected CO2 as a separate phase 98 

into large sedimentary basins; this method requires high integrity cap-rocks to keep the injected 99 

buoyant gas in the subsurface (Gislason and Oelkers, 2014; Rutqvist et al., 2007). However, there 100 

are numerous advantages of injecting CO2 into the subsurface within an aqueous phase. First, 101 

many of the risks associated with buoyancy can be mitigated by dissolving the gases into water 102 

during their injection (Gislason et al., 2010; Sigfusson et al., 2015). Once dissolved, the injected 103 

gases are no longer buoyant, making it possible to inject CO2 into fractured rocks, such as basalts 104 

along the ocean ridges and on the continents. Furthermore, this injection method may also make it 105 

possible to simultaneously store a number of acid gases including SO2 and H2S as sulphide 106 

minerals such as pyrite and pyrrhotite, lowering substantially gas capture/storage costs (Gislason et 107 

al., 2014; Gislason and Oelkers, 2014; WorleyParsons and Schlumberger, 2011).  108 

 109 

Large SO2 emissions are associated with fossil fuel power production and heavy industry 110 

such as metal smelters (Smith et al., 2011). These emissions peaked in 1970-1980 at about 80 Mt 111 

per year in the USA and Europe leading to acid rain and Al mobilisation, degrading aquatic and 112 

terrestrial ecosystems (Gensemer and Playle, 1999; Gislason and Torssander, 2006). Due to 113 

intervening regulations, these emissions have been in decline, and were less than 11 Mt in 2011 114 

(European Environment Agency, 2014; United States Environmental Protection Agency, 2015) 115 

due, in large part due to SO2 capture. This SO2 capture could potentially be combined with CO2 116 

capture in water, and this water-soluble gas mixture injected into reactive rocks for mineral 117 

storage.  118 

 119 

Emissions of H2S are an inevitable consequence of geothermal energy exploitation, pulp 120 

and paper production and the use of fossil fuels (e.g.World Health Organization, 2000). 121 

Regulations for H2S emissions have obliged Icelandic geothermal energy producers to reduce their 122 

emissions of this gas (Aradóttir et al., 2015; Gunnarsson et al., 2011). One mitigation option is to 123 



capture H2S and inject it into the subsurface. This approach has been adopted by an ongoing 124 

carbon storage project at Weyburn Canada in connection with enhanced oil recovery, which has 125 

been co-injecting supercritical CO2 and H2S into subsurface sedimentary rocks (Bachu and Gunter, 126 

2005). The behaviour of co-injecting H2S has not been studied to the same extent as injection of 127 

pure CO2. Some work has, however, been done in terms of geochemical modelling and laboratory 128 

experiments (e.g. Bacon et al., 2014; Gudbrandsson and Stefánsson, 2014; Gunnarsson et al., 129 

2011; Stefánsson et al., 2011; Knauss et al., 2005). One goal of the CarbFix project is to assess the 130 

feasibility of co-injecting dissolved H2S and CO2 into basalts which can provide a cost effective 131 

storage solution for both of these gases. 132 

 133 

This paper reports on our further efforts to develop the technology to store CO2 through the 134 

in situ carbonation of basaltic rocks at the CarbFix storage site in southwest Iceland. Two field 135 

injections were carried out at this storage site. In January to March 2012, 175 tonnes of pure CO2 136 

were injected into the CarbFix site. In June to August 2012, 73 tonnes of a gas mixture from the 137 

Hellisheidi geothermal power plant were injected, consisting of 75 mol% CO2, 24 mol% H2S and 1 138 

mol% H2. In each case, the gases were dissolved into formation water during their injection, 139 

releasing a single aqueous fluid into the storage formation. Here we report the compositions and 140 

saturation states of fluid samples collected from a diverted monitoring well located 125 m in the 141 

down-flow direction of the injection well at target storage reservoir depth, before, during, and after 142 

the CO2 and CO2-H2S injections, and use these results to better understand the fate of these 143 

injected gases in the subsurface.  144 

  145 

 146 

Methods  147 

Description of the CarbFix site 148 

The CarbFix injection site is located in SW-Iceland, about 30 km east of Reykjavík. The 149 

site is ~260 m above sea level and located 3 km SW of the Hellisheidi geothermal power plant 150 

(Fig. 1), which is owned and operated by Reykjavik Energy. During 2015, the power plant 151 

generated 303 MW of electricity and 133 MW of thermal energy using hot water and steam from 152 

a high temperature reservoir located at 800-3000 m depth E and NE of the power plant. The 153 



power plant annually produces 40,000 tonnes CO2 and 12,000 tonnes H2S. These gases are of 154 

magmatic origin produced as a by-product of the geothermal energy production.  155 

 156 

Acidic gases injected at the CarbFix site were dissolved into water collected from HN-01, 157 

a well located about 1 km west of the 2001 m deep HN-02 injection well (Fig. 1). Well HN-01 is 158 

1306 m deep; water collected from this well was transported via pipeline to HN-02 where the 159 

HN-01 water was injected through a pipe as described in detail by Sigfusson et al. (2015). The 160 

injected gas was released into the down flowing water via a sparger at a depth of 340 m. The gas 161 

dissolved in the water as it was carried down a mixing pipe to a depth of 540 m, where the 162 

hydrostatic pressure is above 40 bars, ensuring complete dissolution of the CO2 before it was 163 

released into the subsurface rocks (Aradóttir et al., 2012; Gislason et al., 2010; Sigfusson et al., 164 

2015). 165 

 166 

The geology of the CarbFix site was described in detail by Alfredsson et al. (2013). The 167 

subsurface rocks at the injection site are primarily olivine tholeiite basalts, consisting of post-168 

glacial lava flows and glassy hyaloclastite formations, formed beneath the ice-sheet during 169 

glaciations (Fig. 1). The bedrock down to about 200-300 m depth consists of relatively unaltered 170 

olivine tholeiite lava flows that host an oxygen-rich groundwater system with a static water table 171 

at about 100 m depth. Below the lava flows lies a 200 m thick, slightly altered hyaloclastite that 172 

separates the near surface water system from a deeper system, which is oxygen depleted. The site 173 

follows an approximately linear temperature gradient of 80°C/km. The target injection formation 174 

consists of a series of altered lava flows from about 400 m to 800 m depth overlain by the low 175 

permeability hyaloclastites (Alfredsson et al., 2013; Helgadóttir, 2011). The lateral and vertical 176 

intrinsic permeabilities of the storage formation were estimated to be 300 and 1700 x 10
-15

 m
2
, 177 

respectively, having an effective matrix porosity of 8.5% and a 25 m/year estimated regional 178 

groundwater flow velocity (Aradóttir et al., 2012). The most abundant alteration minerals from 179 

200 m to 1000 m depth are smectites, calcite, and Ca- and Na-rich zeolites (Alfredsson et al., 180 

2013; Helgadóttir, 2011). 181 

 182 

The injection site is equipped with eight monitoring wells ranging from 50 to 1300 m 183 

depth. Six of the eight wells are located downstream from the HN-02 injection well. Four of the 184 



wells penetrate the groundwater system in the topmost 200-300 m and four are drilled down 185 

through the target storage formation. These deeper wells are cased down to 400 m depth and 186 

serve as monitoring wells of the deeper system. All monitoring wells were sampled during the 187 

experiment, but evidence of tracers from the injections has only been found, to date, in samples 188 

collected from well HN-04, which is the closest to the injection well as shown in Figure 1. Well 189 

