94 research outputs found

    Membrane paradigm realized?

    Full text link
    Are there any degrees of freedom on the black hole horizon? Using the `membrane paradigm' we can reproduce coarse-grained physics outside the hole by assuming a fictitious membrane just outside the horizon. But to solve the information puzzle we need `real' degrees of freedom at the horizon, which can modify Hawking's evolution of quantum modes. We argue that recent results on gravitational microstates imply a set of real degrees of freedom just outside the horizon; the state of the hole is a linear combination of rapidly oscillating gravitational solutions with support concentrated just outside the horizon radius. The collective behavior of these microstate solutions may give a realization of the membrane paradigm, with the fictitious membrane now replaced by real, explicit degrees of freedom.Comment: 8 pages, Latex, 3 figures (Essay given second place in Gravity Research Foundation essay competition 2010

    Human stature and development with special reference to Indian population

    Get PDF
    Background: Variation in human height around the globe as well as within a specific region or population is considered as reflection of health, wellbeing and long and short term adaptations. Human height is determined by a combination of genetic and environmental factors particularly diet and healthcare plays a significant role. Undernutrition during early childhood leads to stunting and poverty is one of the important causes of undernutrition. Still, it was reported that human height has steadily increased over the past two centuries across the globe. This trend is in line with general improvements in health and nutrition during this period. Historical data on heights tends to come from soldiers (conscripts), convicted criminals, slaves and servants. It is for this reason much of the historical data focuses on men. Recent data on heights uses additional sources including surveys and medical records. Here, the primary objective is to understand the variation of height around the globe with special reference to Indian population and to assess the relationship with human development index (HDI) and stature. Material and Methods: For present investigation three dataset on stature were analyzed from three different databases. Primarily, the investigation is based on anthropometric data collected on adult males of 18+ years of age belonging to 118 caste/tribe/ethnic/religious groups residing in 161 districts of 14 states of Indian Union. The data was collected by the trained physical anthropologists of Anthropological Survey of India, following standard techniques using standard instruments. Measurements were taken on adult apparently healthy males. Efforts were also made to exclude closely related individuals. Verbal informed consent was obtained from the study participants and they were illustrated in detail about the study objectives. A total of 43952 adult males were measured for height. The representative samples were drawn from each of the district of the states. To achieve the goal of representative sample, data was collected from different caste/tribe/religious group residing in every particular district and state. These states covered for present investigation are homeland of 759 million populations, which is 62.7% of the total population of India. The second database is based on two consecutive anthropometric surveys conducted in Sagar district of Madhya Pradesh (Central India). The first survey was part of Anthropometric survey conducted by Anthropological survey during 1970s. The second one was conducted during 2006 which was limited to 5 ethnic/caste/religious groups. To understand the global variation and predictors of human stature, country-wise average heights were obtained from across the globe. To understand the secular trend and predictors of human stature the data on country-wise average stature around the globe was collected. Simultaneously, data on Human Development Index (HDI) were obtained to understand the impact of development on adult Human Stature. Results: There is wide variation in stature of adult male and females around the globe on the basis of ethnic origin, geographical location, climate and socio-economic conditions. On the basis of Indian data, it was found that ethnic and regional variation in adult human stature is predominated by their ethnic origin.The tribes (ST) have shortest stature (161.45±5.95 cm) followed by scheduled castes (SC), other backward castes (OBC), Jain, Muslims and General Castes (GC). The Sikhs are tallest in India with an average height of 169.09±6.59 cm. Besides caste and occupation, nutritional status was also found to be determinants of adult stature. Significant regional variation in stature was observed in India with Meghalaya males being shortest and Haryana and Punjab males being tallest in this dataset. The regression analysis was computed to find out the role of development in determining the stature around the globe. Conclusion: Variation of human height is modulated by both genetic makeup and environment predictors. Adult stature is an outcome of nutrition and health care available during infancy, childhood and adolescence. Income, occupation, caste (Indian), ethnicity, climate, geo-political environment and development etc. are main determinants of human stature. In Indian context PanHindu caste stratification is one of the predominant determinants of stature

