241 research outputs found

    The Futility of Exoplanet Biosignatures

    Full text link
    The ultimate goal of astrobiology is to determine the distribution and diversity of life in the universe. But as the word "biosignature" suggests, what will be detected is not life itself, but an observation implicating a particular process associated with living systems. Technical constraints and our limited access to other worlds suggest we are more likely to detect an out-of-equilibrium suite of gasses than a writhing octopus. Yet, anything short of a writhing octopus will raise skepticism among astrobiologists about what has been detected. Resolving that skepticism requires a theory to delineate processes due to life and those due solely to abiotic mechanisms. This poses an existential question for the endeavor of life detection: How do astrobiologists plan to detect life via features shared between non-living and living systems? We argue that you cannot without an underlying theory of life. We illustrate this by analyzing the hypothetical detection of an "Earth 2.0" exoplanet. In the absence of a theory of life, we argue the community should focus on identifying unambiguous features of life via four areas of active research: understanding the principles of life on Earth, building life in the lab, detecting life in the solar system and searching for technosignatures. Ultimately, we ask, what exactly do astrobiologists hope to learn by searching for life?Comment: 15 pages, 2 figures, 1 bo

    Spontaneous formation of autocatalytic sets with self-replicating inorganic metal oxide clusters

    Get PDF
    Here we show how a simple inorganic salt can spontaneously form autocatalytic sets of replicating inorganic molecules that work via molecular recognition based on the {PMo12} ≡ [PMo12O40]3– Keggin ion, and {Mo36} ≡ [H3Mo57M6(NO)6O183(H2O)18]22– cluster. These small clusters are able to catalyze their own formation via an autocatalytic network, which subsequently template the assembly of gigantic molybdenum-blue wheel {Mo154} ≡ [Mo154O462H14(H2O)70]14–, {Mo132} ≡ [MoVI72MoV60O372(CH3COO)30(H2O)72]42– ball-shaped species containing 154 and 132 molybdenum atoms, and a {PMo12}⊂{Mo124Ce4} ≡ [H16MoVI100MoV24Ce4O376(H2O)56 (PMoVI10MoV2O40)(C6H12N2O4S2)4]5– nanostructure. Kinetic investigations revealed key traits of autocatalytic systems including molecular recognition and kinetic saturation. A stochastic model confirms the presence of an autocatalytic network involving molecular recognition and assembly processes, where the larger clusters are the only products stabilized by the cycle, isolated due to a critical transition in the network

    GALICS -- VI. Modelling Hierarchical Galaxy Formation in Clusters

    Full text link
    High-resolution N-body re-simulations of 15 massive (10^{14}-10^{15} Msun) dark matter haloes have been combined with the hybrid galaxy formation model GalICS (Hatton et al. 2003), to study the formation and evolution of galaxies in clusters, within the framework of the hierarchical merging scenario. New features in GalICS include a better description of galaxy positioning within dark matter haloes, a more reliable computation of the temperature of the inter-galactic medium as a function of redshift, and a description of the ram pressure stripping process. We focus on the luminosity functions, morphological fractions and colour distributions of galaxies in clusters and in cluster outskirts, at z=0. No systematic dependency on cluster richness is found either for the galaxy luminosity functions, morphological mixes, or colour distributions. Moving from higher density (cluster cores), to lower density environments (cluster outskirts), we detect a progressive flattening of the luminosity functions, an increase of the fraction of spirals and a decrease of that of ellipticals and S0s, and the progressive emergence of a bluer tail in the distributions of galaxy colours, especially for spirals. As compared to cluster spirals, early-type galaxies show a flatter luminosity function, and more homogeneous and redder colours. An overall good agreement is found between our results and the observations, particularly in terms of the cluster luminosity functions and morphological mixes. However, some discrepancies are also apparent, with too faint magnitudes of the brightest cluster members, especially in the B band, and galaxy colours tendentially too red (or not blue enough) in the model, with respect to the observations. Finally, ram pressure stripping appears to affect very little our results.Comment: Accepted for publication in MNRAS. 17 pages, 11 figures. High-resolution Figure 1 available in the on-line version of the pape