HN-04 is located about 10 m west of HN-02 at the surface, but it is diverted in the subsurface 190 

such that the distance between the wells is 125 m at 520 m depth, where the target carbon storage 191 

aquifer is located (Alfredsson et al., 2013; Aradóttir et al., 2012). Field injections at the CarbFix 192 

site were performed from 2008 to 2012. Tracer tests were conducted both under natural and 193 

forced flow conditions from 2008 to 2011 to define the system hydrology and for scaling 194 

reactive transport models (Aradóttir et al., 2012; Gislason et al., 2010; Khalilabad et al., 2008; 195 

Matter et al., 2011).  196 

 197 

Acid Gas Injections at the CarbFix site 198 

The injection of acid gases at the CarbFix site was performed in two phases during 2012 199 

(Table 1): 200 

 201 

Phase I began in late January 2012 with the injection of 175 tonnes of pure CO2. The CO2 was 202 

stored in a 30 m
3
 reservoir tank pressurised at 26-28 bars and co-injected with water collected 203 

from well HN-01 into well HN-02, as described by Sigfusson et al. (2015). The predicted in situ 204 

pH and DIC concentrations of the injected fluid during Phase I were 3.85 and 0.823 mol kg
-1

 205 

respectively, based on the mass flow rates of water and gas into the injection well, chemical 206 

speciation calculations (Parkhurst and Appelo, 2013), and direct measurement (Sigfusson et al., 207 

2015). The chemical tracers listed in Table 1 were co-dissolved into the injected water as 208 

described by Sigfusson et al. (2015) to aid in determining the fate of the dissolved CO2 as 209 

described by Matter et al. (2016). The Phase I injection ran continuously until it was terminated 210 

on the 9
th

 of March 2012.  211 

 212 

 Phase II began in mid-June 2012 with the injection of 73 tonnes of a gas mixture containing 75 213 

mol% CO2, 24 mol% H2S, and 1 mol% H2 originating from the Hellisheidi power plant. The gas 214 

mixture was obtained by diverting power plant emissions to a gas abatement plant, where it was 215 



separated into water soluble gases (CO2, H2S), and less soluble gases (N2, CH4, H2, Ar). The 216 

power plant emission gas contained about 20% H2; a small fraction of this dissolves in the water 217 

along with the CO2 and H2S according to the solubility and partial pressure of the gases. 218 

Subsequently the soluble gas mixture was co-injected into the surface with HN-01 water. The 219 

predicted in situ pH, DIC, H2S, and H2 concentrations of the injected water during the Phase II, 220 

based on the mass flow rates of water and gas into the injection well and chemical speciation 221 

calculations performed using PHREEQC (Parkhurst and Appelo, 2013) were 4.03, 0.43 mol kg
-1

, 222 

0.14 mol kg
-1

 and less than 0.01 mol kg
-1

, respectively. The chemical tracers listed in Table 1 223 

were co-dissolved into the injected water as for the pure CO2 injection to monitor subsurface 224 

reactivity. The gas mixture injection rate was less stable than that of the pure CO2 injection and 225 

was stopped several times due to injection problems. The injection was terminated on the 1
st
 of 226 

August 2012.  227 

 228 

Analytical methods 229 

Sampling of the fluids from the HN-04 first monitoring well began in 2008. Water 230 

samples for chemical analysis were collected several times prior to the Phase I injection in 231 

January 2012 (Alfredsson et al., 2013). During the injections and until mid-September 2012 this 232 

well was sampled twice weekly. Weekly sampling continued until mid-July 2013 with few 233 

exceptions.  234 

 235 

Water was pumped from the monitoring well at the rate of 3.5 m
3
/h throughout this study, 236 

to maintain a constant head from the injection to the monitoring well. The pump used was a 237 

163 cm long, submersible Grundfos model SP3A-60 made of stainless steel, located at 303 m 238 

depth and ~200 m below the water table. This pump was connected to a 53 mm diameter steel 239 

pipe to the surface where the effluent was deposed via a service pipe extending east of the 240 

injection site and eventually re-injected into a deep geothermal system. 241 

 242 

Fluid samples were collected via a 10 m long, 10 mm diameter stainless steel pipe 243 

connected to the 53 mm diameter monitoring well lining pipe extending down to the pump. The 244 

10 mm sample pipe was connected directly to a sampling valve inside an on-site field laboratory. 245 

After flushing the sampling pipe, the sampled waters were immediately filtered through 0.2 µm 246 



Millipore cellulose acetate membranes using silicon tubing and a 140 mm Sartorius® 247 

polypropylene filter holder. All air in the filtration system was expelled through a valve prior to 248 

sampling and at least 3 L of water was pumped through the system before the samples were 249 

collected in distinct bottles depending on the subsequent chemical analysis. Amber glass bottles 250 

were used to collect samples for pH and alkalinity. Acid washed high density polyethylene 251 

bottles were used to collect samples for cations and trace metals. These samples were acidified 252 

using Suprapur® HNO3, 1% (v/v). Acid washed low density polypropylene bottles were used to 253 

collect samples for Fe-species measurement. These samples were acidified with Suprapur® HCl, 254 

1% (v/v) immediately after collection. Low density polypropylene bottles were used for 255 

collecting samples for anion concentration measurements. Acid washed polycarbonate bottles 256 

were used to collect samples for dissolved organic carbon (DOC). These samples were acidified 257 

with 1.2 M concentrated HCl 2% (v/v). All sample bottles were rinsed three times by half filling 258 

them with the filtrated water and then emptying them prior to sample collection. 259 

 260 

Temperature and conductivity were measured at the sampling site using a Eutech 261 

Instruments Oakalon 2-cell Conductivity meter. The in situ temperature of the sampled fluid was 262 

determined using down-hole temperature logging at the depth of the main feed-point of well HN-263 

04, at about 420 m depth (Alfredsson et al., 2013; Thorarinsson et al., 2006). The pH was 264 

determined on site with a Eutech InstrumentsTM CyberScan pH 110 electrode and again in the 265 

laboratory a few hours after sampling with a Cole Parmer combined glass electrode together with 266 

an Orion pH meter. The uncertainty of the analyses is estimated to be ±0.02. The pH was then re-267 

calculated at in situ conditions using PHREEQC (Parkhurst and Appelo, 2013). Alkalinity was 268 

measured in the laboratory by alkalinity titration using the Gran function to determine the end 269 

point of the titration (Stumm and Morgan, 1996). Total dissolved inorganic carbon (DIC) was 270 

calculated with PHREEQC (Parkhurst and Appelo, 2013) using measured pH, alkalinity, 271 

temperature and total dissolved elements concentrations. The uncertainties of the DIC 272 

calculations are estimated to be within 10%. 273 

 274 

Dissolved oxygen was fixed on site and later determined by Winkler titration. This 275 

method has a precision of 1 µmol/L O2 (0.03 ppm) for the 50 ml sample bottles, but there is a 276 

risk of atmospheric contamination for samples containing no or little oxygen. Such is the case for 277 



the samples collected from HN-04, which are oxygen depleted. The O2 concentrations of the 278 

sampled fluids ranged from 2-24 µmol/L. The difference between the O2 concentration in the 279 

samples and the reagents was determined using the method described by Arnórsson (2000). The 280 

results show that the oxygen measured in the samples is mostly derived from the reagents. Some 281 

oxygen contamination during sampling was also inevitable.  282 

 283 

Dissolved hydrogen sulphide was measured by titration on site using mercury and 284 

dithizone as an indicator (Arnórsson et al., 2000). The sensitivity of this method is about 0.29 285 