    Entanglement Interpretation of Black Hole Entropy in String Theory

    Full text link
    We show that the entropy resulting from the counting of microstates of non extremal black holes using field theory duals of string theories can be interpreted as arising from entanglement. The conditions for making such an interpretation consistent are discussed. First, we interpret the entropy (and thermodynamics) of spacetimes with non degenerate, bifurcating Killing horizons as arising from entanglement. We use a path integral method to define the Hartle-Hawking vacuum state in such spacetimes and discuss explicitly its entangled nature and its relation to the geometry. If string theory on such spacetimes has a field theory dual, then, in the low-energy, weak coupling limit, the field theory state that is dual to the Hartle-Hawking state is a thermofield double state. This allows the comparison of the entanglement entropy with the entropy of the field theory dual, and thus, with the Bekenstein-Hawking entropy of the black hole. As an example, we discuss in detail the case of the five dimensional anti-de Sitter, black hole spacetime

    Horizons, Constraints, and Black Hole Entropy

    Full text link
    Black hole entropy appears to be ``universal''--many independent calculations, involving models with very different microscopic degrees of freedom, all yield the same density of states. I discuss the proposal that this universality comes from the behavior of the underlying symmetries of the classical theory. To impose the condition that a black hole be present, we must partially break the classical symmetries of general relativity, and the resulting Goldstone boson-like degrees of freedom may account for the Bekenstein-Hawking entropy. In particular, I demonstrate that the imposition of a ``stretched horizon'' constraint modifies the algebra of symmetries at the horizon, allowing the use of standard conformal field theory techniques to determine the asymptotic density of states. The results reproduce the Bekenstein-Hawking entropy without any need for detailed assumptions about the microscopic theory.Comment: 16 pages, talk given at the "Peyresq Physics 10 Meeting on Micro and Macro structures of spacetime

    Formation and Evolution of Supermassive Black Holes

    Full text link
    The correlation between the mass of supermassive black holes in galaxy nuclei and the mass of the galaxy spheroids or bulges (or more precisely their central velocity dispersion), suggests a common formation scenario for galaxies and their central black holes. The growth of bulges and black holes can commonly proceed through external gas accretion or hierarchical mergers, and are both related to starbursts. Internal dynamical processes control and regulate the rate of mass accretion. Self-regulation and feedback are the key of the correlation. It is possible that the growth of one component, either BH or bulge, takes over, breaking the correlation, as in Narrow Line Seyfert 1 objects. The formation of supermassive black holes can begin early in the universe, from the collapse of Population III, and then through gas accretion. The active black holes can then play a significant role in the re-ionization of the universe. The nuclear activity is now frequently invoked as a feedback to star formation in galaxies, and even more spectacularly in cooling flows. The growth of SMBH is certainly there self-regulated. SMBHs perturb their local environment, and the mergers of binary SMBHs help to heat and destroy central stellar cusps. The interpretation of the X-ray background yields important constraints on the history of AGN activity and obscuration, and the census of AGN at low and at high redshifts reveals the downsizing effect, already observed for star formation. History appears quite different for bright QSO and low-luminosity AGN: the first grow rapidly at high z, and their number density decreases then sharply, while the density of low-luminosity objects peaks more recently, and then decreases smoothly.Comment: 31 pages, 13 figures, review paper for Astrophysics Update

    Black Hole Thermodynamics and Statistical Mechanics

    Full text link
    We have known for more than thirty years that black holes behave as thermodynamic systems, radiating as black bodies with characteristic temperatures and entropies. This behavior is not only interesting in its own right; it could also, through a statistical mechanical description, cast light on some of the deep problems of quantizing gravity. In these lectures, I review what we currently know about black hole thermodynamics and statistical mechanics, suggest a rather speculative "universal" characterization of the underlying states, and describe some key open questions.Comment: 35 pages, Springer macros; for the Proceedings of the 4th Aegean Summer School on Black Hole