    Exploring and mapping chemical space with molecular assembly trees

    Get PDF
    The rule-based search of chemical space can generate an almost infinite number of molecules, but exploration of known molecules as a function of the minimum number of steps needed to build up the target graphs promises to uncover new motifs and transformations. Assembly theory is an approach to compare the intrinsic complexity and properties of molecules by the minimum number of steps needed to build up the target graphs. Here, we apply this approach to prebiotic chemistry, gene sequences, plasticizers, and opiates. This allows us to explore molecules connected to the assembly tree, rather than the entire space of molecules possible. Last, by developing a reassembly method, based on assembly trees, we found that in the case of the opiates, a new set of drug candidates could be generated that would not be accessible via conventional fragment-based drug design, thereby demonstrating how this approach might find application in drug discovery

    Kinematic Distances to Molecular Clouds identified in the Galactic Ring Survey

    Get PDF
    Kinematic distances to 750 molecular clouds identified in the 13CO J=1-0 Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey (BU-FCRAO GRS) are derived assuming the Clemens rotation curve of the Galaxy. The kinematic distance ambiguity is resolved by examining the presence of HI self-absorption toward the 13CO emission peak of each cloud using the Very Large Array Galactic Plane Survey (VGPS). We also identify 21 cm continuum sources embedded in the GRS clouds in order to use absorption features in the HI 21 cm continuum to distinguish between near and far kinematic distances. The Galactic distribution of GRS clouds is consistent with a four-arm model of the Milky Way. The locations of the Scutum-Crux and Perseus arms traced by GRS clouds match star count data from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) star-count data. We conclude that molecular clouds must form in spiral arms and be short-lived (lifetimes < 10 Myr) in order to explain the absence of massive, 13CO bright molecular clouds in the inter-arm space

    Simulating the Formation of the Local Galaxy Population

    Get PDF
    We simulate the formation and evolution of the local galaxy population starting from initial conditions with a smoothed linear density field which matches that derived from the IRAS 1.2 Jy galaxy survey. Our simulations track the formation and evolution of all dark matter haloes more massive than 10e+11 solar masses out to a distance of 8000 km/s from the Milky Way. We implement prescriptions similar to those of Kauffmann et al. (1999) to follow the assembly and evolution of the galaxies within these haloes. We focus on two variants of the CDM cosmology: an LCDM and a tCDM model. Galaxy formation in each is adjusted to reproduce the I-band Tully-Fisher relation of Giovanelli et al. (1997). We compare the present-day luminosity functions, colours, morphology and spatial distribution of our simulated galaxies with those of the real local population, in particular with the Updated Zwicky Catalog, with the IRAS PSCz redshift survey, and with individual local clusters such as Coma, Virgo and Perseus. We also use the simulations to study the clustering bias between the dark matter and galaxies of differing type. Although some significant discrepancies remain, our simulations recover the observed intrinsic properties and the observed spatial distribution of local galaxies reasonably well. They can thus be used to calibrate methods which use the observed local galaxy population to estimate the cosmic density parameter or to draw conclusions about the mechanisms of galaxy formation. To facilitate such work, we publically release our z=0 galaxy catalogues, together with the underlying mass distribution.Comment: 25 pages, 20 figures, submitted to MNRAS. High resolution copies of figures 1 and 3, halo and galaxy catalogues can be found at http://www.mpa-garching.mpg.de/NumCos/CR/index.htm

    Environmental control programs the emergence of distinct functional ensembles from unconstrained chemical reactions

    Get PDF
    Many approaches to the origin of life focus on how the molecules found in biology might be made in the absence of biological processes, from the simplest plausible starting materials. Another approach could be to view the emergence of the chemistry of biology as process whereby the environment effectively directs “primordial soups” toward structure, function, and genetic systems over time. This does not require the molecules found in biology today to be made initially, and leads to the hypothesis that environment can direct chemical soups toward order, and eventually living systems. Herein, we show how unconstrained condensation reactions can be steered by changes in the reaction environment, such as order of reactant addition, and addition of salts or minerals. Using omics techniques to survey the resulting chemical ensembles we demonstrate there are distinct, significant, and reproducible differences between the product mixtures. Furthermore, we observe that these differences in composition have consequences, manifested in clearly different structural and functional properties. We demonstrate that simple variations in environmental parameters lead to differentiation of distinct chemical ensembles from both amino acid mixtures and a primordial soup model. We show that the synthetic complexity emerging from such unconstrained reactions is not as intractable as often suggested, when viewed through a chemically agnostic lens. An open approach to complexity can generate compositional, structural, and functional diversity from fixed sets of simple starting materials, suggesting that differentiation of chemical ensembles can occur in the wider environment without the need for biological machinery

    VLT/NACO near-infrared imaging and spectroscopy of N88A in the SMC

    Full text link
    We present near-infrared imaging and spectroscopic high spatial resolution observations of the SMC region N88 containing the bright, excited, extincted and compact H II region N88A of size ~ 1 pc. To investigate its stellar content and reddening, N88 was observed using spectroscopy and imagery in the JHKs- and L'-band at a spatial resolution of ~ 0.1-0.3", using the VLT UT4 equipped with the NAOS adaptive optics system. In order to attempt to establish if the origin of the infra-red (IR) excess is due to bright nebulosity, circumstellar material and/or local dust, we used Ks vs J-K colour-magnitude (CM) and JHK colour-colour (CC) diagrams, as well as L' imagery.Our IR-data reveal in the N88 area an IR-excess fraction of geq 30 per cent of the detected stars,as well as an unprecedently detailed morphology of N88A. It consists of an embedded cluster of ~3.5" (~ 1 pc) in diameter, of at least thirteen resolved stars superposed with an unusual bright continuum centered on a very bright star. The four brightest stars in this cluster lie red-ward of H-K geq 0.45 mag, and could be classified as young stellar object (YSO) candidates. Four other probable YSO candidates are also detected in N88 along a south-north bow-shaped thin H2 filament at ~ 7" east of the young central bright star. At 0.2" east of this star, a heavily embedded core is detected that could be a massive class I protostar candidate. The 2.12 mu H2 image of N88A resembles a shell of diameter ~ 3" ~ 0.9 pc) centered on the bright star. The line ratios of H2 2-1 S(1) and 1-0 S(0) relative to 1-0 S(1), as well as the presence of high v lines, are indicative of photodissociation regions, rather than shocks.Comment: 15 pages, 14 figures, accepted by Astronomy and Astrophysics, uses pdflatex, aa.cl

    The K20 survey. VI. The Distribution of the Stellar Masses in Galaxies up to z~2

    Full text link
    We present a detailed analysis of the stellar mass content of galaxies up to z=2.5 in the K20 galaxy sample, that has a 92% spectroscopic completeness and a complete UBVRIzJKsUBVRIzJK_s multicolor coverage. We find that the M/L ratio decreases with redshift: in particular, the average M/L ratio of early type galaxies decreases with zz, with a scatter that is indicative of a range of star--formation time-scales and redshift of formation. More important, the typical M/L of massive early type galaxies is larger than that of less massive ones, suggesting that their stellar population formed at higher z. The final K20 galaxy sample spans a range of stellar masses from M*=10^9Msun to M*=10^12Msun, with massive galaxies ($M*>10^11Msun) detected up to z~2. We compute the Galaxy Stellar Mass Function at various z, of which we observe only a mild evolution (i.e. by 20-30%) up to z~1. At z>1, the evolution of the GSMF appears to be much faster: at z~2, about 35% of the present day stellar mass in objects with M*~10^11Msun appear to have assembled. We also detect a change in the physical nature of the most massive galaxies, since at z>1 a population of massive star--forming galaxies progressively appears. We finally analyze our results in the framework of Lambda-CDM hierarchical models. First, we show that the large number of massive galaxies detected at high z does not violate any fundamental Lambda-CDM constraint based on the number of massive DM halos. Then, we compare our results with the predictions of renditions of both semianalytic and hydro-dynamical models, that range from severe underestimates to slight overestimates of the observed mass density at z<~2. We discuss how the differences among these models are due to the different implementation of the main physical processes. (Abridged)Comment: Accepted for publication on Astronomy & Astrophysic

    Spitzer Observations of IC 2118

    Get PDF
    IC 2118, also known as the Witch Head Nebula, is a wispy, roughly cometary, ~5 degree long reflection nebula, and is thought to be a site of triggered star formation. In order to search for new young stellar objects (YSOs), we have observed this region in 7 mid- and far-infrared bands using the Spitzer Space Telescope and in 4 bands in the optical using the U. S. Naval Observatory 40-inch telescope. We find infrared excesses in 4 of the 6 previously-known T Tauri stars in our combined infrared maps, and we find 6 entirely new candidate YSOs, one of which may be an edge-on disk. Most of the YSOs seen in the infrared are Class II objects, and they are all in the "head" of the nebula, within the most massive molecular cloud of the region.Comment: Accepted to Ap
    corecore