µmol/L H2S (about 0.01 ppm) when using a 50 ml sample aliquot.  286 

 287 

The major elements Si, Ca, K, Mg, Na, and S and the trace metals Fe and Al were 288 

analysed using a Spectro Ciros Vision Inductively Coupled Plasma Optical Emission 289 

Spectrometer (ICP-OES) using an in-house multi-elements standard checked against the SPEX 290 

Certified Reference standard at the University of Iceland. The samples were analysed again using 291 

a Agilent 725 ICP-OES for major elements and an ELEMENT XR Inductively Coupled Plasma 292 

Sector Field Mass Spectrometer (ICP-SFMS) from ThermoScientific for the trace elements Fe 293 

and Al at ALS Scandinavia, Luleå, Sweden. Analytical measurements for the major elements had 294 

an inter-laboratory reproducibility within 12%. The average difference between corresponding 295 

concentration measurements is 3.7% with a standard deviation of 2.3%. Analytical 296 

measurements for the trace elements Fe and Al had an inter-laboratory reproducibility within 297 

19%. The average difference in corresponding Fe and Al concentration measurements was 4.9%. 298 

Dissolved F
−
, Cl

−
, and SO4

−2
 concentrations were quantified using a DIONEX, ICS-2000 Ion 299 

Chromatograph. The addition of zinc-acetate to the SO4 sample was not needed for its analysis 300 

since the H2S concentrations were small compared to the SO4 concentrations as shown below. 301 

Concentrations of Fe
2+

 and Fe
3+

 were measured using a DIONEX IC-3000 Ion Chromatograph. 302 

Due to ambiguities in the Fe
3+

 measurements, the Fe
2+

 measurements were used along with the 303 

Fetotal concentrations measured by ICP-SFMS at ALS Scandinavia to calculate Fe
3+

 304 

concentrations. Analysis of dissolved organic carbon (DOC) was carried out at Umeå  Marine 305 

Science Center in Umeå, Sweden using a Shimadzu TOC-VcPH total organic carbon analyser. 306 

 307 



The precipitates collected from the pump recovered from the HN-04 monitoring well 308 

were analysed by X-ray Powder Diffraction (XRD) at ISOR, Iceland for phase identification.  309 

The samples were measured using a Bruker AXS D8 Focus X-ray diffractometer with Cu kα 310 

radiation at 1.54Å wavelength, set at 40 kV and 40 mA using 1° divergence and receiving slits. 311 

The chemical composition of the precipitates was also analysed by ALS, Scandinavia. The 312 

precipitates were digested in HNO3 and HCl with a trace of HF in a microwave oven. The 313 

resulting fluids were then analysed using both ICP-OES and High Resolution Inductively 314 

Coupled Plasma Mass Spectrometry (HR-ICP-MS). Detection limits were in the range of 0.01 315 

ppm for trace elements to single ppm for major elements, and uncertainties for concentrations 10 316 

times these detection limits are within 10% of the reported value. 317 

 318 

Precipitates from samples collected from an air-lift of the HN-02 injection well in June 319 

2013, were analysed for phase identification by XRD at the University of Copenhagen, Denmark 320 

with a Bruker D8 Discover equipped with a Co tube. 1L slurries collected from the air-lift were 321 

sealed immediately after sampling, transported to Denmark, where they were kept in an 322 

anaerobic chamber prior to analysis to minimise oxidation. Within the chamber, the samples 323 

were centrifuged, dried, crushed and mounted on low-background sample holders that were then 324 

covered with X-ray transparent cups to minimise oxidation during measurements. 325 

 326 

Mass balance calculations 327 

The fate of injected gases in this study are evaluated with the aid of mass balance 328 

calculations based on the injected non-reactive tracers SF6 and SF5CF3 (Assayag et al., 2009; 329 

Matter et al., 2007; Matter et al., 2016).  All collected water samples consist of a mixture from 330 

three sources; the original groundwater, that injected during Phase 1 and that injected during 331 

Phase 2.  In the absence of reactions that remove or add material to the mixed fluid, mass balance 332 

requires that the concentration of chemical component i in the monitoring well samples (ci) to be 333 

 334 

𝑐𝑖 = 𝑐𝑖,𝐺𝑊𝑋𝐺𝑊 + 𝑐𝑖,1𝑋𝑖,1 + 𝑐𝑖,2𝑋2     (1) 335 

 336 



where ci,GW, ci,1, and ci,2 refers to the concentration of the ith chemical component in the original 337 

groundwater, the Phase 1 injection and the Phase 2 injection, respectively, whereas and XGW, X1, 338 

and X2 designate the fraction of the these three fluid sources in each monitoring sample.  339 

 340 

The fraction of each water source in each monitoring sample was determined from the 341 

measured concentrations of the two non-reactive tracers, SF6 and SF5CF3 together with the 342 

requirement that 343 

 344 

𝑋𝐺𝑊 + 𝑋1 + 𝑋2 = 1      (2) 345 

 346 

  Comparison of values based on the assumption of non-reactive mixing, obtained from 347 

Eqns. (1) and (2), with those measured in the monitoring wells provides an estimate of the 348 

percentage of injected gases fixed by chemical reactions, and the mass of elements added or 349 

removed from the fluid by mineral dissolution and precipitation reactions due to the injections. 350 

The background concentration of SF6 in Eqn. 1 ( 𝑐𝑖,𝐺𝑊) was not constant with time since SF6 had 351 

been used in previous hydrological tests. This background concentration was corrected by taking 352 

account of the sample sodium fluorescein tracer concentrations; this tracer was co-injected with 353 

the SF6 in the previous tests as described by Matter et al. (2016). 354 

 355 

Sample 12KGM06 (Table 2) of the injected water from well HN-01 was used to constrain 356 

the elemental concentrations of the injected fluid, apart from the elements C and S, which were 357 

determined by accounting for the concentration of CO2 and H2S added to these injected fluids. 358 

Sample 12KGM01 (Table A1 in the electronic supplements) collected from well HN-04 before 359 

injection was used for representing the ambient groundwater concentrations. Mass balance 360 

calculations were performed for the major elements Ca, Mg, Si, Na, K, and Cl, and the trace 361 

elements Fe and Al.  362 

 363 

Geochemical modelling 364 

Modelling of the water chemistry, including the calculation of percent error in charge 365 

balance, the in situ saturation state of the water with respect to mineral and gas phases, and the 366 

effect of CO2 and CO2-H2S-H2 gas injection on the aqueous chemistry of the subsurface fluids 367 



was performed using PHREEQC (Parkhurst and Appelo, 2013). In no case did the charge 368 

imbalance exceed 6.1%. The standard PHREEQC database was used in all calculations after 369 

including revised thermodynamic data on secondary minerals taken from Gysi and Stefánsson 370 

(2011), and pyrrotite and greigite taken from the MINTEQ and the llnl databases, respectively, 371 

as described in Alfredsson et al. (2013). Dissolved inorganic carbon (DIC) was calculated for 372 

each water sample using measured alkalinity, pH and temperature defined at 35°C at the in situ 373 

conditions. All saturation indices were calculated assuming the oxygen fugacity was controlled 374 

by equilibrium with the H2S/SO4
2-

 as a redox couple. For samples having no measured excess 375 

H2S, the H2S concentration was assumed to be equal to the detection limit of the H2S titration, as 376 

geothermal waters always contain a small fraction of H2S although below the detection limit.  377 

 378 

Results 379 

The compositions of all sampled fluids are shown in Figures 2, 3, and 8, Table 2 and 380 

Table A1 in the electronic supplements. An increase in the non-reactive sulphur hexafluoride 381 

(SF6) tracer, indicating the initial arrival of the migrating dissolved CO2 plume in the HN-04 382 

monitoring well, occurred about two weeks after the start of the Phase I injection (Fig. 2a). The 383 

concentration of this tracer increased until a maximum 56 days after the Phase 1 injection started 384 

(Matter et al., 2016). The SF6 tracer concentration again increased about 100 days after the 385 

injection started, reaching an overall maximum about 13 months after Phase I was started (see 386 

Fig 2a; Matter et al., 2016). This is the same pattern observed during the previous tracer test 387 

(Khalilabad et al., 2008), indicating that the storage formation consists of relatively homogenous 388 

porous media intersected by a low volume and fast flow path that channels about 3% of the 389 

tracer flow between wells HN-02 and HN-04. The same pattern was observed for Phase II, with 390 

the first arrival of the non-reactive trifluoromethyl sulphur pentafluoride (SF5CF3) tracer 391 

observed about two weeks after the start of the mixed-gas injection (Fig. 2a), with an initial 392 

smaller maximum about 60 days after the injection began (Matter et al., 2016). A further increase 393 

in SF5CF3 was noted about 150 days after Phase II injection began (Fig. 2a), consistent with the 394 

behaviour of SF6 (Matter et al., 2016). The second SF5CF3 concentration maximum was not 395 

observed due to a breakdown of the submersible pump in the monitoring well HN-04, resulting 396 

in a three month gap in the monitoring data as described below. 397 

 398 



Fluid pH, carbon, and sulphur 399 

Prior to the injections, the pH of the HN-04 monitoring well samples was 9.5-9.6, the 400 

DIC was 1.3-1.4 mmol/L, and the total S concentration was 0.09-0.11 mmol/L (see Fig. 2b-c, 401 

Table A1 in the electronic supplements, and Alfredsson et al. (2013)). The measured pH and DIC 402 

before, during and after the two injection phases are shown in Figure 2b. The pH of the sampled 403 

fluids is extremely sensitive to the injection of dissolved gases. The pH in situ (35°C) decreases 404 

from 9.6 prior to each injection to approximately 7 near the end the injection then subsequently 405 

recovers to a value higher than 9. The decrease starts about two weeks after the start of Phase I, 406 

contemporary with the first arrival of the non-reactive tracer. The lowest pH following Phase I 407 

was 6.6 and occurred at the same time as the highest DIC value of 4.4 mmol/L, about 50 days 408 

after the Phase I injection was started, but ten days before the first reactive tracer maximum. 409 

Subsequently, both DIC and pH trended back towards their initial values (Fig. 2b). A similar 410 

pattern was observed during Phase II; the pH began to drop about two weeks after the injection 411 

was started, with the lowest pH of 7.1 measured at the same time as the highest DIC value of 3.3 412 

mmol/L, about 60 days after the Phase II injection was started and concurrent the first SF5CF3 413 

tracer maximum (see Fig 2).  414 

 415 

No corresponding increase in DIC was observed during the second and larger SF6 tracer 416 

maximum. This suggests significant mineral storage of the injected carbon; the difference 417 

between measured and calculated DIC indicate that >95% of the injected CO2 was mineralised in 418 

less than two years, as previously reported by Matter et al. (2016). The second and larger SF5CF3 419 

tracer maximum was not observed due to a pump failure in the HN-04 monitoring well, but an 420 

increase was noted in this concentration approximately one year after the start of the Phase II 421 

injection, consistent with the increase during the second breakthrough of SF6. No corresponding 422 

increase in DIC was observed. Analysis of dissolved organic carbon (DOC) show continuous 423 

decrease in DOC concentrations from the start of Phase I, and throughout the monitoring period, 424 

except for a small increase shortly after the termination of the Phase II, from August to 425 

September 2012 (Table A1 in the electronic supplements). The measured DIC concentration is 426 

more than two orders of magnitude greater than the measured DOC concentration throughout 427 

most of the monitoring period after the Phase I injection (Fig. 2b and Table A1 in the electronic 428 

supplements). 429 



 430 

The measured sulphur concentrations (SO4
-2

, H2S, and S total) from before, during and 431 

after the Phase II injection are shown in Figure 2c and Table A1 in the electronic supplements. 432 

The concentrations are close to constant throughout this two year study. The average SO4
-2

 433 

concentration measured by IC-2000 during the period was 0.10±0.01 mmol/L, with a standard 434 

deviation of 0.005. The average total S concentration measured by ICP-OES was 0.10±0.02 435 

mmol/L, with standard deviation of 0.003. The H2S concentrations were, in most cases, close to 436 

the 0.3 µmol/L detection limit. The highest H2S concentration, 1.5 µmol/L, was measured during 437 

the Phase II injection. The H2S sulphur species always comprised less than 1.5% of the total 438 

dissolved S measured by the ICP-OES. This suggests an even more rapid mineralisation of the 439 

injected H2S than the injected CO2; no significant increase in sulphur concentrations was noted 440 

during this field injection experiment, indicating that all of the injected sulphur was mineralised 441 

before the first reactive tracer maximum of the SF5CF3 was observed in the monitoring well HN-442 

04, or within 60 days of the start of the injection. 443 

 444 

Major and trace elements  445 

The release of the divalent cations Ca
2+

, Mg
2+

, and Fe
2+

 from the host basalt is essential 446 

for the mineralisation of the injected gases. The chemical compositions of the HN-04 monitoring 447 

samples demonstrate the rapid increase in Ca, Mg, and Fe concentration during the two injection 448 

phases with a gradual decline in the following weeks and months (see Fig. 3a-c). The increases 449 

in these concentrations were first observed concurrently with the first appearance of the non-450 

reactive tracers. The Fe
2+

 was not detected in any sample after early April 2013, or about 6 451 

weeks after the major part of the injected Phase 1 fluid arrived in well HN-04 and the Fe
2+

 452 

concentrations were close to the detection limit for the two months following the start of the gas 453 

mixture injection. 454 

 455 

In contrast, dissolved Si concentrations were close to constant throughout the monitoring 456 

period (Fig. 3d). An increase in Na concentration was most prominent at the beginning of the 457 

Phase I injection when its concentration increased from 2.1-2.2 mmol/L to about 2.3-2.4 mmol/L 458 

(Fig. 3e). Another increase was observed during the Phase II injection to about 2.5 mmol/L. The 459 

Na-concentration at the end of the monitoring period was about 2.6-2.7 mmol/L. A similar trend 460 



is evident for K, but the increase in its concentration was somewhat lower than that of Na (Fig. 461 

3f). The only major difference between the responses of these concentrations to the dissolved gas 462 

injections was the presence of a small concentration peak in K during October 2012. The origin 463 

of this peak in unclear. The Al concentrations were strongly pH dependent, consistent with its 464 

solubility dependence on pH from neutral to basic conditions (e.g. Drever, 1982). As such, a 465 

strong correlation was observed between Al concentrations and pH before, during, and after the 466 

injections (Fig. 3g). The Cl concentrations were generally constant throughout the monitoring 467 

period with a concentration of 2.4 mmol/L (Fig. h).  468 

 469 

Calcite precipitates 470 

In July 2013, about one and a half years after the start of the Phase I injection, the 471 

submersible pump in well HN-04 broke down. When the pump was brought to the surface, it was 472 

found to be clogged and coated with a green precipitate as shown in Figure 4. No precipitation 473 

was observed on the pump prior to the injections. The bulk chemical compositions of the 474 

precipitate samples are shown in Table 3. The cation concentration of the precipitates consisted 475 

mostly of calcium (>94%) with some iron (<3%), silica (<2%) and magnesium (<1%). The 476 

XRD-analysis (Fig. A2 in the electronic supplements) confirmed that calcite was the dominant 477 

mineral phase of this precipitate and no other crystalline phases were identified. A 
14

C analysis 478 

of the carbon in the precipitates confirms that they originated from the injected 
14

C labelled CO2 479 

(Matter et al., 2016). 480 

 481 

Mineral saturation states of C- and S-bearing minerals 482 

The saturation indices (SI) of calcite (CaCO3), magnesite (MgCO3) and siderite (FeCO3), 483 

as calculated using PHREEQC, are shown in Figure 5a. Calculations show that calcite was 484 

saturated both before and after the Phase I and Phase II injections. This mineral was, however, 485 

strongly undersaturated just after these injections concurrent with the drop in monitoring fluid 486 

pH below 8, even though the DIC and Ca concentrations were relatively high (Figs. 2a and 3a). 487 

Note that calcite was identified by XRD-analysis on drill-cuttings from the area prior to the 488 

injections (Alfredsson et al., 2013) and within and on the pump in the monitoring well at the end 489 

of the monitoring period (Figs. 4 and A2 in the electronic supplements). The monitoring fluid 490 

samples attained calcite saturation at the end of April 2012, about seven weeks after the Phase I 491 



injection was terminated, and at end of August, about four weeks after the Phase II injection was 492 

terminated, when the fluid pH had increased to >8. In contrast, the monitoring fluid samples 493 

were calculated to be supersaturated with respect to siderite shortly after both injections, whereas 494 

magnesite was strongly undersaturated during this time (Fig. 5a). Magnesite and siderite were 495 

not identified at the Hellisheidi site prior to the injections, but both minerals have been identified 496 

by XRD-analysis of drill-cuttings from the Svartsengi geothermal field in SW-Iceland (Franzson, 497 

1983; Richter et al., 1999), which has a significantly higher salinity and higher temperature 498 

gradient than the CarbFix site. Magnesite-siderite solid solutions were identified in low 499 

temperature CO2 metasomatised basalts in Nuussuaq, West Greenland (Rogers et al., 2006). 500 

There calcite appears at a relatively low CO2 partial pressure, and magnesite-siderite at higher 501 

partial pressures (Fig. 6), as predicted by the PHREEQC modelling (Fig. 5a).  502 

 503 

The calculated saturation indices of a number of other carbonate minerals are shown in 504 

Figure 5b. Ankerite (CaFe(CO3)2) is the only carbonate-phase that was supersaturated during the 505 

whole monitoring period, that is while Fe
2+

 concentrations are above the detection limit of the 506 

spectroscopic method. Ankerite has not been identified in the area. It was however identified 507 

during basaltic glass-CO2 charged water interaction experiments performed at 75°C by Gysi and 508 

Stefánsson (2012b), and during basalt, water, supercritical CO2 interaction experiments reported  509 

by McGrail et al. (2006). Similar to calcite, the sampled fluids were calculated to be 510 

supersaturated with respect to aragonite (CaCO3) throughout the monitoring period, with the 511 

exception of several weeks near the end of, and shortly after both injections (see Fig. 5b). 512 

Aragonite was identified by XRD-analysis of drill-cuttings from the area prior to the injections 513 

(Alfredsson et al., 2013). Although the fluids were calculated to be supersaturated with respect to 514 

dolomite (CaMg(CO3)2) following both injections, this mineral has not been observed at the 515 

CarbFix site. It has been observed however by XRD-analysis as a secondary mineral in drill-516 

cuttings from the saline Svartsengi high-temperature geothermal field in SW-Iceland, as is the 517 

case for magnesite and siderite (Franzson, 1983). The calculated saturation indices of three 518 

different Ca-Mg-Fe-solid solutions are shown in Figure 5c. All three show similar trends as 519 

calcite and aragonite. The Mg0.50-Fe0.50-CO3 is the least saturated of the three, but attained 520 

saturation after both injections.  521 

 522 



The calculated saturation indices for some sulphur-bearing minerals are shown in Figure 523 

5d. The monitoring well fluids were calculated to be undersaturated with respect to native 524 

sulphur during the whole monitoring period. In contrast, pyrite (FeS2), which is one of the most 525 

abundant secondary minerals at Hellisheidi at elevated temperature, and was identified at 780 m 526 

depth within the HN-02 injection well (Helgadóttir, 2011), was calculated to be supersaturated in 527 

all the monitoring fluid samples, showing a slight decrease in its saturation index at the 528 

beginning of the Phase II injection and a peak mid-August 2012 concurrent with the first 529 

maximum in SF5CF3 concentration, indicating the initial breakthrough of the injected Phase II 530 

fluids (Fig. 5d). As previously mentioned, calcite was the only crystalline phase identified in the 531 

precipitates forming on the pump from well HN-04. Pyrite was, however, identified by XRD-532 

analysis on samples collected from an airlift of the injection well HN-02, confirming formation 533 

of pyrite during or after the Phase II injection (Fig. A3 in the electronic supplement). Greigite 534 

(Fe3S4) showed a similar behaviour as pyrite, as this mineral was supersaturated in all 535 

monitoring well fluid samples. This mineral was not identified in the area previously, and was 536 

not identified by XRD analysis on the airlift samples collected from the injection well HN-02. It 537 

is, however, a metastable phase that may be a precursor of pyrite (Deer et al., 1992). Pyrrhotite 538 

(Fe7S8- FeS) was slightly supersaturated in the fluids sampled during the first weeks of the Phase 539 

II injection but undersaturated in all other samples (Fig. 5d). Pyrrhotite was previously identified 540 

within the high-temperature system in the Hellisheiði area (e.g. Gunnarsdóttir, 2012), but was 541 

not found at the CarbFix site nor identified in XRD analysis on the airlift samples from the 542 

injection well HN-02 (Fig. A3 in the electronic supplements). Gunnlaugsson and Arnórsson 543 

(1982) reported that below 180°C, geothermal waters in Iceland equilibrate with marcasite 544 

(FeS2) instead of pyrite; marcasite is a pyrite dimorph generally found at lower temperatures 545 

(Deer et al., 1992). There was no evidence of marcasite in samples from the CarbFix site, either 546 

prior to the injections or in the XRD-analysis from the airlift pumping of well HN-02 (Fig. A3 in 547 

the electronic supplement). Mackinawite ((Fe,Ni)9S8) became supersaturated in the fluids 548 

sampled at the beginning of the Phase II injection, during the initial breakthrough of the injected 549 

Phase II fluid, and it is near to saturation in some monitoring samples collected from October to 550 

April 2013 (Fig. 5d). Mackinawite was not been identified in the area, and was not detected by 551 

XRD-analysis on the airlift samples from HN-02 (Fig. A3 in the electronic supplement). 552 



However, mackinawite typically forms as a nanocrystalline material, whose broad peaks in XRD 553 

would be complicated to identify. 554 

 555 

Saturation indices for other minerals 556 

Saturation indices for other selected minerals are shown in Figure 7. Chalcedony (SiO2) 557 

was slightly undersaturated in the monitoring fluid samples prior to the injections, but becomes 558 

saturated during Phase I; it then remains saturated for the rest of the monitoring period (Fig. 7a). 559 

Chalcedony is a common secondary mineral in the area (e.g. Alfredsson et al., 2013) 560 

 561 

The mineral saturation states for those zeolites that are common in the area are shown in 562 

Figure 7b. Analcime, a common Na-zeolite found as an alteration phase at the CarbFix site, was 563 

undersaturated in the sampled fluids until about two months after the beginning of the Phase II 564 

injection, and then it is subsequently saturated (Fig. 7b). The samples were supersaturated with 565 

respect to other zeolites previously found in the area; and the general trend was a decrease in the 566 

monitoring fluid saturation index during the Phase I injection with an increase 6-8 weeks after 567 

Phase I was started. A slight dip was observed during the Phase II injection and an increase was 568 

observed during the second breakthrough of the injected fluid from Phase I (Fig. 7b).  569 

 570 

The mineral saturation states for common clay minerals are shown in Figure 7c. Kaolinite 571 

(Al2Si2O5OH4) remained strongly supersaturated in the fluids sampled during the entire 572 

monitoring period (Fig. 7c), but increasingly so when the samples had a pH <8, during the 573 

injections and in the first weeks thereafter. Kaolinite was identified as a surface alteration 574 

product in geothermal areas (e.g. Markússon and Stefánsson, 2011) but has not been identified in 575 

subsurface samples collected from wells at Hellisheidi. The saturation state of gibbsite (Al(OH)3) 576 

is depicted with the clay minerals; its behaviour was similar to kaolinite, except that it was 577 

undersaturated prior to the injections and became saturated when pH dropped below 8 during 578 

Phase I. It remained slightly supersaturated during the rest of the monitoring period (Fig. 7c). 579 

The saturation states of two other members of the kaolinite group; imogolite (Al2SiO3OH4) and 580 

allophane (Al2O3SiO2*H2O), were also calculated. Imogolite was undersaturated prior to the 581 

injections but became strongly supersaturated during Phase I when the pH drops below 8, and 582 

remained supersaturated for the rest of the monitoring period, but decreasingly so as the pH 583 



increased (Fig. 7c). Allophane was undersaturated during the whole monitoring period. Smectite 584 

was supersaturated in all samples except for the samples taken during, and shortly after the two 585 

injections while the pH was <8 (Fig. 7c). Smectite is one of the most abundant secondary 586 

minerals in basaltic rocks and has been identified in all wells drilled at Hellisheidi (e.g. 587 

Schiffman and Fridleifsson, 1991). 588 

 589 

Discussion 590 

Concentrations for the major elements Ca, Mg, Si, Na, K and Cl and the trace elements 591 

Fe and Al calculated using equations (1) and (2), based on the assumption of non-reactive 592 

conservative fluid mixing, are shown in Figure 3 together with their corresponding measured 593 

concentrations. Corresponding plots for the injected constituents are shown in Figure 2. 594 

Measured concentrations, greater than those calculated based on conservative fluid mixing, 595 

suggest net dissolution, lower concentrations suggest net precipitation (i.e. “fixation”). Measured 596 

Ca, Mg, and Fe concentrations were much higher during the injections and the subsequent days 597 

and weeks than that calculated assuming non-reactive conservative mixing. This indicates a net-598 

input of these elements to the fluid consistent with the dissolution of the basalt originally present 599 

in the reservoir. The measured concentrations of these elements eventually became lower, and in 600 

the case of Mg, measured concentrations became lower than that calculated from non-reactive 601 

mechanical mixing (Fig. 3b) about 300 days after the start of the Phase 1 injection, suggesting 602 

net-precipitation into secondary minerals after these times.  603 

 604 

Measured and calculated non-reactive conservative mixing concentrations of Si were 605 

approximately identical during the first breakthrough of Phase I, but the measured concentrations 606 

were lower during the second breakthrough (Fig. 3d). Measured Na and K concentrations were 607 

higher than the calculated from non-reactive conservative mixing, with a continuous increase up 608 

until the second breakthrough of Phase I, indicating net-release of these elements from the rock 609 

to the fluid (Fig. 3e-f). Na and K are the most mobile major elements during the weathering and 610 

low temperature alteration of basaltic rocks (Alfredsson et al., 2013; Eiriksdottir et al., 2015; 611 

Gislason et al., 1996). Measured Al concentrations were much lower during Phase I than 612 

corresponding calculated non-reactive conservative mixing concentrations indicating net Al 613 

precipitation during the injection and during the following weeks, while the pH of the samples 614 



from well HN-04 was below 8 (Fig. 3g). Subsequently, the measured Al concentration rises 615 

slowly, with a small drop during the Phase II injection. From about 300 days after the start of the 616 

Phase I injection, and throughout the sampling period, the measured Al concentration in the 617 

samples exceeded the corresponding calculated concentrations, indicating a net release of this 618 

element from the rocks. Chlorine is a trace element in basaltic rocks (Sigvaldason and 619 

Oskarsson, 1976), but is sparingly taken up by secondary minerals, providing an example of a 620 

mobile element that behaves conservatively during mechanical mixing and moderate water rock 621 

interactions (Arnórsson and Andrésdóttir, 1995; Gislason and Eugster, 1987; Olsson et al., 622 

2014). Measured and calculated conservative mixing concentrations of Cl were approximately 623 

identical, except during the second breakthrough of Phase I, when the measured concentrations 624 

were slightly lower than the calculated values (Fig. 3h) suggesting its possible uptake into 625 

carbonates (Olsson et al., 2014).  626 

 627 

The fate of the injected carbon 628 

The results and calculations presented above provide insight into the fate of the injected 629 

dissolved CO2 gas. As previously reported by Matter et al. (2016), the difference between the 630 

measured and calculated non-reactive mixing DIC concentration (Fig. 8a), indicates its loss 631 

along the flow-path towards the monitoring well. Matter et al. (2016) also suggest that the 632 

dissolution of pre-existing carbonates at the onset of the CO2 injection may have contributed to 633 

the neutralisation of the injected CO2-rich water, along with dissolution of other phases such as 634 

basaltic glass, primary minerals of the host rock and other secondary minerals. This liberation of 635 

cations and neutralization of the originally acidic gas-rich injected aqueous fluid lead to the 636 

precipitation of carbonate minerals; Matter et al. (2016) concluded that over 95% of the carbon 637 

injected during Phase I was fixed as carbonate minerals in less than two years.  638 

 639 

These previous conclusions are supported by the observations reported in this study. 640 

Shortly after the injections, the measured concentrations of dissolved Mg, Fe, and Ca increased 641 

substantially (Fig. 3a-c), and were greatly above that computed for non-reactive mixing, 642 

consistent with the rapid dissolution of the original reservoir rock. The dissolved concentration 643 

of Ca in these fluids was far greater than that of Mg and Fe, suggesting the preferential 644 

dissolution of calcium bearing minerals, such as calcite, during and shortly after both injection 645 



phases. Indeed, the saturation state of calcite, the major carbonate phase present in the basaltic 646 

reservoir became undersaturated during and just after the Phase I injection (Fig .5a), consistent 647 

with the initial dissolution of the calcite originally present in the host rock. Approximately 100 648 

days after the start of the Phase I injection the monitoring fluid samples became supersaturated 649 

with respect to calcite with a saturation index of 0.6; this degree of supersaturation would be 650 

sufficient to grow calcite on the surfaces of the silicate minerals present in the reservoir 651 