    Mapping geographical inequalities in childhood diarrhoeal morbidity and mortality in low-income and middle-income countries, 2000–17 : analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Across low-income and middle-income countries (LMICs), one in ten deaths in children younger than 5 years is attributable to diarrhoea. The substantial between-country variation in both diarrhoea incidence and mortality is attributable to interventions that protect children, prevent infection, and treat disease. Identifying subnational regions with the highest burden and mapping associated risk factors can aid in reducing preventable childhood diarrhoea. Methods We used Bayesian model-based geostatistics and a geolocated dataset comprising 15 072 746 children younger than 5 years from 466 surveys in 94 LMICs, in combination with findings of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017, to estimate posterior distributions of diarrhoea prevalence, incidence, and mortality from 2000 to 2017. From these data, we estimated the burden of diarrhoea at varying subnational levels (termed units) by spatially aggregating draws, and we investigated the drivers of subnational patterns by creating aggregated risk factor estimates. Findings The greatest declines in diarrhoeal mortality were seen in south and southeast Asia and South America, where 54·0% (95% uncertainty interval [UI] 38·1–65·8), 17·4% (7·7–28·4), and 59·5% (34·2–86·9) of units, respectively, recorded decreases in deaths from diarrhoea greater than 10%. Although children in much of Africa remain at high risk of death due to diarrhoea, regions with the most deaths were outside Africa, with the highest mortality units located in Pakistan. Indonesia showed the greatest within-country geographical inequality; some regions had mortality rates nearly four times the average country rate. Reductions in mortality were correlated to improvements in water, sanitation, and hygiene (WASH) or reductions in child growth failure (CGF). Similarly, most high-risk areas had poor WASH, high CGF, or low oral rehydration therapy coverage. Interpretation By co-analysing geospatial trends in diarrhoeal burden and its key risk factors, we could assess candidate drivers of subnational death reduction. Further, by doing a counterfactual analysis of the remaining disease burden using key risk factors, we identified potential intervention strategies for vulnerable populations. In view of the demands for limited resources in LMICs, accurately quantifying the burden of diarrhoea and its drivers is important for precision public health

    The global burden of cancer attributable to risk factors, 2010–19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    BACKGROUND: Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. METHODS: The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk–outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. FINDINGS: Globally, in 2019, the risk factors included in this analysis accounted for 4·45 million (95% uncertainty interval 4·01–4·94) deaths and 105 million (95·0–116) DALYs for both sexes combined, representing 44·4% (41·3–48·4) of all cancer deaths and 42·0% (39·1–45·6) of all DALYs. There were 2·88 million (2·60–3·18) risk-attributable cancer deaths in males (50·6% [47·8–54·1] of all male cancer deaths) and 1·58 million (1·36–1·84) risk-attributable cancer deaths in females (36·3% [32·5–41·3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20·4% (12·6–28·4) and DALYs by 16·8% (8·8–25·0), with the greatest percentage increase in metabolic risks (34·7% [27·9–42·8] and 33·3% [25·8–42·0]). INTERPRETATION: The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden

    The Cholecystectomy As A Day Case (CAAD) Score: A Validated Score of Preoperative Predictors of Successful Day-Case Cholecystectomy Using the CholeS Data Set

    Get PDF
    Background Day-case surgery is associated with significant patient and cost benefits. However, only 43% of cholecystectomy patients are discharged home the same day. One hypothesis is day-case cholecystectomy rates, defined as patients discharged the same day as their operation, may be improved by better assessment of patients using standard preoperative variables. Methods Data were extracted from a prospectively collected data set of cholecystectomy patients from 166 UK and Irish hospitals (CholeS). Cholecystectomies performed as elective procedures were divided into main (75%) and validation (25%) data sets. Preoperative predictors were identified, and a risk score of failed day case was devised using multivariate logistic regression. Receiver operating curve analysis was used to validate the score in the validation data set. Results Of the 7426 elective cholecystectomies performed, 49% of these were discharged home the same day. Same-day discharge following cholecystectomy was less likely with older patients (OR 0.18, 95% CI 0.15–0.23), higher ASA scores (OR 0.19, 95% CI 0.15–0.23), complicated cholelithiasis (OR 0.38, 95% CI 0.31 to 0.48), male gender (OR 0.66, 95% CI 0.58–0.74), previous acute gallstone-related admissions (OR 0.54, 95% CI 0.48–0.60) and preoperative endoscopic intervention (OR 0.40, 95% CI 0.34–0.47). The CAAD score was developed using these variables. When applied to the validation subgroup, a CAAD score of ≤5 was associated with 80.8% successful day-case cholecystectomy compared with 19.2% associated with a CAAD score >5 (p < 0.001). Conclusions The CAAD score which utilises data readily available from clinic letters and electronic sources can predict same-day discharges following cholecystectomy

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore