152 research outputs found

    Studies Of The Over-Rotating BMPV Solution

    Get PDF
    We study unphysical features of the BMPV black hole and how each can be resolved using the enhancon mechanism. We begin by reviewing how the enhancon mechanism resolves a class of repulson singularities which arise in the BMPV geometry when D--branes are wrapped on K3. In the process, we show that the interior of an enhancon shell can be a time machine due to non-vanishing rotation. We link the resolution of the time machine to the recently proposed resolution of the BMPV naked singularity / "over-rotating" geometry through the expansion of strings in the presence of RR flux. We extend the analysis to include a general class of BMPV black hole configurations, showing that any attempt to "over-rotate" a causally sound BMPV black hole will be thwarted by the resolution mechanism. We study how it may be possible to lower the entropy of a black hole due to the non-zero rotation. This process is prevented from occurring through the creation of a family of resolving shells. The second law of thermodynamics is thereby enforced in the rotating geometry - even when there is no risk of creating a naked singularity or closed time-like curves

    Half-BPS Giants, Free Fermions and Microstates of Superstars

    Full text link
    We consider 1/2-BPS states in AdS/CFT. Using the matrix model description of chiral primaries explicit mappings among configurations of fermions, giant gravitons and the dual-giant gravitons are obtained. These maps lead to a `duality' between the giant and the dual-giant configurations which is the reflection of particle-hole duality of the fermion picture. These dualities give rise to some interesting consequences which we study. We then calculate the degeneracy of 1/2-BPS states both from the CFT and string theory and show that they match. The asymptotic degeneracy grows exponentially with the comformal dimension. We propose that the five-dimensional single charge `superstar' geometry should carry this density of states. An appropriate stretched horizon can be placed in this geometry and the entropy predicted by the CFT and the string theory microstate counting can be reproduced by the Bekenstein-Hawking formula up to a numerical coefficient. Similar M-theory examples are also considered.Comment: 21 pages, v2:typos corrected and references adde

    Stretched Horizon and Entropy of Superstars

    Get PDF
    Amongst the class of supergravity solutions found by Lin, Lunin and Maldacena, we consider pure and mixed state configurations generated by phase space densities in the dual fermionic picture. A one-to-one map is constructed between the phase space densities and piecewise monotonic curves, which generalize the Young diagrams corresponding to pure states. Within the fermionic phase space picture, a microscopic formula for the entropy of mixed states is proposed. Considering thermal ensembles, agreement is found between the thermodynamic and the proposed microscopic entropies. Furthermore, we study fluctuations in thermodynamic ensembles for the superstar and compare the entropy of these ensembles with the area of stretched horizons predicted by the mean fluctuation size.Comment: 21 pages, 3 figures, 2 references adde

    Ultrasonic evidence of an uncorrelated cluster formation temperature in manganites with first-order magnetic transition at T_C

    Full text link
    Ultrasonic attenuation and phase velocity measurements have been carried out in the ferromagnetic perovskites La_{2/3}Ca_{1/3}MnO_3 and La_{2/3}Sr_{1/3}MnO_3. Data show that the transition at the Curie temperature, T_C, changes from first- to second-order as Sr replaces Ca in the perovskite. The compound with first-order transition shows also another transition at a temperature T* > T_C. We interpret the temperature window T_C < T < T* as a region of coexistence of a phase separated regime of metallic and insulating regions, in the line of recent theoretical proposals.Comment: 4 pages, 2 figure

    Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy

    Get PDF
    During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly

    Mapping geographical inequalities in childhood diarrhoeal morbidity and mortality in low-income and middle-income countries, 2000–17 : analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Across low-income and middle-income countries (LMICs), one in ten deaths in children younger than 5 years is attributable to diarrhoea. The substantial between-country variation in both diarrhoea incidence and mortality is attributable to interventions that protect children, prevent infection, and treat disease. Identifying subnational regions with the highest burden and mapping associated risk factors can aid in reducing preventable childhood diarrhoea. Methods We used Bayesian model-based geostatistics and a geolocated dataset comprising 15 072 746 children younger than 5 years from 466 surveys in 94 LMICs, in combination with findings of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017, to estimate posterior distributions of diarrhoea prevalence, incidence, and mortality from 2000 to 2017. From these data, we estimated the burden of diarrhoea at varying subnational levels (termed units) by spatially aggregating draws, and we investigated the drivers of subnational patterns by creating aggregated risk factor estimates. Findings The greatest declines in diarrhoeal mortality were seen in south and southeast Asia and South America, where 54·0% (95% uncertainty interval [UI] 38·1–65·8), 17·4% (7·7–28·4), and 59·5% (34·2–86·9) of units, respectively, recorded decreases in deaths from diarrhoea greater than 10%. Although children in much of Africa remain at high risk of death due to diarrhoea, regions with the most deaths were outside Africa, with the highest mortality units located in Pakistan. Indonesia showed the greatest within-country geographical inequality; some regions had mortality rates nearly four times the average country rate. Reductions in mortality were correlated to improvements in water, sanitation, and hygiene (WASH) or reductions in child growth failure (CGF). Similarly, most high-risk areas had poor WASH, high CGF, or low oral rehydration therapy coverage. Interpretation By co-analysing geospatial trends in diarrhoeal burden and its key risk factors, we could assess candidate drivers of subnational death reduction. Further, by doing a counterfactual analysis of the remaining disease burden using key risk factors, we identified potential intervention strategies for vulnerable populations. In view of the demands for limited resources in LMICs, accurately quantifying the burden of diarrhoea and its drivers is important for precision public health

    Erratum: Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Interpretation: By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning

    Roadmap on organic inorganic hybrid perovskite semiconductors and devices

    Get PDF
    Metal halide perovskites are the first solution processed semiconductors that can compete in their functionality with conventional semiconductors, such as silicon. Over the past several years, perovskite semiconductors have reported breakthroughs in various optoelectronic devices, such as solar cells, photodetectors, light emitting and memory devices, and so on. Until now, perovskite semiconductors face challenges regarding their stability, reproducibility, and toxicity. In this Roadmap, we combine the expertise of chemistry, physics, and device engineering from leading experts in the perovskite research community to focus on the fundamental material properties, the fabrication methods, characterization and photophysical properties, perovskite devices, and current challenges in this field. We develop a comprehensive overview of the current state of the art and offer readers an informed perspective of where this field is heading and what challenges we have to overcome to get to successful commercializatio
    corecore