(Stockmann et al., 2014). A similar variation of the calcite saturation state was evident following 652 

the Phase II injection. Moreover, calcite was observed to have precipitated within the monitoring 653 

well following the injection.  654 

 655 

The saturation state of the monitoring fluid samples with respect to the carbonate phases 656 

magnesite and dolomite followed a similar pattern as calcite (Fig. 5b), but these were not 657 

identified in the study area. Such minerals have been reported to be kinetically inhibited from 658 

forming abiotically at temperatures less than 80 °C (Higgins and Hu, 2005; Kessels et al., 2000; 659 

Lippmann, 1973; Saldi et al., 2009, 2012). Similarly, siderite was calculated to be supersaturated 660 

in the sampled fluid but has not been found at the study site to date. 661 

 662 

The fate of the injected sulphur 663 

A noteworthy observation in this study is that the dissolved sulphur concentrations in the 664 

monitoring well samples remained close to constant during and after the injection of the H2S-rich 665 

phase II injection. In contrast, non-reactive mixing calculations suggest these concentrations 666 

should have been as high as 0.6 mmol/L in the absence of sulphur precipitation (Fig. 8b). This 667 

indicates that vast majority of the sulphur injected into the subsurface was fixed within several 668 

weeks, before the Phase II fluids arrived at the first monitoring well. Indeed, numerous sulphur-669 

bearing minerals, including pyrite, pyrrhotite, mackinawite, and greigite were supersaturated 670 

during the first weeks of Phase II injection (Fig. 5d).  671 

 672 

Pyrite was strongly supersaturated favouring its nucleation and subsequent precipitation. 673 

The pyrite formation was confirmed by XRD-analysis on solids collected from the water samples 674 

taken during airlift from the injection well HN-02 in the spring of 2013. The analysis showed 675 

peaks from pyrite, amounting to 5-10 weight% of the solid material present in the air-lift 676 



samples, based on Rietveld analysis using the software Topas (Fig. A3 in the electronic 677 

supplement). No other well-crystalline sulphides were identified in these airlift samples. 678 

Moreover, sulphide minerals were not identified in the precipitates recovered from the HN-04 679 

monitoring well pump, which supports the conclusion that the H2S mineralises prior to the 680 

arrival of the injection fluid at the first monitoring well. This rapid mineralisation of the injected 681 

H2S is also in agreement with experimental studies on H2S sequestration in basaltic rocks 682 

(Gudbrandsson and Stefánsson, 2014). 683 

 684 

The timescale of carbon and sulphur mineralisation: Carbon storage in 685 

sedimentary basins versus basaltic rocks. 686 

Carbon storage in sedimentary basins typically proceeds via the injection of pure CO2 687 

into porous sedimentary rocks (Fig. 9a). For common geothermal gradients, CO2 is a 688 

supercritical fluid below 800 m in sedimentary basins. As supercritical CO2 is less dense than the 689 

formation waters near this depth, it is buoyant and tends to rise to the surface. Ideally this CO2 is 690 

trapped below an impermeable cap rock via structural or stratigraphic trapping. Eventually some 691 

of this CO2 becomes stuck in small pores, limiting its mobility (residual trapping). Over time, 692 

CO2 dissolves in the formation water (solubility trapping). As CO2 charged water is denser than 693 

the original formation water, this CO2-charged water will tend to sink. Some of this dissolved 694 

CO2 may react to form stable carbonate minerals (mineral trapping). As one progresses from 695 

structural to mineral trapping, the CO2 becomes more immobile and thus the storage more 696 

secure, though this process can take thousands of years or more as summarized in Figure 9a 697 

(Benson and Cole, 2008; Benson et al., 2005). Mineral trapping in sedimentary basins is slow 698 

and sometimes limited because of a lack of the calcium, magnesium, and iron bearing minerals 699 

required to mineralise the injected CO2 (Gilfillan et al., 2009; Gislason and Oelkers, 2014). 700 

 701 

In contrast during the CarbFix method, CO2 is dissolved into water during its injection 702 

into porous basaltic rocks. No cap rock is required because the dissolved CO2 is not buoyant and 703 

will not tend to migrate back to the surface. Solubility trapping occurs within 5 minutes during 704 

the CO2 injection process (Sigfusson et al., 2015), and due to the reactivity of the basaltic rocks 705 

the bulk of the carbon is trapped in minerals within two years as shown in Figure 9b (this study; 706 

Matter et al., 2016).  This rapid carbonation of injected CO2 provides a permanent and safe 707 



carbon storage option; once fixed into a carbonate mineral, the risk of leakage is minimal and 708 

little if any further monitoring of the site will be necessary.  709 

 710 

The results of this study suggest that the co-injection of H2S with CO2 into the subsurface both 711 

rapidly fixes this gas through pyrite precipitation and does not detrimentally effect the 712 

carbonation of the injected CO2. Indeed, the results from this study indicate that this pyrite 713 

mineralization is even faster than the carbonate mineralization; the bulk of the sulphur is trapped 714 

in minerals within four months from injection. The co-injection of these two acid gases may 715 

provide a number of advantages, most notably, it may lower substantially the energy and cost 716 

required to capture and separate the CO2 from industrial exhaust. This possibility is now being 717 

explored in the SulFix-CarbFix project , where a CO2-H2S gas mixture is being captured and 718 

separated from the gas stream of the Hellisheidi power plant by its dissolution in water at the 719 

surface at about 5 bars pressure and 20°C.  The resulting gas charged water is directly injected to 720 

700 m depth and 200 - 270°, aiming to store 8,000 - 10,000 tonnes of the gas mixture annually.  721 

 722 

The degree to which the CarbFix method can be applied at other sites will depend on the 723 

availability of suitable host-rocks, sufficient water to dissolve the CO2 during its injection, and 724 

economic considerations. This on-shore CarbFix project, demonstrates the feasibility of carbon 725 

storage in basaltic rocks. Nevertheless, the largest geological storage potential for CO2 lies 726 

offshore (Goldberg and Slagle, 2009; Goldberg et al., 2010; Goldberg et al., 2008; 727 

Snæbjörnsdóttir et al., 2014), where the mid-oceanic ridges contain permeable basaltic layers and 728 

the oceans provide an unlimited reservoir for the required water (Snæbjörnsdóttir and Gislason, 729 

2016). 730 

 731 

Conclusions 732 

This paper reported the chemical composition and mineral saturation states of fluids 733 

collected prior to, during and after the injection of 175 tonnes of pure CO2 and 73 tonnes of a 734 

gas-mixture consisting of 75 mol% CO2, 24 mol% H2S and 1 mol% H2, into basaltic rocks at the 735 

CarbFix site in SW-Iceland. All results indicate that the vast majority of injected CO2 and H2S 736 

were rapidly fixed within minerals in subsurface basalts.  The results presented above confirm 737 

that this fixation occurred by the initial dissolution of the host basalts due to the injection of 738 



acidic gas-charged water; mass balance indicates the net input from host rock dissolution of Mg, 739 

Fe, and Ca following each injection. The dissolution of host basalts and fluid mixing neutralized 740 

the pH of the injected fluid such that calcite became supersaturated approximately 100 days after 741 

the start of each injection favouring the fixation of the injected CO2 within this mineral.  This 742 

results, which supports those of Matter et al. (2016) who concluded that CO2 mineralization 743 

fixed over 95% of the injected carbon within 2 years, was further validated by observations of 744 

calcite precipitation within the monitoring well itself.  Although other metal carbonate minerals, 745 

notably, ankerite, siderite and mixed Ca, Mg, Fe-carbonates, were also supersatutated in the 746 

monitoring fluids these were not observed to form during this study. 747 

 748 

Similar results support the even more rapid mineralization of injected H2S as pyrite, as 749 

this mineral is supersaturated before, during and after the injection of a mixed CO2-H2S charged 750 

water into the basalts.  The rapid fixation of H2S into this mineral is further evidenced by the 751 

observation of pyrite precipitation in the injection well but not in the first monitoring well. Such 752 

observations suggest that H2S fixation by pyrite precipitation was essentially complete before the 753 

injected mixed-gas plume arrived at the monitoring well. Notably there appears to have been 754 

little difference in the chemical response in the subsurface of the mixed H2S-CO2 gas mixture 755 

injection compared to that of the pure CO2 injection.  Their similar success towards the CO2 756 

mineralization suggests that the injection of mixed gases might prove to be a simpler and more 757 

cost-effective approach to subsurface carbon storage than the injection of pure CO2. 758 
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Tables  

Table 1. Characteristics of the two gas injections into the CarbFix storage site considered in this 

study.  

 Phase I: 

Injection of 100% CO2 

 

Phase II: 

Injection of  

75% CO2, 24% H2S, 1% H2 

 

Period: 24th of January to 9th March 2012 15th of June to 1st of August 2012 

Injection period  

(days) 

45 

Active: 40 

48 

Active: 29 

Mass of injected gas 

(Tonnes) 

175 73 

   

Tracers:   

Reactive 
14C 14C 

Concentration: 40.0 Bq/L* 6 Bq/L* 

14C:12C ratio 2.16 x 10-11* 6.5 x 10-12* 

Non-reactive SF6 SF5CF3 

Concentration: 2.33 x 10-8 ccSTP/cc* 2.24 x 10-8 ccSTP/cc* 

*From Matter et al. 2016  



Table 2. The measured chemical composition of water collected from well HN-01, and co-

injected with pure CO2 gas or CO2/H2S gas mixtures into the CarbFix storage site.  

 

Date Sample 

ID 

pH Conduc 

tivity 

H2S O2 Alk. DIC S(total) 

   µs/cm µmol/L mmol/L mmol/L mmol/L mmol/L 

3.2.2012 12KGM06 9.29 292 0.45 0.051 2.109 1.460 0.118 

4.7.2012 12SOS03 9.21 300 0.32* 0.082 2.046 1.550 0.085 

 

Date Sample 

ID 

pH Ca Mg Fe Si Na K Al Cl 

   mmol/L mmol/L µmol/L mmol/L mmol/L mmol/L µmol/L mmol/L 

3.2.2012 12KGM06 9.29 0.13 0.16 0.021 0.59 2.04 0.024 1.19 0.31 

4.7.2012 12SOS03 9.21 0.15 0.20 0.068 0.39 1.83 0.024 0.65 0.25 
*Measured on 12th of July 



Table 3. The measured chemical composition of the major elements of two solid samples 

collected from the water pump recovered from well HN-04 on the 13
th

 of August 2013. 

Si 

mmol/L 

Na 

mmol/L 

K 

mmol/L 

Ca 

mmol/L 

Mg 

mmol/L 

S 

mmol/L 

Al 

mmol/L 

Fe 

mmol/L 

185 14.8 1.00 9482 136 10.0 0.03 286.5 

171 11.3 0.49 10230 123 5.3 0.02 197.0 

  



Figures 

 

Figure 1. Geological cross section of the CarbFix injection site, modified from Alfredsson et al. 

(2013). Blue indicates lava flows and brown indicates hyaloclastic (glassy) formations. The CO2-

H2S-H2 gas mixture used in the second injection was separated from other geothermal gases at 

the power plant and transported via gas pipe to the injection site where it was dissolved in water 

from well HN-01 within the injection well HN-02. The gas charged water enters the basalts as a 

single phase. Water was pumped from well HN-01 to the injection well HN-02 at the rate of 7.2 

m
3
/h. Water was pumped from the monitoring well at the rate of 3.5 m

3
/h, throughout this study. 

Graphic work by Sölvi Snæbjörnsson. 



  

Figure 2. Concentrations of a) SF6 and SF5CF3 non-reactive tracers; b) dissolved inorganic 

carbon (DIC) along with fluid pH calculated at in situ temperature (35°C), c) total dissolved 

sulphur and H2S(aq) in samples from monitoring well HN-04 prior to, during, and after the 

injection of pure CO2 and mixed CO2/H2S gas into the CarbFix Storage site. The timing of both 

gas injections is indicated by grey bars. The detection limit of the H2S concentration 

measurements is 0.3 µmol/L and is indicated as a dotted line. 

 



 

Figure 3. Concentrations of Ca, Mg, Fe, Si, Na, K, Al, Cl and F collected from monitoring well 

HN-04 prior to, during, and after the injection of CO2 and CO2/H2S into the CarbFix Storage site. 

The timing of both gas injections is indicated by grey bars. Note the pH of the fluid samples is 

plotted together with the Al concentrations. The results of mass balance calculations depicting 

expected values for these concentrations, assuming pure mechanical mixing of the injected 

solution is also shown in these plots. 



 

Figure 4. Photograph illustrating the presence of precipitates on the water sampling pump 

recovered from monitoring well HN-04 on the 13
th

 of August 2013. The diameter of the pump is 

101 mm. 

 

 

 



 

Figure 5. Saturation indices (SI) of collected HN-04 well water samples with respect to A) 

magnesite siderite and calcite; B) dolomite, aragonite and ankerite, C) Mg-Fe and Ca-Mg-Fe 

solid solutions, and D) pyrrhotite, pyrite, sulphur and mackinawite prior to, during, and after the 

injection of pure CO2 and a CO2/H2S gas mixture into the CarbFix Storage site. All saturation 

indices were calculated assuming the oxygen fugacity was controlled by equilibrium of the 

H2S/SO4
2-

 as a redox couple. Note that positive, negative, and zero SI values correspond to 

aqueous fluids that are supersaturated, undersaturated, and at equilibrium with the indicated 

mineral. The timing of both gas injections is indicated by grey bars. 



Figure 6. Partial pressures of CO2 and H2S prior to, during and after both injection experiments.  



 

Figure 7. Saturation indices (SI) of collected HN-04 well water samples with respect to A) 

chalcedony, B) the zeolites previously identified in the area, and C) selected clay-minerals prior 

to, during, and after the injection of pure CO2 and a CO2/H2S gas mixture into the CarbFix 

Storage site. Note that positive, negative, and zero SI values correspond to aqueous fluids that 

are supersaturated, undersaturated, and at equilibrium with the indicated mineral. The timing of 

both gas injections is indicated by grey bars. 

 



 

Figure 8. Comparison of measured and calculated non-reactive mixing concentrations of DIC 

and sulphur – see text. The timing of both gas injections is indicated by grey bars.  

  



 

 

Figure 9. Schematic illustration of the contribution of various trapping mechanisms to the 

geologic storage as a function of time, a) injection of buoyant supercritical CO2 into sedimentary 

rocks, modified from Benson et al. (2005), b) injection of CO2 dissolved in water into basaltic 

rocks via the CarbFix method. 


